stringtranslate.com

Ядерная энергетика

Атомная электростанция Лейбштадт в Швейцарии
Рост мировой ядерной энергетики

Ядерная энергетика — это использование ядерных реакций для производства электроэнергии . Ядерная энергия может быть получена из реакций ядерного деления , ядерного распада и ядерного синтеза . В настоящее время подавляющее большинство электроэнергии от ядерной энергетики производится путем ядерного деления урана и плутония на атомных электростанциях . Процессы ядерного распада используются в нишевых приложениях, таких как радиоизотопные термоэлектрические генераторы в некоторых космических зондах, таких как Voyager 2. Получение электроэнергии из термоядерной энергии остается в центре внимания международных исследований.

Большинство атомных электростанций используют тепловые реакторы с обогащенным ураном в однократном топливном цикле . Топливо удаляется, когда процент поглощающих нейтроны атомов становится настолько большим, что цепная реакция больше не может поддерживаться, обычно в течение трех лет. Затем оно охлаждается в течение нескольких лет в бассейнах отработанного топлива на месте, прежде чем будет передано на долгосрочное хранение. Отработанное топливо, хотя и небольшое по объему, является высокоактивными радиоактивными отходами . Хотя его радиоактивность уменьшается экспоненциально, оно должно быть изолировано от биосферы в течение сотен тысяч лет, хотя более новые технологии (например, быстрые реакторы ) имеют потенциал для значительного снижения этого. Поскольку отработанное топливо по-прежнему в основном является расщепляющимся материалом, некоторые страны (например, Франция и Россия ) перерабатывают свое отработанное топливо путем извлечения расщепляющихся и воспроизводящих элементов для изготовления нового топлива, хотя этот процесс дороже, чем производство нового топлива из добытого урана . Все реакторы вырабатывают некоторое количество плутония-239 , который содержится в отработанном топливе, и поскольку Pu-239 является предпочтительным материалом для ядерного оружия , его переработка рассматривается как риск распространения оружия .

Первая атомная электростанция была построена в 1950-х годах. Глобальная установленная ядерная мощность выросла до 100  ГВт в конце 1970-х годов, а затем расширилась в 1980-х годах, достигнув 300  ГВт к 1990 году. Авария на Три-Майл-Айленде в 1979 году в США и катастрофа на Чернобыльской АЭС в 1986 году в Советском Союзе привели к усилению регулирования и общественного противодействия атомным электростанциям. Эти факторы, наряду с высокой стоимостью строительства, привели к тому, что глобальная установленная мощность увеличилась только до 390  ГВт к 2022 году. Эти станции поставили 2586 тераватт-часов (ТВт·ч) электроэнергии в 2019 году, что эквивалентно примерно 10% мирового производства электроэнергии , и были вторым по величине источником энергии с низким уровнем выбросов углерода после гидроэлектроэнергии . По состоянию на август 2023 года в мире насчитывается 410 гражданских реакторов деления общей мощностью 369 ГВт, [1] 57 строятся и 102 планируются общей мощностью 59 ГВт и 96 ГВт соответственно. Соединенные Штаты имеют самый большой парк ядерных реакторов, вырабатывающих почти 800 ТВт·ч низкоуглеродной электроэнергии в год со средним коэффициентом использования установленной мощности 92%. Средний мировой коэффициент использования установленной мощности составляет 89%. [1] Большинство новых строящихся реакторов — это реакторы поколения III в Азии.    

Сторонники утверждают, что ядерная энергетика является безопасным и устойчивым источником энергии, который снижает выбросы углерода . Это связано с тем, что производство ядерной энергии приводит к одному из самых низких уровней смертности на единицу произведенной энергии по сравнению с другими источниками энергии. Уголь , нефть , природный газ и гидроэлектроэнергия стали причиной большего количества смертей на единицу энергии из-за загрязнения воздуха и аварий . Атомные электростанции также не выбрасывают парниковых газов и приводят к меньшему количеству выбросов углерода за жизненный цикл, чем обычные «возобновляемые источники энергии». Радиационные опасности, связанные с ядерной энергетикой, являются основными мотивами антиядерного движения , которое утверждает, что ядерная энергетика представляет множество угроз для людей и окружающей среды, ссылаясь на потенциальные аварии, такие как ядерная катастрофа на Фукусиме в Японии в 2011 году, и слишком дорогая/медленная для развертывания по сравнению с альтернативными устойчивыми источниками энергии.

История

Происхождение

Первые лампочки, зажженные с помощью электричества, вырабатываемого ядерной энергией на EBR-1 в Аргоннской национальной лаборатории - Запад, 20 декабря 1951 г. [2]

Открытие ядерного деления произошло в 1938 году после более чем четырех десятилетий работы в области науки о радиоактивности и разработки новой ядерной физики , которая описывала компоненты атомов . Вскоре после открытия процесса деления было осознано, что делящееся ядро ​​может вызывать дальнейшие деления ядер, тем самым вызывая самоподдерживающуюся цепную реакцию. [3] Как только это было экспериментально подтверждено в 1939 году, ученые многих стран обратились к своим правительствам с просьбой поддержать исследования ядерного деления, как раз на пороге Второй мировой войны , для разработки ядерного оружия . [4]

В Соединенных Штатах эти исследовательские усилия привели к созданию первого искусственного ядерного реактора, Chicago Pile-1 под стадионом Stagg Field в Чикагском университете , который достиг критичности 2 декабря 1942 года. Разработка реактора была частью Манхэттенского проекта , усилий союзников по созданию атомных бомб во время Второй мировой войны. Это привело к строительству более крупных специализированных производственных реакторов для производства оружейного плутония для использования в первом ядерном оружии. Соединенные Штаты испытали первое ядерное оружие в июле 1945 года, испытание Trinity , а атомные бомбардировки Хиросимы и Нагасаки состоялись месяцем позже.

Церемония спуска на воду USS  Nautilus в январе 1954 года. В 1958 году он стал первым судном, достигшим Северного полюса . [5]
Атомная электростанция «Колдер-Холл» в Великобритании — первая в мире коммерческая атомная электростанция.

Несмотря на военный характер первых ядерных устройств, 1940-е и 1950-е годы характеризовались сильным оптимизмом относительно потенциала ядерной энергетики как источника дешевой и бесконечной энергии. [6] Впервые электроэнергия была получена ядерным реактором 20 декабря 1951 года на экспериментальной станции EBR-I около Арко, штат Айдахо , которая первоначально производила около 100 кВт . [7] [8] В 1953 году американский президент Дуайт Эйзенхауэр выступил с речью « Атомы для мира » в Организации Объединенных Наций , подчеркнув необходимость скорейшего развития «мирного» использования ядерной энергии. За этим последовал Закон об атомной энергии 1954 года , который позволил быстро рассекретить технологию реакторов США и поощрил ее разработку частным сектором. 

