stringtranslate.com

Микроволновая полость

Два микроволновых резонатора (слева) 1955 года, каждый из которых присоединен волноводом к рефлекторному клистрону (справа) — вакуумной трубке, используемой для генерации микроволн. Резонаторы служат резонаторами ( контурами колебаний ) для определения частоты осцилляторов

Микроволновая полость или радиочастотная полость ( РЧ-полость ) — это особый тип резонатора , состоящий из закрытой (или в значительной степени закрытой) металлической структуры, которая ограничивает электромагнитные поля в микроволновой или РЧ- области спектра. Структура либо полая, либо заполнена диэлектрическим материалом. Микроволны отражаются вперед и назад между стенками полости. На резонансных частотах полости они усиливаются, образуя стоячие волны в полости. Таким образом, полость функционирует аналогично органной трубе или резонатору в музыкальном инструменте, колеблясь преимущественно на ряде частот, ее резонансных частотах. Таким образом, она может действовать как полосовой фильтр , пропуская микроволны определенной частоты, блокируя микроволны на соседних частотах.

Микроволновая полость действует подобно резонансному контуру с чрезвычайно низкими потерями на своей рабочей частоте , что приводит к факторам качества (Q-факторам) до порядка 10 6 для медных полостей по сравнению с 10 2 для схем, выполненных с отдельными индукторами и конденсаторами на той же частоте. Для сверхпроводящих полостей возможны факторы качества до порядка 10 10 . Они используются вместо резонансных контуров на микроволновых частотах, поскольку на этих частотах дискретные резонансные контуры не могут быть построены из-за слишком низких значений необходимых индуктивности и емкости. Они используются в генераторах и передатчиках для создания микроволновых сигналов и в качестве фильтров для отделения сигнала на заданной частоте от других сигналов в таком оборудовании, как радиолокационное оборудование, микроволновые релейные станции, спутниковая связь и микроволновые печи .

Радиочастотные резонаторы также могут манипулировать заряженными частицами , проходящими через них, путем приложения ускоряющего напряжения и поэтому используются в ускорителях частиц и микроволновых вакуумных лампах, таких как клистроны и магнетроны .

Теория работы

Внутренняя часть полости российского военного радиолокационного передатчика со снятой крышкой. Полость служит резонансным контуром генератора, использующего триодную вакуумную лампу внутри. Детали:
(1) Подстроечный конденсатор с винтом, используемый для настройки частоты
(2) Верхняя часть триода ГС13-1 ( русский : ГС-13-1 [1] ) , который генерирует микроволны (3) Проводная петля связи, с которой снимается выходная мощность

Большинство резонансных полостей сделаны из закрытых (или короткозамкнутых) секций волновода или диэлектрического материала с высокой диэлектрической проницаемостью (см. диэлектрический резонатор ). Электрическая и магнитная энергия хранится в полости. Эта энергия со временем затухает из-за нескольких возможных механизмов потерь.

Раздел «Физика резонаторов СВЧ» в статье о сверхпроводящих радиочастотах содержит ряд важных и полезных выражений, которые применимы к любому резонатору СВЧ:

Энергия, запасенная в полости, определяется интегралом плотности энергии поля по ее объему,

,

где:

H — магнитное поле в полости и
μ 0 — проницаемость свободного пространства.

Мощность, рассеиваемая только за счет сопротивления стенок полости, определяется интегралом потерь на резистивной стенке по ее поверхности,

,

где:

R s — поверхностное сопротивление.

Для медных полостей, работающих при температуре, близкой к комнатной, R s просто определяется эмпирически измеренной объемной электропроводностью σ, см. Рамо и др., стр. 288-289 [2]

.

Добротность резонатора определяется как

,

где:

ω — резонансная частота в [рад/с],
U — это энергия, запасенная в [Дж], а
P d — мощность, рассеиваемая в [Вт] в полости для поддержания энергии U .

Основные потери обусловлены конечной проводимостью стенок полости и диэлектрическими потерями материала, заполняющего полость. В вакуумированных полостях существуют и другие механизмы потерь, например, эффект мультипактора или полевая электронная эмиссия . Как эффект мультипактора, так и полевая электронная эмиссия генерируют обильные электроны внутри полости. Эти электроны ускоряются электрическим полем в полости и, таким образом, извлекают энергию из запасенной энергии полости. В конце концов электроны ударяются о стенки полости и теряют свою энергию. В сверхпроводящих радиочастотных полостях существуют дополнительные механизмы потери энергии, связанные с ухудшением электропроводности сверхпроводящей поверхности из-за нагрева или загрязнения.

