stringtranslate.com

Фиксация азота

Фиксация азота - это химический процесс , при котором молекулярный диазот ( N
2
) превращается в аммиак ( NH
3
). [1] Это происходит как биологически, так и абиологически в химической промышленности . Биологическая фиксация азота или диазотрофия катализируется ферментами , называемыми нитрогеназами . [2] Эти ферментные комплексы кодируются генами Nif ( или гомологами Nif ) и содержат железо , часто со вторым металлом (обычно молибденом , но иногда ванадием ). [3]

Некоторые азотфиксирующие бактерии имеют симбиотические отношения с растениями , особенно с бобовыми , мхами и водными папоротниками, такими как азолла . [4] Более слабые несимбиотические отношения между диазотрофами и растениями часто называют ассоциативными, как видно из фиксации азота на корнях риса . Азотфиксация происходит между некоторыми термитами и грибами . [5] Он естественным образом возникает в воздухе в результате образования NO x при ударе молнии . [6] [7]

Фиксация азота необходима для жизни на Земле, поскольку фиксированные неорганические соединения азота необходимы для биосинтеза всех азотсодержащих органических соединений , таких как аминокислоты , полипептиды и белки , нуклеозидтрифосфаты и нуклеиновые кислоты . Как часть круговорота азота , он необходим для плодородия почвы и роста наземной и околоводной растительности , от которой зависят все потребители этих экосистем для получения биомассы . Таким образом, фиксация азота имеет решающее значение для продовольственной безопасности человеческого общества в поддержании урожайности сельскохозяйственных культур (особенно основных сельскохозяйственных культур ), кормов для скота ( фуражов или фуража ) и уловов рыболовства (как дикого, так и выращенного на фермах ) . Это также косвенно связано с производством всей азотистой промышленной продукции , в том числе удобрений , фармацевтических препаратов , текстиля , красителей и взрывчатых веществ .

История

Схематическое изображение круговорота азота . Абиотическая азотфиксация исключена.

Биологическая фиксация азота была открыта Жаном-Батистом Буссенго в 1838 году. [8] [9] Позже, в 1880 году, процесс, посредством которого она происходит, был открыт немецкими агрономами Германом Хеллригелем и Германом Вильфартом  [де] [10] и был полностью описан. голландский микробиолог Мартинус Бейеринк . [11]

«Длительные исследования связи растений с усвоением азота, начатые де Соссюром , Виллем , Лоузом , Гилбертом и другими, и завершились открытием Хеллригелем и Вильфартом в 1887 году симбиотической фиксации». [12]

«Опыты Боссенго в 1855 году и Пью, Гилберта и Лоуза в 1887 году показали, что азот не поступает в растение напрямую. Открытие Германом Хеллригелем и Германом Вильфартом в 1886-1888 годах роли азотфиксирующих бактерий открыло бы новую эру Почвоведение ». [13]

В 1901 году Бейеринк показал, что Azotobacter chroococcum способен фиксировать атмосферный азот. Это был первый вид названного им так рода азотобактеров . Это также первый известный диазотроф , вид, который использует двухатомный азот как этап полного азотного цикла . [ нужна цитата ]

Биологический

Биологическая фиксация азота (БНФ) происходит, когда атмосферный азот превращается в аммиак ферментом нитрогеназой . [1] Общая реакция на BNF такова:

N 2 + 16АТФ + 16H 2 O + 8e + 8H +2NH 3 +H 2 + 16ADP + 16P i

Процесс сопряжен с гидролизом 16 эквивалентов АТФ и сопровождается совместным образованием одного эквивалента H.
2
. [14] Преобразование N
2
Преобразование аммиака происходит в металлический кластер под названием FeMoco , аббревиатура железомолибденового кофактора . Механизм протекает через серию стадий протонирования и восстановления , на которых активный центр FeMoco гидрирует N.
2
субстрат. [15] У свободноживущих диазотрофов аммиак, вырабатываемый нитрогеназой, ассимилируется в глутамат через путь глутаминсинтетаза /глутаматсинтаза. Микробные гены nif, необходимые для фиксации азота, широко распространены в различных средах. [16]

Например, было показано, что разлагающаяся древесина, которая обычно имеет низкое содержание азота, является местом обитания диазотрофного сообщества. [17] [18] Бактерии обогащают древесный субстрат азотом посредством фиксации, тем самым обеспечивая разложение валежной древесины грибами. [19]

Нитрогеназы быстро разлагаются кислородом. По этой причине многие бактерии прекращают выработку фермента в присутствии кислорода. Многие азотфиксирующие организмы существуют только в анаэробных условиях, дыша для снижения уровня кислорода или связывая кислород с помощью белка , такого как леггемоглобин . [20] [21]

Важность азота

Атмосферный азот недоступен для большинства организмов [22] , поскольку его тройная ковалентная связь очень прочна. Большинство из них поглощают фиксированный азот из различных источников. На каждые 100 атомов углерода ассимилируется примерно от 2 до 20 атомов азота. Атомное соотношение углерода (C) : азот (N) : фосфор (P), наблюдаемое в среднем в планктонной биомассе, было первоначально описано Альфредом Редфилдом [23] , который определил стехиометрическое соотношение между атомами C:N:P, соотношение Редфилда. , чтобы быть 106:16:1. [23]