Первая генерация электроэнергии

Первой организацией, разработавшей практическую ядерную энергетику, был ВМС США с реактором S1W для целей приведения в движение подводных лодок и авианосцев . Первая атомная подводная лодка, USS  Nautilus , была спущена на воду в январе 1954 года . [9] [10] Реактор S1W был реактором с водой под давлением . Эта конструкция была выбрана, потому что она была проще, компактнее и легче в эксплуатации по сравнению с альтернативными конструкциями, поэтому более подходила для использования на подводных лодках. Это решение привело к тому, что реактор PWR стал предпочтительным также для выработки электроэнергии, что оказало долгосрочное влияние на гражданский рынок электроэнергии в последующие годы. [11]

27 июня 1954 года Обнинская атомная электростанция в СССР стала первой в мире атомной электростанцией, вырабатывающей электроэнергию для энергосистемы , вырабатывая около 5 мегаватт электроэнергии. [12] Первая в мире коммерческая атомная электростанция, Колдер-Холл в Уиндскейле, Англия, была подключена к национальной энергосистеме 27 августа 1956 года. Как и ряд других реакторов поколения I , станция имела двойное назначение: вырабатывать электроэнергию и плутоний-239 , последний — для зарождающейся программы создания ядерного оружия в Великобритании . [13]

Расширение и первое противостояние

Общая глобальная установленная ядерная мощность изначально росла относительно быстро, увеличившись с менее чем 1 гигаватта (ГВт) в 1960 году до 100  ГВт в конце 1970-х годов. [9] В 1970-х и 1980-х годах рост экономических издержек (связанный с увеличенными сроками строительства, в основном из-за изменений в регулировании и судебных разбирательств групп давления) [14] и падение цен на ископаемое топливо сделали строящиеся атомные электростанции менее привлекательными. В 1980-х годах в США и 1990-х годах в Европе плоский рост электросетей и либерализация электроэнергии также сделали добавление новых крупных генераторов базовой нагрузки экономически непривлекательным.

Нефтяной кризис 1973 года оказал значительное влияние на такие страны, как Франция и Япония , которые в большей степени полагались на нефть для производства электроэнергии, чтобы инвестировать в ядерную энергетику. [15] Франция построит 25 атомных электростанций в течение следующих 15 лет, [16] [17] и по состоянию на 2019 год 71% французской электроэнергии вырабатывалось с помощью ядерной энергетики, что является самым высоким процентом среди всех стран мира. [18]

Некоторая местная оппозиция ядерной энергетике возникла в Соединенных Штатах в начале 1960-х годов. [19] В конце 1960-х годов некоторые члены научного сообщества начали выражать острую обеспокоенность. [20] Эти антиядерные опасения были связаны с ядерными авариями , распространением ядерного оружия , ядерным терроризмом и утилизацией радиоактивных отходов . [21] В начале 1970-х годов прошли крупные протесты по поводу предлагаемой атомной электростанции в Виле , Германия. Проект был отменен в 1975 году. Успех антиядерной энергетики в Виле вдохновил оппозицию ядерной энергетике в других частях Европы и Северной Америки. [22] [23]

К середине 1970-х годов антиядерный активизм приобрел более широкую привлекательность и влияние, и ядерная энергетика начала становиться предметом крупных общественных протестов. [24] [25] В некоторых странах конфликт вокруг ядерной энергетики «достиг беспрецедентной интенсивности в истории технологических споров». [26] [27] Возросшая враждебность общественности к ядерной энергетике привела к более длительному процессу получения лицензий, большему количеству правил и повышенным требованиям к оборудованию безопасности, что сделало новое строительство намного более дорогим. [28] [29] В Соединенных Штатах более 120 предложений по легководным реакторам были в конечном итоге отменены [30] , и строительство новых реакторов было остановлено. [31] Авария 1979 года на Три-Майл-Айленде, в результате которой никто не погиб, сыграла важную роль в сокращении количества новых строящихся электростанций во многих странах. [20]

Чернобыль и ренессанс

Город Припять , заброшенный в 1986 году, с Чернобыльской АЭС и аркой Нового безопасного конфайнмента Чернобыльской АЭС вдалеке.
Строительство реактора Olkiluoto 3 началось в 2009 году. Это был первый реактор EPR (модернизированная конструкция реактора PWR), строительство которого началось.

В 1980-х годах в среднем каждые 17 дней запускался один новый ядерный реактор. [32] К концу десятилетия глобальная установленная ядерная мощность достигла 300  ГВт. С конца 1980-х годов прирост новых мощностей значительно замедлился, и в 2005 году установленная ядерная мощность достигла 366  ГВт.

Чернобыльская катастрофа 1986 года в СССР с участием реактора РБМК изменила развитие ядерной энергетики и привела к большему вниманию к соблюдению международных стандартов безопасности и регулирования. [33] Она считается самой страшной ядерной катастрофой в истории как по общему числу жертв (56 прямых смертей), так и по финансовым показателям (расчистка и стоимость оцениваются в 18  миллиардов рублей (68 миллиардов долларов США в 2019 году с поправкой на инфляцию)). [34] [35] Международная организация по повышению осведомленности о безопасности и профессиональному развитию операторов ядерных установок, Всемирная ассоциация операторов ядерных установок (ВАО АЭС), была создана как прямой результат аварии на Чернобыльской АЭС 1986 года. Чернобыльская катастрофа сыграла важную роль в сокращении количества новых строящихся АЭС в последующие годы. [20] Под влиянием этих событий Италия проголосовала против ядерной энергетики на референдуме 1987 года, [36] став первой страной, полностью отказавшейся от ядерной энергетики в 1990 году.  

В начале 2000-х годов ядерная энергетика ожидала ядерного ренессанса , увеличения строительства новых реакторов из-за опасений по поводу выбросов углекислого газа . [37] В этот период началось строительство новых реакторов третьего поколения , таких как EPR .

Авария на Фукусиме

Производство ядерной энергии (ТВт·ч) и действующие ядерные реакторы с 1997 года [38]

Перспективы ядерного ренессанса были отложены из-за другой ядерной аварии. [37] [39] Авария на АЭС «Фукусима- 1» в 2011 году была вызвана землетрясением и цунами в Тохоку , одним из крупнейших землетрясений, когда-либо зарегистрированных. На АЭС «Фукусима-1» произошло три расплавления активной зоны из-за отказа системы аварийного охлаждения из-за отсутствия электроснабжения. Это привело к самой серьезной ядерной аварии со времен Чернобыльской катастрофы.