Каждая полость имеет многочисленные резонансные частоты, которые соответствуют модам электромагнитного поля, удовлетворяющим необходимым граничным условиям на стенках полости. Из-за этих граничных условий, которые должны быть выполнены при резонансе (тангенциальные электрические поля должны быть равны нулю на стенках полости), при резонансе размеры полости должны удовлетворять определенным значениям. В зависимости от поперечной моды резонанса поперечные размеры полости могут быть ограничены выражениями, связанными с геометрическими функциями, или нулями функций Бесселя или их производных (см. ниже), в зависимости от свойств симметрии формы полости. С другой стороны, следует, что длина полости должна быть целым кратным полудлины волны при резонансе (см. стр. 451 Рамо и др. [2] ). В этом случае резонансную полость можно рассматривать как резонанс в короткозамкнутой полуволновой линии передачи .

Внешние размеры полости можно значительно уменьшить в ее самом низкочастотном режиме, нагружая полость либо емкостными, либо индуктивными элементами. Нагруженные полости обычно имеют более низкую симметрию и ухудшают определенные показатели производительности, такие как наилучший фактор добротности . В качестве примеров можно привести резонатор [3] и спиральный резонатор, которые являются емкостными и индуктивными нагруженными полостями соответственно.

Многоклеточная полость

Отдельные полости ячеек могут быть объединены в структуру для ускорения частиц (таких как электроны или ионы) более эффективно, чем ряд независимых отдельных полостей ячеек. [4] На рисунке Министерства энергетики США показана многоячеистая сверхпроводящая полость в чистой комнате Национальной ускорительной лаборатории имени Ферми.

Министерство энергетики США - Наука - 270 119 001 (22613353795)

Загруженные микроволновые полости

Микроволновая полость имеет фундаментальную моду, которая демонстрирует самую низкую резонансную частоту из всех возможных резонансных мод. Например, фундаментальная мода цилиндрической полости — это мода TM 010. Для некоторых приложений существует мотивация уменьшить размеры полости. Это можно сделать, используя нагруженную полость, где емкостная или индуктивная нагрузка интегрирована в структуру полости.

Точная резонансная частота нагруженной полости должна быть рассчитана с использованием методов конечных элементов для уравнений Максвелла с граничными условиями.

Нагруженные полости (или резонаторы) также могут быть сконфигурированы как многоячеистые полости.

Загруженные полости особенно подходят для ускорения заряженных частиц с низкой скоростью. Это приложение для многих типов загруженных полостей, некоторые общие типы перечислены ниже.

Спиральный резонатор
Разъемный кольцевой резонатор (торцевые крышки сняты)
Радиочастотный квадруполь (торцевая крышка снята)

.

Q-фактор конкретной моды в резонансной полости может быть вычислен. Для полости с высокой степенью симметрии, используя аналитические выражения электрического и магнитного поля, поверхностных токов в проводящих стенках и электрического поля в диэлектрическом материале с потерями. [14] Для полостей произвольной формы должны использоваться методы конечных элементов для уравнений Максвелла с граничными условиями. Измерение Q полости выполняется с помощью векторного анализатора цепей (электрического) или в случае очень высокой Q путем измерения времени экспоненциального затухания полей и использования соотношения .

Электромагнитные поля в полости возбуждаются посредством внешней связи. Внешний источник питания обычно соединяется с полостью с помощью небольшой апертуры , небольшого проволочного зонда или петли, см. стр. 563 Рамо и др. [2] Внешняя структура связи влияет на производительность полости и должна учитываться в общем анализе, см. Монтгомери и др., стр. 232. [15]

Резонансные частоты

Резонансные частоты полости зависят от ее геометрии.

Прямоугольная полость

Прямоугольная полость

Резонансные частоты прямоугольной микроволновой полости для любого резонансного режима можно найти, наложив граничные условия на выражения электромагнитного поля. Эта частота приведена на странице 546 Рамо и др.: [2]

где — волновое число , причем , , — номера мод, а , , — соответствующие размеры; c — скорость света в вакууме; и — относительные магнитная и диэлектрическая проницаемости заполнения полости соответственно.