Нитрогеназа

Белковый комплекс нитрогеназа катализирует восстановление газообразного азота (N 2 ) до аммиака (NH 3 ). [24] [25] У цианобактерий эта ферментная система расположена в специализированной клетке, называемой гетероцистой . [26] Производство нитрогеназного комплекса генетически регулируется, а активность белкового комплекса зависит от концентрации кислорода в окружающей среде, а также внутри- и внеклеточных концентраций аммиака и окисленных форм азота (нитратов и нитритов). [27] [28] [29] Кроме того, считается, что совокупные концентрации аммония и нитрата ингибируют N Fix , особенно когда внутриклеточные концентрации 2- оксоглутарата (2-OG) превышают критический порог. [30] Специализированная клетка-гетероциста необходима для работы нитрогеназы из-за ее чувствительности к кислороду окружающей среды. [31]

Нитрогеназа состоит из двух белков: каталитического железозависимого белка, обычно называемого белком MoFe, и восстанавливающего белка, содержащего только железо (белок Fe). Существует три различных железозависимых белка: молибден -зависимый, ванадий -зависимый и только железо , причем все три варианта белка нитрогеназы содержат белковый компонент железа. Молибдензависимая нитрогеназа является наиболее часто встречающейся нитрогеназой. [32] Различные типы нитрогеназы можно определить по конкретному железосодержащему белковому компоненту. [33] Нитрогеназа высоко консервативна. Экспрессия генов посредством секвенирования ДНК позволяет определить, какой белковый комплекс присутствует в микроорганизме и потенциально экспрессируется. Чаще всего ген nif H используется для идентификации присутствия молибдензависимой нитрогеназы, за которым следуют близкородственные нитрогеназоредуктазы (компонент II) vnf H и anf H, представляющие ванадий-зависимую и железо-нитрогеназу соответственно. [34] При изучении экологии и эволюции азотфиксирующих бактерий ген nifH является наиболее широко используемым биомаркером . [35] nif H имеет два сходных гена anf H и vnfH, которые также кодируют нитрогеназоредуктазный компонент нитрогеназного комплекса. [36]

Эволюция нитрогеназы

Считается, что нитрогеназа возникла где-то между 1,5-2,2 миллиарда лет назад (Ga), [37] [38], хотя некоторые изотопные подтверждения указывают на эволюцию нитрогеназы уже около 3,2 млрд лет назад. [39] Нитрогеназа, по-видимому, произошла от матуразоподобных белки, хотя функция предыдущего белка в настоящее время неизвестна. [40]

Нитрогеназа имеет три различные формы ( Nif, Anf и Vnf ), которые соответствуют металлу, находящемуся в активном центре белка (молибден, железо и ванадий соответственно). [41] Считается, что обилие морских металлов на геологической временной шкале Земли определяло относительное изобилие той формы нитрогеназы, которая была наиболее распространена. [42] В настоящее время нет однозначного мнения о том, какая форма нитрогеназы возникла первой.

Микроорганизмы

Диазотрофы широко распространены в домене Бактерии, включая цианобактерии (например, весьма значимые Trichodesmium и Cyanothece ), зеленые серные бактерии , пурпурные серные бактерии , Azotobacteraceae , ризобии и Frankia . [43] [44] Некоторые облигатно анаэробные бактерии фиксируют азот, включая многие (но не все) Clostridium spp. Некоторые археи , такие как Methanosarcina acetivorans, также фиксируют азот [45] , а некоторые другие метаногенные таксоны вносят значительный вклад в фиксацию азота в почвах с дефицитом кислорода. [46]

Цианобактерии , широко известные как сине-зеленые водоросли, обитают почти во всех освещенных средах на Земле и играют ключевую роль в круговороте углерода и азота в биосфере . В целом цианобактерии могут использовать различные неорганические и органические источники связанного азота, такие как нитрат , нитрит , аммоний , мочевина или некоторые аминокислоты . Некоторые штаммы цианобактерий также способны к диазотрофному росту - способность, которая, возможно, присутствовала у их последнего общего предка в архейском эоне. [47] Азотфиксация естественным образом происходит не только в почвах, но и в водных системах, включая как пресноводные, так и морские. [48] ​​[49] Действительно, количество азота, зафиксированного в океане, по крайней мере, такое же, как и на суше. [50] Считается , что колониальная морская цианобактерия Trichodesmium фиксирует азот в таких масштабах, что на ее долю приходится почти половина фиксации азота в морских системах во всем мире. [51] Морские поверхностные лишайники и нефотосинтезирующие бактерии, принадлежащие к Proteobacteria и Planctomycetes, фиксируют значительное количество атмосферного азота. [52] Виды азотфиксирующих цианобактерий в пресных водах включают: Aphanizomenon и Dolichospermum (ранее Anabaena). [53] У таких видов есть специализированные клетки, называемые гетероцитами , в которых фиксация азота происходит с помощью фермента нитроциты. [54] [55]

Водоросли

Один тип органелл может превращать газообразный азот в биологически доступную форму. Этот нитропласт был обнаружен в водорослях . [56]

Симбиозы корневых клубеньков

Семья бобовых

На корне этой фасоли видны узелки.