Авария побудила пересмотреть политику ядерной безопасности и ядерной энергетики во многих странах. [40] Германия одобрила планы по закрытию всех своих реакторов к 2022 году, а многие другие страны пересмотрели свои программы ядерной энергетики. [41] [42] [43] [44] После катастрофы Япония закрыла все свои ядерные реакторы, некоторые из них навсегда, и в 2015 году начала постепенный процесс перезапуска оставшихся 40 реакторов после проверок безопасности и на основе пересмотренных критериев эксплуатации и общественного одобрения. [45]

В 2022 году правительство Японии под руководством премьер-министра Фумио Кисиды заявило, что после катастрофы 2011 года будут вновь открыты еще 10 атомных электростанций. [46] Кисида также настаивает на исследовании и строительстве новых более безопасных атомных электростанций, чтобы защитить японских потребителей от колебаний цен на рынке ископаемого топлива и сократить выбросы парниковых газов в Японии. [47] Кисида намерен сделать Японию крупным экспортером ядерной энергии и технологий в развивающиеся страны по всему миру. [47]

Текущие перспективы

К 2015 году прогнозы МАГАТЭ относительно ядерной энергетики стали более многообещающими, признав важность низкоуглеродной генерации для смягчения последствий изменения климата . [48] По состоянию на 2015 год мировая тенденция заключалась в том, что ввод в эксплуатацию новых атомных электростанций должен был быть сбалансирован количеством старых станций, выводимых из эксплуатации. [49] В 2016 году Управление энергетической информации США спрогнозировало для своего «базового сценария», что мировая ядерная генерация увеличится с 2344 тераватт-часов (ТВт·ч) в 2012 году до 4500  ТВт·ч в 2040 году. Большая часть прогнозируемого увеличения, как ожидалось, придется на Азию. [50] По состоянию на 2018 год было запланировано более 150 ядерных реакторов, включая 50 в стадии строительства. [51] В январе 2019 года в Китае было 45 действующих реакторов, 13 строящихся и планировалось построить еще 43, что сделало бы его крупнейшим в мире производителем ядерной электроэнергии. [52] По состоянию на 2021 год сообщалось о строительстве 17 реакторов. Китай построил значительно меньше реакторов, чем изначально планировалось. Его доля электроэнергии, вырабатываемой за счет атомной энергетики, составила 5% в 2019 году [53], и наблюдатели предупреждают, что наряду с рисками изменение экономики производства энергии может привести к тому, что новые атомные электростанции «больше не будут иметь смысла в мире, который склоняется к более дешевой и надежной возобновляемой энергии». [54] [55]

В октябре 2021 года кабинет министров Японии одобрил новый План по производству электроэнергии до 2030 года, подготовленный Агентством природных ресурсов и энергетики (ANRE) и консультативным комитетом после публичных консультаций. Ядерная цель на 2030 год требует перезапуска еще десяти реакторов. Премьер-министр Фумио Кисида в июле 2022 года объявил, что страна должна рассмотреть возможность строительства усовершенствованных реакторов и продления лицензий на эксплуатацию на срок более 60 лет. [56]

По состоянию на 2022 год, когда мировые цены на нефть и газ растут, в то время как Германия перезапускает свои угольные электростанции, чтобы справиться с потерей российского газа, который ей необходим для дополнения своего Energiewende , [57] многие другие страны объявили об амбициозных планах по оживлению стареющих ядерных генерирующих мощностей с помощью новых инвестиций. Президент Франции Эммануэль Макрон объявил о своем намерении построить шесть новых реакторов в ближайшие десятилетия, поставив ядерную энергетику в центр стремления Франции к углеродной нейтральности к 2050 году. [58] Тем временем в Соединенных Штатах Министерство энергетики в сотрудничестве с коммерческими организациями TerraPower и X-energy планирует построить два различных усовершенствованных ядерных реактора к 2027 году с дальнейшими планами по внедрению ядерной энергетики в своих долгосрочных целях зеленой энергетики и энергетической безопасности. [59]

Электростанции

Анимация работы реактора с водой под давлением
Количество гражданских реакторов, вырабатывающих электроэнергию, по типу по состоянию на 2014 год [60]
  ПВР   БВР   ГКЛ   ПХВР   ЛВГР   ФБР

Атомные электростанции — это тепловые электростанции , которые вырабатывают электроэнергию, используя тепловую энергию , выделяемую при ядерном делении . Атомная электростанция деления обычно состоит из: ядерного реактора , в котором происходят ядерные реакции, генерирующие тепло; системы охлаждения, которая отводит тепло изнутри реактора; паровой турбины , которая преобразует тепло в механическую энергию ; электрического генератора , который преобразует механическую энергию в электрическую. [61]

Когда нейтрон попадает в ядро ​​атома урана-235 или плутония , он может расщепить ядро ​​на два меньших ядра, что является реакцией ядерного деления. Реакция высвобождает энергию и нейтроны. Высвобождаемые нейтроны могут поражать другие ядра урана или плутония, вызывая новые реакции деления, которые высвобождают больше энергии и больше нейтронов. Это называется цепной реакцией . В большинстве коммерческих реакторов скорость реакции сдерживается стержнями управления , которые поглощают избыточные нейтроны. Управляемость ядерных реакторов зависит от того факта, что небольшая часть нейтронов, образующихся в результате деления, задерживается . Задержка по времени между делением и высвобождением нейтронов замедляет изменения в скорости реакции и дает время для перемещения стержней управления для регулировки скорости реакции. [61] [62]

Топливный цикл

Ядерный топливный цикл начинается с добычи урана, его обогащения и производства ядерного топлива (1), которое доставляется на атомную электростанцию . После использования отработанное топливо доставляется на перерабатывающий завод (2) или в окончательное хранилище (3). При ядерной переработке 95% отработанного топлива потенциально может быть переработано для повторного использования на электростанции (4).

Жизненный цикл ядерного топлива начинается с добычи урана . Затем урановая руда преобразуется в компактную форму рудного концентрата , известную как желтый кек (U 3 O 8 ), для облегчения транспортировки. [63] Реакторы деления обычно нуждаются в уране-235 , делящемся изотопе урана . Концентрация урана-235 в природном уране низкая (около 0,7%). Некоторые реакторы могут использовать этот природный уран в качестве топлива, в зависимости от их нейтронной экономичности . Эти реакторы обычно имеют графитовые или тяжеловодные замедлители. Для легководных реакторов, наиболее распространенного типа реакторов, эта концентрация слишком низкая, и ее необходимо увеличить с помощью процесса, называемого обогащением урана . [63] В гражданских легководных реакторах уран обычно обогащается до 3,5–5% урана-235. [64] Затем уран обычно преобразуется в оксид урана (UO 2 ), керамику, которая затем спекается под давлением в топливные таблетки, стопка которых образует топливные стержни нужного состава и геометрии для конкретного реактора. [64]

Через некоторое время в реакторе топливо будет иметь сниженное количество делящегося материала и повышенное количество продуктов деления, пока его использование не станет нецелесообразным. [64] В этот момент отработанное топливо будет перемещено в бассейн отработанного топлива , который обеспечивает охлаждение для теплового тепла и защиту от ионизирующего излучения. Через несколько месяцев или лет отработанное топливо радиоактивно и термически достаточно остынет, чтобы его можно было переместить в сухие контейнеры для хранения или переработать. [64]

Урановые ресурсы

Пропорции изотопов урана-238 (синий) и урана-235 (красный), обнаруженных в природном уране и в обогащенном уране для различных применений. Легководные реакторы используют уран, обогащенный на 3–5%, тогда как реакторы CANDU работают с природным ураном.