Цилиндрическая полость

Цилиндрическая полость

Решения поля цилиндрической полости длины и радиуса следуют из решений цилиндрического волновода с дополнительными электрическими граничными условиями в положении охватывающих пластин. Резонансные частоты различны для TE и TM мод.

Режимы ТМ

См. Джексон [16]

TE-режимы

См. Джексон [16]

Здесь обозначает -й ноль -й функции Бесселя , а обозначает -й ноль производной функции Бесселя. и — относительная магнитная проницаемость и диэлектрическая проницаемость соответственно.

Фактор качества

Добротность резонатора можно разложить на три части, представляющие различные механизмы потери мощности.

где - собственное сопротивление диэлектрика, - поверхностное сопротивление стенок полости. Обратите внимание, что .

Общий коэффициент добротности резонатора можно найти на стр. 567 работы Рамо и др. [2].


Сравнение с LC-цепями

Эквивалент LC-цепи для микроволнового резонатора

Микроволновые резонансные полости можно представить и рассматривать как простые LC-цепи , см. Монтгомери и др., страницы 207-239. [15] Для микроволновой полости сохраненная электрическая энергия равна сохраненной магнитной энергии при резонансе, как в случае резонансной LC-цепи . В терминах индуктивности и емкости резонансная частота для заданного режима может быть записана, как указано в Монтгомери и др., страница 209 [15]

где V — объем полости, — волновое число моды, а и — диэлектрическая и магнитная проницаемость соответственно.

Чтобы лучше понять полезность резонансных полостей на микроволновых частотах, полезно отметить, что обычные индукторы и конденсаторы начинают становиться непрактично маленькими с частотой в диапазоне VHF , и определенно так для частот выше одного гигагерца . Из-за их низких потерь и высоких коэффициентов добротности, объемные резонаторы предпочтительнее обычных LC и резонаторов линии передачи на высоких частотах.

Потери в LC-резонансных контурах

Абсорбционный волномер . Этот исторический пример для определения частоты полости состоял из регулируемой полости, калиброванной по частоте. Когда резонансная частота полости достигает частоты применяемых микроволн, она поглощает энергию, вызывая падение выходной мощности. Затем частоту можно считать со шкалы. В настоящее время используется сетевой анализатор (электрический) .

Обычные индукторы обычно наматываются из проволоки в форме спирали без сердечника. Скин-эффект приводит к тому, что высокочастотное сопротивление индукторов во много раз превышает их сопротивление постоянному току . Кроме того, емкость между витками вызывает диэлектрические потери в изоляции , покрывающей провода. Эти эффекты увеличивают высокочастотное сопротивление и уменьшают добротность.

Обычные конденсаторы используют воздух , слюду , керамику или, возможно, тефлон в качестве диэлектрика. Даже с диэлектриком с низкими потерями конденсаторы также подвержены потерям из-за скин-эффекта в своих выводах и пластинах. Оба эффекта увеличивают их эквивалентное последовательное сопротивление и уменьшают их добротность.

Даже если добротность СВЧ-индукторов и конденсаторов достаточно высока, чтобы быть полезной, их паразитные свойства могут существенно повлиять на их производительность в этом диапазоне частот. Шунтирующая емкость индуктора может быть более значительной, чем его желаемая последовательная индуктивность. Последовательная индуктивность конденсатора может быть более значительной, чем его желаемая шунтирующая емкость. В результате в областях СВЧ или СВЧ конденсатор может казаться индуктором, а индуктор может казаться конденсатором. Эти явления более известны как паразитная индуктивность и паразитная емкость .

Потери в объемных резонаторах

Диэлектрические потери воздуха чрезвычайно низки для высокочастотных электрических или магнитных полей. Заполненные воздухом микроволновые полости ограничивают электрические и магнитные поля воздушными пространствами между их стенками. Электрические потери в таких полостях почти исключительно обусловлены токами, протекающими в стенках полости. Хотя потери от токов стенок невелики, полости часто покрываются серебром , чтобы увеличить их электропроводность и еще больше снизить эти потери. Медные полости часто окисляются , что увеличивает их потери. Покрытие серебром или золотом предотвращает окисление и снижает электрические потери в стенках полости. Несмотря на то, что золото не является таким хорошим проводником, как медь, оно все же предотвращает окисление и, как следствие, ухудшение добротности с течением времени. Однако из-за своей высокой стоимости оно используется только в самых требовательных приложениях.