Растения, способствующие фиксации азота, включают растения семейства бобовыхFabaceae — с такими таксонами , как кудзу , клевер , соя , люцерна , люпин , арахис и ройбуш . [44] Они содержат симбиотические бактерии -ризобии в клубеньках своей корневой системы , производящие соединения азота, которые помогают растению расти и конкурировать с другими растениями. [57] Когда растение умирает, фиксированный азот высвобождается, делая его доступным для других растений; это помогает удобрить почву . [20] [58] Подавляющее большинство бобовых имеют эту ассоциацию, но некоторые роды (например, Styphnolobium ) этого не делают. Во многих традиционных методах ведения сельского хозяйства на полях поочередно выращивают различные типы культур, среди которых обычно есть культуры, состоящие в основном или полностью из клевера . [ нужна цитата ]

Эффективность фиксации в почве зависит от многих факторов, в том числе от состава бобовых , воздушно-почвенных условий. Например, фиксация азота красным клевером может составлять от 50 до 200 фунтов на акр (от 56 до 224 кг/га). [59]

Незерновые

Разрезанный корневой клубень ольхи

Способность фиксировать азот в клубеньках имеется у актиноризных растений , таких как ольха и бейберри , с помощью бактерий Frankia . Они встречаются в 25 родах в отрядах Cucurbitales , Fagales и Rosales , которые вместе с Fabales образуют азотфиксирующую кладу евросид . Способность фиксировать азот не всегда присутствует в этих семьях. Например, из 122 родов Rosaceae только четыре фиксируют азот. Fabales были первой линией, ответвившейся от этой азотфиксирующей клады; таким образом, способность фиксировать азот может быть плезиоморфной и впоследствии утрачиваться у большинства потомков исходного азотфиксирующего растения; однако возможно, что основные генетические и физиологические потребности присутствовали в зачаточном состоянии у самых недавних общих предков всех этих растений, но развились до полной функции лишь у некоторых из них. [60]

Кроме того, трема ( Parasponia ), тропический род семейства Cannabaceae , необычайно способен взаимодействовать с ризобиями и образовывать азотфиксирующие клубеньки. [61]

Другие симбионты растений

Некоторые другие растения живут вместе с цианобионтами (цианобактериями, такими как Nostoc ), которые фиксируют для них азот:

Некоторые симбиотические отношения с участием сельскохозяйственно важных растений: [64]

Промышленные процессы

Исторический

Метод фиксации азота был впервые описан Генри Кавендишем в 1784 году с использованием электрических дуг, реагирующих с азотом и кислородом воздуха. Этот метод был реализован в процессе Биркеланда-Эйда в 1903 году. [66] Фиксация азота молнией - очень похожий естественный процесс.

Возможность реакции атмосферного азота с некоторыми химическими веществами впервые была обнаружена Дефоссом в 1828 году. Он заметил, что смеси оксидов щелочных металлов и углерода реагируют с азотом при высоких температурах. С использованием карбоната бария в качестве исходного материала в 1860-х годах стал доступен первый коммерческий процесс, разработанный Маргаритой и Сурдевалем. Образующийся цианид бария реагирует с водяным паром, образуя аммиак. В 1898 году Франк и Каро разработали так называемый процесс Франка-Каро для фиксации азота в форме цианамида кальция . Процесс затмил процесс Габера , открытый в 1909 году. [67] [68]

Габеровский процесс

Аппаратура для изучения фиксации азота альфа-лучами (Лаборатория исследования фиксированного азота, 1926 г.)

Доминирующим промышленным методом производства аммиака является процесс Габера, также известный как процесс Габера-Боша. [69] Производство удобрений в настоящее время является крупнейшим источником антропогенного фиксированного азота в наземной экосистеме . Аммиак является необходимым предшественником удобрений , взрывчатых веществ и других продуктов. Процесс Габера требует высокого давления (около 200 атм) и высоких температур (не менее 400 °C), которые являются обычными условиями промышленного катализа. В этом процессе используется природный газ в качестве источника водорода и воздух в качестве источника азота. Производство аммиака привело к интенсификации производства азотных удобрений во всем мире [70] , и ему приписывают поддержку роста населения Земли с примерно 2 миллиардов человек в начале 20-го века до примерно 8 миллиардов человек сейчас. [71]

Гомогенный катализ

Было проведено много исследований по открытию катализаторов фиксации азота, часто с целью снижения энергетических затрат. Однако такие исследования до сих пор не смогли приблизиться к эффективности и простоте процесса Габера. Многие соединения реагируют с атмосферным азотом с образованием динитрогенных комплексов . Первым описанным диазотистым комплексом был Ru(NH
3
)
5
( Н
2
) 2+
. [72] Некоторые растворимые комплексы катализируют азотфиксацию. [73]

Молния

Молния нагревает воздух вокруг себя в высокотемпературной плазме , разрывая связи N
2
, начиная образование азотистой кислоты ( HNO
2
).