Уран является довольно распространенным элементом в земной коре: он примерно так же распространен, как олово или германий , и примерно в 40 раз более распространен, чем серебро . [65] Уран присутствует в следовых концентрациях в большинстве горных пород, грязи и морской воде, но, как правило, экономически выгодно извлекается только там, где он присутствует в относительно высоких концентрациях. Добыча урана может быть подземной, открытой или методом подземного выщелачивания. Все большее число шахт с самой высокой производительностью представляют собой удаленные подземные операции, такие как урановый рудник МакАртур-Ривер в Канаде, который сам по себе составляет 13% мирового производства. По состоянию на 2011 год известные в мире ресурсы урана, экономически извлекаемые при произвольном ценовом потолке в 130 долларов США/кг, были достаточны для того, чтобы хватить на 70–100 лет. [66] [67] [68] В 2007 году ОЭСР оценила 670 лет экономически извлекаемого урана в общих обычных ресурсах и фосфатных рудах, предполагая текущую скорость использования. [69]

Легководные реакторы относительно неэффективно используют ядерное топливо, в основном используя только очень редкий изотоп урана-235. [70] Ядерная переработка может сделать эти отходы пригодными для повторного использования, и более новые реакторы также достигают более эффективного использования имеющихся ресурсов, чем старые. [70] При чистом топливном цикле быстрого реактора со сжиганием всего урана и актинидов (которые в настоящее время составляют наиболее опасные вещества в ядерных отходах) в общих обычных ресурсах и фосфатной руде имеется, по оценкам, 160 000-летний запас урана по цене 60–100 долларов США/кг. [71] Однако переработка является дорогостоящей, возможно, опасной и может использоваться для производства ядерного оружия. [72] [73] [74] [75] [76] Один анализ показал, что цены на уран могут вырасти на два порядка между 2035 и 2100 годами и что к концу столетия может возникнуть дефицит. [77] Исследование, проведенное в 2017 году исследователями из Массачусетского технологического института и WHOI, показало, что «при нынешних темпах потребления мировые обычные запасы наземного урана (приблизительно 7,6 млн тонн) могут быть исчерпаны чуть более чем за столетие». [78] Ограниченные поставки урана-235 могут сдерживать существенное расширение с использованием современных ядерных технологий. [79] Хотя изучаются различные способы снижения зависимости от таких ресурсов, [80] [81] [82] новые ядерные технологии считаются недоступной вовремя для целей смягчения последствий изменения климата или конкуренции с альтернативами возобновляемых источников энергии, а также являются более дорогими и требуют дорогостоящих исследований и разработок. [79] [83] [84] Исследование показало, что неясно, будут ли выявленные ресурсы разрабатываться достаточно быстро, чтобы обеспечить бесперебойные поставки топлива для расширенных ядерных установок, [85] а различные формы добычи могут быть оспорены экологическими барьерами, затратами и требованиями к земле. [86] [87] Исследователи также сообщают о значительной импортной зависимости ядерной энергии. [88] [89] [90] [91]

Существуют также нетрадиционные ресурсы урана. Уран естественным образом присутствует в морской воде в концентрации около 3 микрограммов на литр, [92] [93] [94] при этом 4,4 миллиарда тонн урана считаются присутствующими в морской воде в любое время. [95] В 2014 году было высказано предположение, что было бы экономически конкурентоспособно производить ядерное топливо из морской воды, если бы этот процесс был реализован в больших масштабах. [96] Как и ископаемое топливо, в геологических временных масштабах уран, извлекаемый в промышленных масштабах из морской воды, будет пополняться как речной эрозией горных пород, так и естественным процессом растворения урана из поверхностной области дна океана, оба из которых поддерживают равновесие растворимости концентрации морской воды на стабильном уровне. [95] Некоторые комментаторы утверждают, что это усиливает аргументы в пользу того, чтобы ядерная энергетика считалась возобновляемой энергией . [97]

Напрасно тратить

Типичный состав топлива из диоксида урана до и после примерно трех лет в однократном ядерном топливном цикле легководного реактора [98]

Нормальная эксплуатация атомных электростанций и установок приводит к образованию радиоактивных отходов или ядерных отходов. Этот тип отходов также образуется при выводе станции из эксплуатации. Существует две основные категории ядерных отходов: низкоактивные отходы и высокоактивные отходы. [99] Первые имеют низкую радиоактивность и включают в себя загрязненные предметы, такие как одежда, которая представляет ограниченную угрозу. Высокоактивные отходы в основном представляют собой отработанное топливо ядерных реакторов, которое очень радиоактивно и должно быть охлаждено, а затем безопасно утилизировано или переработано. [99]

Высокоактивные отходы

Активность отработанного UOx-топлива в сравнении с активностью природной урановой руды с течением времени [100] [98]
Сухие контейнерные хранилища для хранения отработавших ядерных топливных сборок

Наиболее важным потоком отходов от ядерных энергетических реакторов является отработанное ядерное топливо , которое считается высокоактивными отходами . Для легководных реакторов (LWR) отработанное топливо обычно состоит из 95% урана, 4% продуктов деления и около 1% трансурановых актинидов (в основном плутония , нептуния и америция ). [101] Продукты деления ответственны за большую часть краткосрочной радиоактивности, тогда как плутоний и другие трансурановые элементы ответственны за большую часть долгосрочной радиоактивности. [102]

Высокоактивные отходы (ВАО) должны храниться изолированно от биосферы с достаточной защитой, чтобы ограничить воздействие радиации. После извлечения из реакторов отработанные топливные пучки хранятся в течение шести-десяти лет в бассейнах выдержки отработанного топлива , которые обеспечивают охлаждение и защиту от радиации. После этого топливо достаточно остывает, чтобы его можно было безопасно перенести в сухое контейнерное хранилище . [103] Радиоактивность экспоненциально уменьшается со временем, так что через 100 лет она уменьшится на 99,5%. [104] Более интенсивно радиоактивные короткоживущие продукты деления (SLFP) распадаются на стабильные элементы примерно за 300 лет, а примерно через 100 000 лет отработанное топливо становится менее радиоактивным, чем природная урановая руда. [98] [105]

Обычно предлагаемые методы изоляции отходов LLFP от биосферы включают разделение и трансмутацию , [98] обработку синроком или глубокое геологическое хранение. [106] [107] [108] [109]