Некоторые резонаторы спутников покрыты серебром и покрыты слоем золотой вспышки. Ток в основном протекает в слое серебра с высокой проводимостью, в то время как слой золотой вспышки защищает слой серебра от окисления.

Ссылки

  1. ^ Лампа генераторная ГС-13-1. eandc.ru (на русском языке) . Проверено 20 апреля 2022 г.
  2. ^ abcdef Саймон Рамо , Джон Рой Уиннери , Теодор Ван Дузер (1965). Поля и волны в коммуникационной электронике . John Wiley and Sons.
  3. ^ ab Ilan Ben-Zvi , Peter H. Ceperley и HA Schwettman, «Проектирование полостей с возвратным входом», Ускорители частиц . 1976, том 7 , стр. 125-135, https://cds.cern.ch/record/1021070/files/p125.pdf
  4. ^ https://uspas.fnal.gov/materials/11ODU/Proton_5.pdf [ пустой URL-адрес PDF ]
  5. ^ Картер, Ричард Г.; Фэн, Джинджун; Беккер, Ульрих (2007). «Расчет свойств резонаторов с цилиндрической полостью» (PDF). Труды IEEE по теории и технике микроволнового излучения . 55 (12): 2531–2538 – через IEEE Xplore.
  6. ^ E. Jaeschke et al ., «Секция тяжелого иона Heidelberg 3MV-CW после ускорителя с использованием независимо фазированных спиральных резонаторов» в IEEE Transactions on Nuclear Science , т. 24, № 3, стр. 1136-1140, июнь 1977 г., doi: 10.1109/TNS.1977.4328874.
  7. ^ KW Shepard, JE Mercereau и GJ Dick, «Новая сверхпроводящая структура для ускорения тяжелых ионов с использованием химически полированных свинцовых поверхностей», в IEEE Transactions on Nuclear Science , т. 22, № 3, стр. 1179-1182, июнь 1975 г., doi: 10.1109/TNS.1975.4327840.
  8. ^ Бен-Цви, И.; Бреннан, Дж. М. (1983-07-01). «Четвертьволновой резонатор как сверхпроводящий элемент линейного ускорителя». Ядерные приборы и методы в физических исследованиях . 212 (1): 73–79. Bibcode : 1983NIMPR.212...73B. doi : 10.1016/0167-5087(83)90678-6. ISSN  0167-5087.
  9. ^ Делайен, Дж. Р. и Дж. Э. Мерсеро. «Криогенное испытание сверхпроводящего полуволнового резонатора для ускорения тяжелых ионов». Ядерные приборы и методы в физических исследованиях, раздел A: Ускорители, спектрометры, детекторы и сопутствующее оборудование 257.2 (1987): 71-76.
  10. ^ https://accelconf.web.cern.ch/abdwhb06/PAPERS/THAY07.PDF [ пустой URL-адрес PDF ]
  11. ^ https://www.osti.gov/servlets/purl/10143844 [ пустой URL ]
  12. ^ Проектирование и вертикальные испытания прототипов двухчетвертных волновых полостей для системы крабовых полостей LHC высокой светимости, Проектирование и вертикальные испытания прототипов двухчетвертных волновых полостей для системы крабовых полостей LHC высокой светимости С. Верду-Андрес и др., Physical Review Accelerators and Beams , 21, 082002 (2018)
  13. ^ https://cds.cern.ch/record/2846160/files/document.pdf [ пустой URL-адрес PDF ]
  14. ^ Джон С. Слейтер (1969). Микроволновая электроника . Dover Publications. Нью-Йорк. Глава IV, стр. 69.
  15. ^ abc Монтгомери, К. Г. и Роберт Х. Дике и Эдвард Миллс Перселл , Принципы микроволновых цепей / под редакцией К. Г. Монтгомери, Р. Х. Дике, Э. М. Перселла, Питера Перегринуса от имени Института инженеров-электриков, Лондон, Великобритания, 1987.
  16. ^ ab Джон Дэвид Джексон (физик) , Классическая электродинамика , Wiley (1967) стр.254-255

Внешние ссылки