Азот можно фиксировать с помощью молнии , превращая газообразный азот ( N
2
) и газообразный кислород ( O
2
) в атмосфере на NO x ( оксиды азота ). Затем
2
Молекула очень стабильна и инерционна из-за тройной связи между атомами азота. [74] Молния производит достаточно энергии и тепла, чтобы разорвать эту связь [74], позволяя атомам азота вступать в реакцию с кислородом, образуя NO.
Икс
. Эти соединения не могут быть использованы растениями, но по мере охлаждения молекула реагирует с кислородом с образованием NO.
2
, [75] который, в свою очередь, реагирует с водой с образованием HNO
2
( азотистая кислота ) или HNO
3
( азотная кислота ). Когда эти кислоты просачиваются в почву, они образуют NO.
3
(нитрат)
, который полезен растениям. [76] [74]

Смотрите также

Рекомендации

  1. ^ аб Ховард Дж.Б., Рис, округ Колумбия (1996). «Структурные основы биологической фиксации азота». Химические обзоры . 96 (7): 2965–2982. дои : 10.1021/cr9500545. ПМИД  11848848.
  2. ^ Беррис Р.Х., Уилсон П.В. (июнь 1945 г.). «Биологическая азотфиксация». Ежегодный обзор биохимии . 14 (1): 685–708. doi : 10.1146/annurev.bi.14.070145.003345. ISSN  0066-4154.
  3. ^ Вагнер СК (2011). «Биологическая азотфиксация». Знания о природном образовании . 3 (10): 15. Архивировано из оригинала 13 сентября 2018 года . Проверено 29 января 2019 г.
  4. ^ Захран Х.Х. (декабрь 1999 г.). «Ризобийно-бобовый симбиоз и азотфиксация в суровых условиях и в засушливом климате». Обзоры микробиологии и молекулярной биологии . 63 (4): 968–89, оглавление. дои :10.1128/MMBR.63.4.968-989.1999. ПМК 98982 . ПМИД  10585971. 
  5. ^ Сапунцис П., де Верж Дж., Руск К., Сильерс М., Форстер Б.Дж., Поулсен М. (2016). «Возможность фиксации азота в симбиозе термитов, выращивающих грибы». Границы микробиологии . 7 : 1993. doi : 10.3389/fmicb.2016.01993 . ПМК 5156715 . ПМИД  28018322. 
  6. ^ Слоссон Э (1919). Творческая химия. Нью-Йорк, штат Нью-Йорк: The Century Co., стр. 19–37.
  7. ^ Хилл Р.Д., Ринкер Р.Г., Уилсон HD (1979). «Фиксация атмосферного азота молнией». Дж. Атмос. Наука . 37 (1): 179–192. Бибкод : 1980JAtS...37..179H. doi : 10.1175/1520-0469(1980)037<0179:ANFBL>2.0.CO;2 .
  8. ^ Буссенго (1838). «Recherches chimiques sur la растительности, предприятия dans le, но d'examiner si les plantes prennent de l'azote à l'atmography» [Химические исследования растительности, предпринятые с целью изучения того, поглощают ли растения азот из атмосферы]. Annales de Chimie et de Physique . 2-я серия (на французском языке). 67 : 5–54.и 69: 353–367.
  9. ^ Смил В. (2001). Обогащение Земли . Массачусетский Институт Технологий.
  10. ^ Хеллригель Х, Уилфарт Х (1888). Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen [ Исследования потребления азота злаками и бобовыми ] (на немецком языке). Берлин, Германия: Buchdruckerei der "Post" Kayssler & Co.
  11. ^ Бейеринк М.В. (1901). «Убер олигонитрофильный микробен». Centralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (на немецком языке). 7 (16): 561–582.
  12. ^ Говард С. Рид (1942) Краткая история науки о растениях , страница 230, Chronic Publishing
  13. ^ Маргарет Росситер (1975) Возникновение сельскохозяйственной науки , стр. 146, издательство Йельского университета.
  14. ^ Ли CC, Риббе MW, Ху Ю (2014). Кронек, премьер-министр, Соса Торрес, М.Э. (ред.). «Глава 7. Разрыв тройной связи N,N: превращение динитрогена в аммиак нитрогеназами». Ионы металлов в науках о жизни . 14 . Спрингер: 147–76. дои : 10.1007/978-94-017-9269-1_7. ПМИД  25416394.
  15. ^ Хоффман Б.М., Лукоянов Д., Дин Д.Р., Зеефельдт Л.С. (февраль 2013 г.). «Нитрогеназа: проект механизма». Отчеты о химических исследованиях . 46 (2): 587–95. дои : 10.1021/ar300267m. ПМЦ 3578145 . ПМИД  23289741. 