Реакторы на тепловых нейтронах , которые в настоящее время составляют большую часть мирового парка, не могут сжигать реакторный плутоний , который вырабатывается во время работы реактора. Это ограничивает срок службы ядерного топлива несколькими годами. В некоторых странах, таких как США, отработанное топливо классифицируется целиком как ядерные отходы. [110] В других странах, таких как Франция, оно в значительной степени перерабатывается для производства частично переработанного топлива, известного как смешанное оксидное топливо или МОКС . Для отработанного топлива, которое не подвергается переработке, наиболее опасными изотопами являются среднеживущие трансурановые элементы , которые возглавляются реакторным плутонием (период полураспада 24 000 лет). [111] Некоторые предлагаемые конструкции реакторов, такие как интегральный быстрый реактор и реакторы на расплавленных солях , могут использовать в качестве топлива плутоний и другие актиниды в отработанном топливе легководных реакторов благодаря их быстрому спектру деления . Это предлагает потенциально более привлекательную альтернативу глубокому геологическому захоронению. [112] [113] [114]

Ториевый топливный цикл приводит к аналогичным продуктам деления, хотя создает гораздо меньшую долю трансурановых элементов из событий захвата нейтронов в реакторе. Отработанное ториевое топливо, хотя и более трудное в обращении, чем отработанное урановое топливо, может представлять несколько меньшие риски распространения. [115]

Низкоактивные отходы

Ядерная промышленность также производит большой объем низкоактивных отходов с низкой радиоактивностью в виде загрязненных предметов, таких как одежда, ручные инструменты, смолы для очистки воды и (после вывода из эксплуатации) материалы, из которых построен сам реактор. Низкоактивные отходы могут храниться на месте до тех пор, пока уровень радиации не станет достаточно низким, чтобы их можно было утилизировать как обычные отходы, или их можно отправить на полигон для захоронения низкоактивных отходов. [116]

Отходы по сравнению с другими типами

В странах с ядерной энергетикой радиоактивные отходы составляют менее 1% от общего объема промышленных токсичных отходов, большая часть которых остается опасной в течение длительного времени. [70] В целом, ядерная энергетика производит гораздо меньше отходов по объему, чем электростанции на ископаемом топливе. [117] В частности, угольные электростанции производят большое количество токсичной и слаборадиоактивной золы, образующейся в результате концентрации природных радиоактивных материалов в угле. [118] В отчете Национальной лаборатории Ок-Риджа за 2008 год сделан вывод о том, что угольная энергетика на самом деле приводит к выбросу большего количества радиоактивности в окружающую среду, чем работа ядерной энергетики, и что эффективная доза для населения, эквивалентная излучению от угольных электростанций, в 100 раз больше, чем от работы атомных электростанций. [119] Хотя угольная зола намного менее радиоактивна, чем отработанное ядерное топливо по весу, угольная зола производится в гораздо больших количествах на единицу вырабатываемой энергии. Она также выбрасывается непосредственно в окружающую среду в виде летучей золы , тогда как атомные станции используют экранирование для защиты окружающей среды от радиоактивных материалов. [120]

Объем ядерных отходов невелик по сравнению с вырабатываемой энергией. Например, на АЭС «Янки-Роу» , которая выработала 44 миллиарда киловатт-часов электроэнергии во время эксплуатации, весь ее отработанный запас топлива содержится в шестнадцати контейнерах. [121] Подсчитано, что для производства пожизненного запаса энергии для человека с западным уровнем жизни (примерно 3 ГВт-ч ) потребуется объем низкообогащенного урана , равный объему банки из-под газировки , что приведет к аналогичному объему вырабатываемого отработанного топлива. [122] [123] [124] 

Утилизация отходов

Хранение радиоактивных отходов на WIPP
Ядерные отходы, накопленные Соединенными Штатами во время Холодной войны, хранятся под землей на пилотном заводе по изоляции отходов (WIPP) в Нью-Мексико . Объект рассматривается как потенциальная демонстрация хранения отработанного топлива гражданских реакторов.

Following interim storage in a spent fuel pool, the bundles of used fuel rod assemblies of a typical nuclear power station are often stored on site in dry cask storage vessels.[125] Presently, waste is mainly stored at individual reactor sites and there are over 430 locations around the world where radioactive material continues to accumulate.

Disposal of nuclear waste is often considered the most politically divisive aspect in the lifecycle of a nuclear power facility.[126] The lack of movement of nuclear waste in the 2 billion year old natural nuclear fission reactors in Oklo, Gabon is cited as "a source of essential information today."[127][128] Experts suggest that centralized underground repositories which are well-managed, guarded, and monitored, would be a vast improvement.[126] There is an "international consensus on the advisability of storing nuclear waste in deep geological repositories".[129] With the advent of new technologies, other methods including horizontal drillhole disposal into geologically inactive areas have been proposed.[130][131]

Most waste packaging, small-scale experimental fuel recycling chemistry and radiopharmaceutical refinement is conducted within remote-handled hot cells.

There are no commercial scale purpose built underground high-level waste repositories in operation.[129][132][133] However, in Finland the Onkalo spent nuclear fuel repository of the Olkiluoto Nuclear Power Plant was under construction as of 2015.[134]

Reprocessing

Most thermal-neutron reactors run on a once-through nuclear fuel cycle, mainly due to the low price of fresh uranium. However, many reactors are also fueled with recycled fissionable materials that remain in spent nuclear fuel. The most common fissionable material that is recycled is the reactor-grade plutonium (RGPu) that is extracted from spent fuel. It is mixed with uranium oxide and fabricated into mixed-oxide or MOX fuel. Because thermal LWRs remain the most common reactor worldwide, this type of recycling is the most common. It is considered to increase the sustainability of the nuclear fuel cycle, reduce the attractiveness of spent fuel to theft, and lower the volume of high level nuclear waste.[135] Spent MOX fuel cannot generally be recycled for use in thermal-neutron reactors. This issue does not affect fast-neutron reactors, which are therefore preferred in order to achieve the full energy potential of the original uranium.[136][137]

The main constituent of spent fuel from LWRs is slightly enriched uranium. This can be recycled into reprocessed uranium (RepU), which can be used in a fast reactor, used directly as fuel in CANDU reactors, or re-enriched for another cycle through an LWR. Re-enriching of reprocessed uranium is common in France and Russia.[138] Reprocessed uranium is also safer in terms of nuclear proliferation potential.[139][140][141]

Reprocessing has the potential to recover up to 95% of the uranium and plutonium fuel in spent nuclear fuel, as well as reduce long-term radioactivity within the remaining waste. However, reprocessing has been politically controversial because of the potential for nuclear proliferation and varied perceptions of increasing the vulnerability to nuclear terrorism.[136][142] Reprocessing also leads to higher fuel cost compared to the once-through fuel cycle.[136][142] While reprocessing reduces the volume of high-level waste, it does not reduce the fission products that are the primary causes of residual heat generation and radioactivity for the first few centuries outside the reactor. Thus, reprocessed waste still requires an almost identical treatment for the initial first few hundred years.