  16. ^ Габи Дж.К., Бакли Д.Х. (июль 2011 г.). «Глобальная перепись разнообразия нитрогеназ». Экологическая микробиология . 13 (7): 1790–9. Бибкод : 2011EnvMi..13.1790G. дои : 10.1111/j.1462-2920.2011.02488.x. ПМИД  21535343.
  17. ^ Ринне К.Т., Раджала Т., Пелтониеми К., Чен Дж., Смоландер А., Мякипаа Р. (2017). «Скорость накопления и источники внешнего азота в гниющей древесине в лесу, где преобладает ель обыкновенная». Функциональная экология . 31 (2): 530–541. Бибкод : 2017FuEco..31..530R. дои : 10.1111/1365-2435.12734 . ISSN  1365-2435. S2CID  88551895.
  18. ^ Хоппе Б., Каль Т., Караш П., Вубет Т., Баухус Дж., Баскот Ф. и др. (2014). «Сетевой анализ выявляет экологические связи между азотфиксирующими бактериями и дереворазрушающими грибами». ПЛОС ОДИН . 9 (2): e88141. Бибкод : 2014PLoSO...988141H. дои : 10.1371/journal.pone.0088141 . ПМЦ 3914916 . ПМИД  24505405. 
  19. ^ Тласкал В., Брабцова В., Ветровский Т., Джомура М., Лопес-Мондехар Р., Оливейра Монтейро Л.М. и др. (январь 2021 г.). «Взаимодополняющая роль обитающих в древесине грибов и бактерий способствует разложению валежной древесины». mSystems . 6 (1). doi : 10.1128/mSystems.01078-20. ПМЦ 7901482 . ПМИД  33436515. 
  20. ^ ab Postgate J (1998). Азотфиксация (3-е изд.). Кембридж: Издательство Кембриджского университета.
  21. ^ Штрейхер С.Л., Герни Э.Г., Валентайн Р.С. (октябрь 1972 г.). «Гены азотфиксации». Природа . 239 (5374): 495–9. Бибкод : 1972Natur.239..495S. дои : 10.1038/239495a0. PMID  4563018. S2CID  4225250.
  22. ^ Делвич CC (1983). «Круговорот элементов в биосфере». В Ляухли А., Биелески Р.Л. (ред.). Неорганическое питание растений . Энциклопедия физиологии растений. Берлин, Гейдельберг: Springer. стр. 212–238. дои : 10.1007/978-3-642-68885-0_8. ISBN 978-3-642-68885-0.
  23. ^ ab Редфилд AC (1958). «Биологический контроль химических факторов окружающей среды». Американский учёный . 46 (3): 230А–221. ISSN  0003-0996. JSTOR  27827150.
  24. ^ Зеефельдт LC, Ян З.Ю., Лукоянов Д.А., Харрис Д.Ф., Дин Д.Р., Раугей С. и др. (2020). «Восстановление субстратов нитрогеназами». Химические обзоры . 120 (12): 5082–5106. doi : 10.1021/acs.chemrev.9b00556. ПМК 7703680 . ПМИД  32176472. 
  25. ^ Угроза SD, Рис, округ Колумбия (2023). «Биологическая фиксация азота в теории, практике и реальности: взгляд на систему молибденнитрогеназы». Письма ФЭБС . 597 (1): 45–58. дои : 10.1002/1873-3468.14534. ПМЦ 10100503 . ПМИД  36344435. 
  26. ^ Петерсон Р.Б., Волк CP (декабрь 1978 г.). «Высокое восстановление нитрогеназной активности и Fe-меченной нитроцисты в гетероцистах, выделенных из Anabaena variabilis». Труды Национальной академии наук Соединенных Штатов Америки . 75 (12): 6271–6275. Бибкод : 1978PNAS...75.6271P. дои : 10.1073/pnas.75.12.6271 . ПМК 393163 . ПМИД  16592599. 
  27. ^ Беверсдорф Л.Дж., Миллер Т.Р., МакМахон К.Д. (6 февраля 2013 г.). «Роль фиксации азота в токсичности цветения цианобактерий в эвтрофном озере с умеренным климатом». ПЛОС ОДИН . 8 (2): e56103. Бибкод : 2013PLoSO...856103B. дои : 10.1371/journal.pone.0056103 . ПМК 3566065 . ПМИД  23405255. 
  28. ^ Галлон JR (1 марта 2001 г.). «Фиксация N2 у фототрофов: адаптация к специализированному образу жизни». Растение и почва . 230 (1): 39–48. дои : 10.1023/А: 1004640219659. ISSN  1573-5036. S2CID  22893775.
  29. ^ Паерл Х (9 марта 2017 г.). «Парадокс цианобактериальной азотфиксации в природных водах». F1000Исследования . 6 : 244. дои : 10.12688/f1000research.10603.1 . ПМЦ 5345769 . ПМИД  28357051. 
  30. ^ Ли Дж. Х., Лоран С., Конде В., Беду С., Чжан CC (ноябрь 2003 г.). «Повышение уровня 2-оксоглутарата способствует развитию гетероцист у цианобактерии Anabaena sp., штамма PCC 7120». Микробиология . 149 (Часть 11): 3257–3263. дои : 10.1099/mic.0.26462-0 . ПМИД  14600238.