Reprocessing of civilian fuel from power reactors is currently done in France, the United Kingdom, Russia, Japan, and India. In the United States, spent nuclear fuel is currently not reprocessed.[138] The La Hague reprocessing facility in France has operated commercially since 1976 and is responsible for half the world's reprocessing as of 2010.[143] It produces MOX fuel from spent fuel derived from several countries. More than 32,000 tonnes of spent fuel had been reprocessed as of 2015, with the majority from France, 17% from Germany, and 9% from Japan.[144]

Breeding

Nuclear fuel assemblies being inspected before entering a pressurized water reactor in the United States

Breeding is the process of converting non-fissile material into fissile material that can be used as nuclear fuel. The non-fissile material that can be used for this process is called fertile material, and constitute the vast majority of current nuclear waste. This breeding process occurs naturally in breeder reactors. As opposed to light water thermal-neutron reactors, which use uranium-235 (0.7% of all natural uranium), fast-neutron breeder reactors use uranium-238 (99.3% of all natural uranium) or thorium. A number of fuel cycles and breeder reactor combinations are considered to be sustainable or renewable sources of energy.[145][146] In 2006 it was estimated that with seawater extraction, there was likely five billion years' worth of uranium resources for use in breeder reactors.[147]

Breeder technology has been used in several reactors, but as of 2006, the high cost of reprocessing fuel safely requires uranium prices of more than US$200/kg before becoming justified economically.[148] Breeder reactors are however being developed for their potential to burn all of the actinides (the most active and dangerous components) in the present inventory of nuclear waste, while also producing power and creating additional quantities of fuel for more reactors via the breeding process.[149][150] As of 2017, there are two breeders producing commercial power, BN-600 reactor and the BN-800 reactor, both in Russia.[151] The Phénix breeder reactor in France was powered down in 2009 after 36 years of operation.[151] Both China and India are building breeder reactors. The Indian 500 MWe Prototype Fast Breeder Reactor is in the commissioning phase,[152] with plans to build more.[153]

Another alternative to fast-neutron breeders are thermal-neutron breeder reactors that use uranium-233 bred from thorium as fission fuel in the thorium fuel cycle.[154] Thorium is about 3.5 times more common than uranium in the Earth's crust, and has different geographic characteristics.[154] India's three-stage nuclear power programme features the use of a thorium fuel cycle in the third stage, as it has abundant thorium reserves but little uranium.[154]

Decommissioning

Nuclear decommissioning is the process of dismantling a nuclear facility to the point that it no longer requires measures for radiation protection,[155] returning the facility and its parts to a safe enough level to be entrusted for other uses.[156] Due to the presence of radioactive materials, nuclear decommissioning presents technical and economic challenges.[157] The costs of decommissioning are generally spread over the lifetime of a facility and saved in a decommissioning fund.[158]

Production

Share of electricity production from nuclear, 2022[159]
The status of nuclear power globally (click for legend)

2021 world electricity generation by source. Total generation was 28 petawatt-hours.[160]

  Coal (36%)
  Natural gas (23%)
  Hydro (15%)
  Nuclear (10%)
  Wind (7%)
  Solar (4%)
  Other (5%)

Civilian nuclear power supplied 2,586 terawatt hours (TWh) of electricity in 2019, equivalent to about 10% of global electricity generation, and was the second largest low-carbon power source after hydroelectricity.[38][161] Since electricity accounts for about 25% of world energy consumption, nuclear power's contribution to global energy was about 2.5% in 2011.[162] This is a little more than the combined global electricity production from wind, solar, biomass and geothermal power, which together provided 2% of global final energy consumption in 2014.[163] Nuclear power's share of global electricity production has fallen from 16.5% in 1997, in large part because the economics of nuclear power have become more difficult.[164]

As of March 2022, there are 439 civilian fission reactors in the world, with a combined electrical capacity of 392 gigawatt (GW). There are also 56 nuclear power reactors under construction and 96 reactors planned, with a combined capacity of 62 GW and 96 GW, respectively.[165] The United States has the largest fleet of nuclear reactors, generating over 800 TWh per year with an average capacity factor of 92%.[166] Most reactors under construction are generation III reactors in Asia.[167]

Regional differences in the use of nuclear power are large. The United States produces the most nuclear energy in the world, with nuclear power providing 20% of the electricity it consumes, while France produces the highest percentage of its electrical energy from nuclear reactors—71% in 2019.[18] In the European Union, nuclear power provides 26% of the electricity as of 2018.[168]Nuclear power is the single largest low-carbon electricity source in the United States,[169] and accounts for two-thirds of the European Union's low-carbon electricity.[170]Nuclear energy policy differs among European Union countries, and some, such as Austria, Estonia, Ireland and Italy, have no active nuclear power stations.

In addition, there were approximately 140 naval vessels using nuclear propulsion in operation, powered by about 180 reactors.[171][172] These include military and some civilian ships, such as nuclear-powered icebreakers.[173]

International research is continuing into additional uses of process heat such as hydrogen production (in support of a hydrogen economy), for desalinating sea water, and for use in district heating systems.[174]

Economics

The economics of new nuclear power plants is a controversial subject and multi-billion-dollar investments depend on the choice of energy sources. Nuclear power plants typically have high capital costs for building the plant. For this reason, comparison with other power generation methods is strongly dependent on assumptions about construction timescales and capital financing for nuclear plants. Fuel costs account for about 30 percent of the operating costs, while prices are subject to the market.[175]

The high cost of construction is one of the biggest challenges for nuclear power plants. A new 1,100 MW plant is estimated to cost between US$6 billion to US$9 billion.[176] Nuclear power cost trends show large disparity by nation, design, build rate and the establishment of familiarity in expertise. The only two nations for which data is available that saw cost decreases in the 2000s were India and South Korea.[177]

Analysis of the economics of nuclear power must also take into account who bears the risks of future uncertainties. As of 2010, all operating nuclear power plants have been developed by state-owned or regulated electric utility monopolies.[178] Many countries have since liberalized the electricity market where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants.[179]

The levelized cost of electricity (LCOE) from a new nuclear power plant is estimated to be 69 USD/MWh, according to an analysis by the International Energy Agency and the OECD Nuclear Energy Agency. This represents the median cost estimate for an nth-of-a-kind nuclear power plant to be completed in 2025, at a discount rate of 7%. Nuclear power was found to be the least-cost option among dispatchable technologies.[180] Variable renewables can generate cheaper electricity: the median cost of onshore wind power was estimated to be 50 USD/MWh, and utility-scale solar power 56 USD/MWh.[180] At the assumed CO2 emission cost of 30 USD/ton, power from coal (88 USD/MWh) and gas (71 USD/MWh) is more expensive than low-carbon technologies. Electricity from long-term operation of nuclear power plants by lifetime extension was found to be the least-cost option, at 32 USD/MWh.[180]

Measures to mitigate global warming, such as a carbon tax or carbon emissions trading, may favor the economics of nuclear power.[181][182] Extreme weather events, including events made more severe by climate change, are decreasing all energy source reliability including nuclear energy by a small degree, depending on location siting.[183][184]

New small modular reactors, such as those developed by NuScale Power, are aimed at reducing the investment costs for new construction by making the reactors smaller and modular, so that they can be built in a factory.