  31. ^ Волк CP, Эрнст А, Эльхай Дж (1994). «Метаболизм и развитие гетероцист». В Брайанте Д.А. (ред.). Молекулярная биология цианобактерий . Достижения в области фотосинтеза. Дордрехт: Springer Нидерланды. стр. 769–823. дои : 10.1007/978-94-011-0227-8_27. ISBN 978-94-011-0227-8.
  32. ^ Берджесс Б.К., Лоу DJ (ноябрь 1996 г.). «Механизм нитрогеназы молибдена». Химические обзоры . 96 (7): 2983–3012. дои : 10.1021/cr950055x. ПМИД  11848849.
  33. ^ Шнайдер К., Мюллер А. (2004). «Железная нитрогеназа: исключительные каталитические, структурные и спектроскопические особенности». Смит Б.Е., Ричардс Р.Л., Ньютон В.Е. (ред.). Катализаторы азотфиксации . Фиксация азота: происхождение, применение и прогресс исследований. Дордрехт: Springer Нидерланды. стр. 281–307. дои : 10.1007/978-1-4020-3611-8_11. ISBN 978-1-4020-3611-8.
  34. ^ Кноче К.Л., Аояма Э., Хасан К., Минтир С.Д. (2017). «Роль нитрогеназы и ферредоксина в механизме биоэлектрокаталитической фиксации азота мутантом Cyanobacteria Anabaena variabilis SA-1, иммобилизованным на электродах из оксида индия и олова (ITO)». Electrochimica Acta (на корейском языке). 232 : 396–403. doi :10.1016/j.electacta.2017.02.148.
  35. ^ Раймонд Дж., Зиферт Дж.Л., Стейплс CR, Бланкеншип RE (март 2004 г.). «Естественная история фиксации азота». Молекулярная биология и эволюция . 21 (3): 541–554. дои : 10.1093/molbev/msh047 . ПМИД  14694078.
  36. ^ Шюддекопф К., Хеннеке С., Лизе У., Куче М., Клипп В. (май 1993 г.). «Характеристика генов anf, специфичных для альтернативной нитрогеназы, и идентификация генов nif, необходимых для обеих нитрогеназ у Rhodobacter capsulatus». Молекулярная микробиология . 8 (4): 673–684. doi :10.1111/j.1365-2958.1993.tb01611.x. PMID  8332060. S2CID  42057860.
  37. ^ Гарсия А.К., Макши Х., Колачковски Б., Качар Б. (май 2020 г.). «Реконструкция эволюционной истории нитрогеназ: доказательства использования наследственного кофактора молибдена». Геобиология . 18 (3): 394–411. Бибкод : 2020Gbio...18..394G. дои : 10.1111/gbi.12381. ISSN  1472-4677. ПМК 7216921 . ПМИД  32065506. 
  38. ^ Бойд Э.С., Анбар А.Д., Миллер С., Гамильтон Т.Л., Лавин М., Питерс Дж.В. (май 2011 г.). «Позднее метаногенное происхождение молибдензависимой нитрогеназы». Геобиология . 9 (3): 221–232. Бибкод : 2011Gbio....9..221B. дои : 10.1111/j.1472-4669.2011.00278.x. ISSN  1472-4677. ПМИД  21504537.
  39. ^ Stüeken EE, Buick R, Guy BM, Koehler MC (апрель 2015 г.). «Изотопные доказательства биологической фиксации азота молибден-нитрогеназой из 3,2 млрд лет». Природа . 520 (7549): 666–669. Бибкод : 2015Natur.520..666S. дои : 10.1038/nature14180. ISSN  0028-0836. ПМИД  25686600.
  40. Гарсия А.К., Колачковски Б., Качар Б. (2 марта 2022 г.). Арчибальд Дж. (ред.). «Реконструкция предшественников нитрогеназы предполагает происхождение из матуразоподобных белков». Геномная биология и эволюция . 14 (3). doi : 10.1093/gbe/evac031. ISSN  1759-6653. ПМЦ 8890362 . ПМИД  35179578. 
  41. ^ Иди Р.Р. (1 января 1996 г.). «Структурно-функциональные взаимоотношения альтернативных нитрогеназ». Химические обзоры . 96 (7): 3013–3030. дои : 10.1021/cr950057h. ISSN  0009-2665. ПМИД  11848850.
  42. Анбар AD, Knoll AH (16 августа 2002 г.). «Химия и эволюция протерозойского океана: биоинорганический мост?». Наука . 297 (5584): 1137–1142. Бибкод : 2002Sci...297.1137A. дои : 10.1126/science.1069651. ISSN  0036-8075. ПМИД  12183619.
  43. Депутат института (6 августа 2021 г.). «Поступление азота в древний океан: недооцененные бактерии оказываются в центре внимания».
  44. ^ ab Мус Ф., Крук М.Б., Гарсия К., Гарсия Костас А., Геддес Б.А., Кури Э.Д. и др. (июль 2016 г.). Келли Р.М. (ред.). «Симбиотическая фиксация азота и проблемы ее распространения на небобовые». Прикладная и экологическая микробиология . 82 (13): 3698–3710. Бибкод : 2016ApEnM..82.3698M. дои : 10.1128/AEM.01055-16. ПМЦ 4907175 . ПМИД  27084023. 
  45. ^ Дхамад А.Е., диджей Лесснер (октябрь 2020 г.). Атоми Х (ред.). «Система CRISPRi-dCas9 для архей и ее использование для изучения функции генов во время фиксации азота Methanosarcina acetivorans». Прикладная и экологическая микробиология . 86 (21): e01402–20. Бибкод : 2020ApEnM..86E1402D. дои : 10.1128/AEM.01402-20. ПМЦ 7580536 . ПМИД  32826220. 
  46. ^ Бэ Х.С., Моррисон Э., Шантон Дж.П., Ограм А (апрель 2018 г.). «Метаногены вносят основной вклад в фиксацию азота в почвах Эверглейдс Флориды». Прикладная и экологическая микробиология . 84 (7): e02222–17. Бибкод : 2018ApEnM..84E2222B. дои : 10.1128/AEM.02222-17. ПМЦ 5861825 . ПМИД  29374038. 
  47. ^ Латышева Н., Юнкер В.Л., Палмер В.Дж., Кодд Г.А., Баркер Д. (март 2012 г.). «Эволюция фиксации азота у цианобактерий». Биоинформатика . 28 (5): 603–606. doi : 10.1093/биоинформатика/bts008 . ПМИД  22238262.
  48. ^ Пьерелла Карлусич Дж. Дж., Пеллетье Э., Ломбард Ф., Карсик М., Дворжак Э., Колин С. и др. (июль 2021 г.). «Глобальные закономерности распределения морских азотфиксаторов по данным визуализации и молекулярным методам». Природные коммуникации . 12 (1): 4160. Бибкод : 2021NatCo..12.4160P. дои : 10.1038/s41467-021-24299-y. ПМК 8260585 . ПМИД  34230473. 
  49. Эш С (13 августа 2021 г.). Эш С., Смит Дж. (ред.). «Немного света на диазотрофов». Наука . 373 (6556): 755,7–756. Бибкод : 2021Sci...373..755A. doi : 10.1126/science.373.6556.755-g. ISSN  0036-8075. S2CID  238709371.
  50. ^ Кайперс М.М., Марчант Х.К., Картал Б. (май 2018 г.). «Микробная сеть круговорота азота». Обзоры природы. Микробиология . 16 (5): 263–276. дои : 10.1038/nrmicro.2018.9. hdl : 21.11116/0000-0003-B828-1 . PMID  29398704. S2CID  3948918.
  51. ^ Бергман Б., Санд Г., Лин С., Ларссон Дж., Карпентер Э.Дж. (май 2013 г.). «Триходезмий - широко распространенная морская цианобактерия с необычными свойствами фиксации азота». Обзоры микробиологии FEMS . 37 (3): 286–302. дои : 10.1111/j.1574-6976.2012.00352.x. ПМЦ 3655545 . ПМИД  22928644. 
  52. ^ «Крупномасштабное исследование указывает на появление новых, обильных азотфиксирующих микробов на поверхности океана». ScienceDaily . Архивировано из оригинала 8 июня 2019 года . Проверено 8 июня 2019 г.
  53. Рольф С., Альмесё Л., Элмгрен Р. (5 марта 2007 г.). «Азотфиксация и численность диазотрофных цианобактерий Aphanizomenon sp. в Собственной Балтике». Серия «Прогресс в области морской экологии» . 332 : 107–118. Бибкод : 2007MEPS..332..107R. дои : 10.3354/meps332107 .
  54. ^ Кармайкл WW (12 октября 2001 г.). «Влияние на здоровье цианобактерий, продуцирующих токсины: «ЦианоHAB»". Оценка человеческого и экологического риска . 7 (5): 1393–1407. Бибкод : 2001HERA....7.1393C. doi : 10.1080/20018091095087. ISSN  1080-7039. S2CID  83939897.
  55. ^ Боте Х., Шмитц О., Йейтс М.Г., Ньютон В.Е. (декабрь 2010 г.). «Азотфиксация и водородный обмен у цианобактерий». Обзоры микробиологии и молекулярной биологии . 74 (4): 529–551. дои : 10.1128/MMBR.00033-10. ПМК 3008169 . ПМИД  21119016. 
  56. Вонг С. (11 апреля 2024 г.). «Ученые обнаружили первые водоросли, способные фиксировать азот благодаря крошечной клеточной структуре». Природа . дои : 10.1038/d41586-024-01046-z. ПМИД  38605201.
  57. ^ Кайперс М.М., Марчант Х.К., Картал Б. (май 2018 г.). «Микробная сеть круговорота азота». Обзоры природы. Микробиология . 16 (5): 263–276. дои : 10.1038/nrmicro.2018.9. hdl : 21.11116/0000-0003-B828-1 . PMID  29398704. S2CID  3948918.
  58. ^ Смил В. (2000). Циклы жизни . Научная американская библиотека.