Certain designs had considerable early positive economics, such as the CANDU, which realized a much higher capacity factor and reliability when compared to generation II light water reactors up to the 1990s.[185]

Nuclear power plants, though capable of some grid-load following, are typically run as much as possible to keep the cost of the generated electrical energy as low as possible, supplying mostly base-load electricity.[186] Due to the on-line refueling reactor design, PHWRs (of which the CANDU design is a part) continue to hold many world record positions for longest continual electricity generation, often over 800 days.[187] The specific record as of 2019 is held by a PHWR at Kaiga Atomic Power Station, generating electricity continuously for 962 days.[188]

Costs not considered in LCOE calculations include funds for research and development, and disasters (the Fukushima disaster is estimated to cost taxpayers ≈$187 billion).[189] In some cases, Governments were found to force "consumers to pay upfront for potential cost overruns"[84] or subsidize uneconomic nuclear energy[190] or be required to do so.[55] Nuclear operators are liable to pay for the waste management in the European Union.[191] In the U.S., the Congress reportedly decided 40 years ago that the nation, and not private companies, would be responsible for storing radioactive waste with taxpayers paying for the costs.[192] The World Nuclear Waste Report 2019 found that "even in countries in which the polluter-pays-principle is a legal requirement, it is applied incompletely" and notes the case of the German Asse II deep geological disposal facility, where the retrieval of large amounts of waste has to be paid for by taxpayers.[193] Similarly, other forms of energy, including fossil fuels and renewables, have a portion of their costs covered by governments.[194]

Use in space

The multi-mission radioisotope thermoelectric generator (MMRTG), used in several space missions such as the Curiosity Mars rover

The most common use of nuclear power in space is the use of radioisotope thermoelectric generators, which use radioactive decay to generate power. These power generators are relatively small scale (few kW), and they are mostly used to power space missions and experiments for long periods where solar power is not available in sufficient quantity, such as in the Voyager 2 space probe.[195] A few space vehicles have been launched using nuclear reactors: 34 reactors belong to the Soviet RORSAT series and one was the American SNAP-10A.[195]

Both fission and fusion appear promising for space propulsion applications, generating higher mission velocities with less reaction mass.[195][196]

Safety

Death rates per unit of electricity production for different energy sources

Nuclear power plants have three unique characteristics that affect their safety, as compared to other power plants. Firstly, intensely radioactive materials are present in a nuclear reactor. Their release to the environment could be hazardous. Secondly, the fission products, which make up most of the intensely radioactive substances in the reactor, continue to generate a significant amount of decay heat even after the fission chain reaction has stopped. If the heat cannot be removed from the reactor, the fuel rods may overheat and release radioactive materials. Thirdly, a criticality accident (a rapid increase of the reactor power) is possible in certain reactor designs if the chain reaction cannot be controlled. These three characteristics have to be taken into account when designing nuclear reactors.[197]

All modern reactors are designed so that an uncontrolled increase of the reactor power is prevented by natural feedback mechanisms, a concept known as negative void coefficient of reactivity. If the temperature or the amount of steam in the reactor increases, the fission rate inherently decreases. The chain reaction can also be manually stopped by inserting control rods into the reactor core. Emergency core cooling systems (ECCS) can remove the decay heat from the reactor if normal cooling systems fail.[198] If the ECCS fails, multiple physical barriers limit the release of radioactive materials to the environment even in the case of an accident. The last physical barrier is the large containment building.[197]

With a death rate of 0.03 per TWh, nuclear power is the second safest energy source per unit of energy generated, after solar power, in terms of mortality when the historical track-record is considered.[199] Energy produced by coal, petroleum, natural gas and hydropower has caused more deaths per unit of energy generated due to air pollution and energy accidents. This is found when comparing the immediate deaths from other energy sources to both the immediate and the latent, or predicted, indirect cancer deaths from nuclear energy accidents.[200][201] When the direct and indirect fatalities (including fatalities resulting from the mining and air pollution) from nuclear power and fossil fuels are compared,[202] the use of nuclear power has been calculated to have prevented about 1.84 million deaths from air pollution between 1971 and 2009, by reducing the proportion of energy that would otherwise have been generated by fossil fuels.[203][204] Following the 2011 Fukushima nuclear disaster, it has been estimated that if Japan had never adopted nuclear power, accidents and pollution from coal or gas plants would have caused more lost years of life.[205]

Serious impacts of nuclear accidents are often not directly attributable to radiation exposure, but rather social and psychological effects. Evacuation and long-term displacement of affected populations created problems for many people, especially the elderly and hospital patients.[206] Forced evacuation from a nuclear accident may lead to social isolation, anxiety, depression, psychosomatic medical problems, reckless behavior, and suicide. A comprehensive 2005 study on the aftermath of the Chernobyl disaster concluded that the mental health impact is the largest public health problem caused by the accident.[207] Frank N. von Hippel, an American scientist, commented that a disproportionate fear of ionizing radiation (radiophobia) could have long-term psychological effects on the population of contaminated areas following the Fukushima disaster.[208]

Accidents

Following the 2011 Fukushima Daiichi nuclear disaster, the world's worst nuclear accident since 1986, 50,000 households were displaced after radiation leaked into the air, soil and sea.[209] Radiation checks led to bans of some shipments of vegetables and fish.[210]
Reactor decay heat as a fraction of full power after the reactor shutdown, using two different correlations. To remove the decay heat, reactors need cooling after the shutdown of the fission reactions. A loss of the ability to remove decay heat caused the Fukushima accident.

Some serious nuclear and radiation accidents have occurred. The severity of nuclear accidents is generally classified using the International Nuclear Event Scale (INES) introduced by the International Atomic Energy Agency (IAEA). The scale ranks anomalous events or accidents on a scale from 0 (a deviation from normal operation that poses no safety risk) to 7 (a major accident with widespread effects). There have been three accidents of level 5 or higher in the civilian nuclear power industry, two of which, the Chernobyl accident and the Fukushima accident, are ranked at level 7.