  59. ^ «Азотфиксация и инокуляция кормовых бобовых» (PDF) . Архивировано из оригинала (PDF) 2 декабря 2016 года.
  60. ^ Доусон Дж.О. (2008). «Экология актиноризных растений». Азотфиксирующие актиноризные симбиозы . Фиксация азота: происхождение, применение и прогресс исследований. Том. 6. Спрингер. стр. 199–234. дои : 10.1007/978-1-4020-3547-0_8. ISBN 978-1-4020-3540-1.
  61. ^ Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W и др. (февраль 2011 г.). «Микоризный рецептор типа LysM, задействованный для ризобиального симбиоза у небобовой Parasponia». Наука . 331 (6019): 909–12. Бибкод : 2011Sci...331..909O. дои : 10.1126/science.1198181. PMID  21205637. S2CID  20501765.
  62. ^ «Биология саговников, Статья 1: Корралоидные корни саговников». www1.biologie.uni-hamburg.de . Проверено 14 октября 2021 г.
  63. ^ Рай АН (2000). «Симбиозы цианобактерий и растений». Новый фитолог . 147 (3): 449–481. дои : 10.1046/j.1469-8137.2000.00720.x . ПМИД  33862930.
  64. ^ Ван Дейнзе А., Самора П., Дело П.М., Хейтманн С., Джаяраман Д., Раджасекар С. и др. (август 2018 г.). «Азотфиксация в местных сортах кукурузы поддерживается диазотрофной микробиотой, связанной со слизью». ПЛОС Биология . 16 (8): e2006352. дои : 10.1371/journal.pbio.2006352 . ПМК 6080747 . ПМИД  30086128. 
  65. Псковский М (16 июля 2019 г.). «Местная кукуруза: кому принадлежат права на «чудо-растение» Мексики?». Йель E360 .
  66. ^ Эйд С (1909). «Производство нитратов из атмосферы с помощью электрической дуги - процесс Биркеланда-Эйда». Журнал Королевского общества искусств . 57 (2949): 568–576. JSTOR  41338647.
  67. ^ Генрих Х, Невбнер Р (1934). «Die Umwandlungsgleichung Ba(CN)2 → BaCN2 + C im Temperaturgebiet von 500 bis 1000 °C» [Реакция превращения Ba(CN) 2 → BaCN 2 + C в интервале температур от 500 до 1000 °C]. З. Электрохим. Энджью. Физ. Хим . 40 (10): 693–698. дои : 10.1002/bbpc.19340401005. S2CID  179115181. Архивировано из оригинала 20 августа 2016 года . Проверено 8 августа 2016 г.
  68. ^ Кертис Х.А. (1932). Фиксированный азот.
  69. ^ Смил, В. 2004. Обогащение Земли: Фриц Хабер, Карл Бош и трансформация мирового производства продуктов питания, MIT Press.
  70. ^ Глиберт П.М. , Марангер Р. , Собота DJ, Бауман Л. (1 октября 2014 г.). «Связь Хабер-Бош – вредное цветение водорослей (HB – HAB)». Письма об экологических исследованиях . 9 (10): 105001. Бибкод : 2014ERL.....9j5001G. дои : 10.1088/1748-9326/9/10/105001 . ISSN  1748-9326. S2CID  154724892.
  71. ^ Эрисман Дж.В., Саттон М.А., Галлоуэй Дж., Климонт З., Винивартер В. (октябрь 2008 г.). «Как век синтеза аммиака изменил мир». Природа Геонауки . 1 (10): 636–639. Бибкод : 2008NatGe...1..636E. дои : 10.1038/ngeo325. ISSN  1752-0908. S2CID  94880859.
  72. ^ Аллен А.Д., Сенофф CV (1965). «Комплексы азотопентамминрутения (II)». Дж. Хим. Соц., хим. Коммун. (24): 621–622. дои : 10.1039/C19650000621.
  73. ^ Чалкли MJ, Дровер MW, Питерс JC (июнь 2020 г.). «Каталитическая конверсия N2 в NH3 (или -N2H4) с помощью четко определенных молекулярных координационных комплексов». Химические обзоры . 120 (12): 5582–5636. doi : 10.1021/acs.chemrev.9b00638. ПМЦ 7493999 . ПМИД  32352271. 
  74. ^ abc Tuck AF (октябрь 1976 г.). «Производство оксидов азота грозовыми разрядами». Ежеквартальный журнал Королевского метеорологического общества . 102 (434): 749–755. Бибкод : 1976QJRMS.102..749T. дои : 10.1002/qj.49710243404. ISSN  0035-9009.
  75. ^ Hill RD (август 1979 г.). «Фиксация атмосферного азота молнией». Журнал атмосферных наук . 37 : 179–192. Бибкод : 1980JAtS...37..179H. doi : 10.1175/1520-0469(1980)037<0179:ANFBL>2.0.CO;2 . ISSN  1520-0469.
  76. ^ Левин Дж.С. (1984). «Тропосферные источники NOx: молния и биология» . Проверено 29 ноября 2018 г.

Внешние ссылки