The first major nuclear accidents were the Kyshtym disaster in the Soviet Union and the Windscale fire in the United Kingdom, both in 1957. The first major accident at a nuclear reactor in the USA occurred in 1961 at the SL-1, a U.S. Army experimental nuclear power reactor at the Idaho National Laboratory. An uncontrolled chain reaction resulted in a steam explosion which killed the three crew members and caused a meltdown.[211][212] Another serious accident happened in 1968, when one of the two liquid-metal-cooled reactors on board the Soviet submarine K-27 underwent a fuel element failure, with the emission of gaseous fission products into the surrounding air, resulting in 9 crew fatalities and 83 injuries.[213]

The Fukushima Daiichi nuclear accident was caused by the 2011 Tohoku earthquake and tsunami. The accident has not caused any radiation-related deaths but resulted in radioactive contamination of surrounding areas. The difficult cleanup operation is expected to cost tens of billions of dollars over 40 or more years.[214][215] The Three Mile Island accident in 1979 was a smaller scale accident, rated at INES level 5. There were no direct or indirect deaths caused by the accident.[216]

The impact of nuclear accidents is controversial. According to Benjamin K. Sovacool, fission energy accidents ranked first among energy sources in terms of their total economic cost, accounting for 41% of all property damage attributed to energy accidents.[217] Another analysis found that coal, oil, liquid petroleum gas and hydroelectric accidents (primarily due to the Banqiao Dam disaster) have resulted in greater economic impacts than nuclear power accidents.[218] The study compares latent cancer deaths attributable to nuclear power with immediate deaths from other energy sources per unit of energy generated, and does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" (an accident with more than five fatalities) classification. The Chernobyl accident in 1986 caused approximately 50 deaths from direct and indirect effects, and some temporary serious injuries from acute radiation syndrome.[219] The future predicted mortality from increases in cancer rates is estimated at 4000 in the decades to come.[220][221][222] However, the costs have been large and are increasing.

Nuclear power works under an insurance framework that limits or structures accident liabilities in accordance with national and international conventions.[223] It is often argued that this potential shortfall in liability represents an external cost not included in the cost of nuclear electricity. This cost is small, amounting to about 0.1% of the levelized cost of electricity, according to a study by the Congressional Budget Office in the United States.[224] These beyond-regular insurance costs for worst-case scenarios are not unique to nuclear power. Hydroelectric power plants are similarly not fully insured against a catastrophic event such as dam failures. For example, the failure of the Banqiao Dam caused the death of an estimated 30,000 to 200,000 people, and 11 million people lost their homes. As private insurers base dam insurance premiums on limited scenarios, major disaster insurance in this sector is likewise provided by the state.[225]

Attacks and sabotage

Terrorists could target nuclear power plants in an attempt to release radioactive contamination into the community. The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the September 11, 2001 attacks. An attack on a reactor's spent fuel pool could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities.[226]

In the United States, the Nuclear Regulatory Commission carries out "Force on Force" (FOF) exercises at all nuclear power plant sites at least once every three years.[226] In the United States, plants are surrounded by a double row of tall fences which are electronically monitored. The plant grounds are patrolled by a sizeable force of armed guards.[227]

Insider sabotage is also a threat because insiders can observe and work around security measures. Successful insider crimes depended on the perpetrators' observation and knowledge of security vulnerabilities.[228] A fire caused 5–10 million dollars worth of damage to New York's Indian Point Energy Center in 1971.[229] The arsonist was a plant maintenance worker.[230]

Proliferation

United States and USSR/Russian nuclear weapons stockpiles, 1945–2006. The Megatons to Megawatts Program was the main driving force behind the sharp reduction in the quantity of nuclear weapons worldwide since the cold war ended.[231][232]
The guided-missile cruiser USS Monterey (CG 61) receives fuel at sea (FAS) from the Nimitz-class aircraft carrier USS George Washington (CVN 73).

Nuclear proliferation is the spread of nuclear weapons, fissionable material, and weapons-related nuclear technology to states that do not already possess nuclear weapons. Many technologies and materials associated with the creation of a nuclear power program have a dual-use capability, in that they can also be used to make nuclear weapons. For this reason, nuclear power presents proliferation risks.

Nuclear power program can become a route leading to a nuclear weapon. An example of this is the concern over Iran's nuclear program.[233] The re-purposing of civilian nuclear industries for military purposes would be a breach of the Non-Proliferation Treaty, to which 190 countries adhere. As of April 2012, there are thirty one countries that have civil nuclear power plants,[234] of which nine have nuclear weapons. The vast majority of these nuclear weapons states have produced weapons before commercial nuclear power stations.

A fundamental goal for global security is to minimize the nuclear proliferation risks associated with the expansion of nuclear power.[233] The Global Nuclear Energy Partnership was an international effort to create a distribution network in which developing countries in need of energy would receive nuclear fuel at a discounted rate, in exchange for that nation agreeing to forgo their own indigenous development of a uranium enrichment program. The France-based Eurodif/European Gaseous Diffusion Uranium Enrichment Consortium is a program that successfully implemented this concept, with Spain and other countries without enrichment facilities buying a share of the fuel produced at the French-controlled enrichment facility, but without a transfer of technology.[235] Iran was an early participant from 1974 and remains a shareholder of Eurodif via Sofidif.

A 2009 United Nations report said that:

the revival of interest in nuclear power could result in the worldwide dissemination of uranium enrichment and spent fuel reprocessing technologies, which present obvious risks of proliferation as these technologies can produce fissile materials that are directly usable in nuclear weapons.[236]

On the other hand, power reactors can also reduce nuclear weapon arsenals when military-grade nuclear materials are reprocessed to be used as fuel in nuclear power plants. The Megatons to Megawatts Program is considered the single most successful non-proliferation program to date.[231] Up to 2005, the program had processed $8 billion of high enriched, weapons-grade uranium into low enriched uranium suitable as nuclear fuel for commercial fission reactors by diluting it with natural uranium. This corresponds to the elimination of 10,000 nuclear weapons.[237] For approximately two decades, this material generated nearly 10 percent of all the electricity consumed in the United States, or about half of all U.S. nuclear electricity, with a total of around 7,000 TWh of electricity produced.[238] In total it is estimated to have cost $17 billion, a "bargain for US ratepayers", with Russia profiting $12 billion from the deal.[238] Much needed profit for the Russian nuclear oversight industry, which after the collapse of the Soviet economy, had difficulties paying for the maintenance and security of the Russian Federations highly enriched uranium and warheads.[239] The Megatons to Megawatts Program was hailed as a major success by anti-nuclear weapon advocates as it has largely been the driving force behind the sharp reduction in the number of nuclear weapons worldwide since the cold war ended.[231] However, without an increase in nuclear reactors and greater demand for fissile fuel, the cost of dismantling and down blending has dissuaded Russia from continuing their disarmament. As of 2013, Russia appears to not be interested in extending the program.[240]

Environmental impact

The Ikata Nuclear Power Plant, a pressurized water reactor that cools by using a secondary coolant heat exchanger with a large body of water, an alternative cooling approach to large cooling towers

Being a low-carbon energy source with relatively little land-use requirements, nuclear energy can have a positive environmental impact. It also requires a constant supply of significant amounts of water and affects the environment through mining and milling.[241][242][243][244] Its largest potential negative impacts on the environment may arise from its transgenerational risks for nuclear weapons proliferation that may increase risks of their use in the future, risks for problems associated with the management of the radioactive waste such as groundwater contamination, risks for accidents and for risks for various forms of attacks on waste storage sites or reprocessing- and power-plants.[72][245][246][247][248][244][249][250] However, these remain mostly only risks as historically there have only been few disasters at nuclear power plants with known relatively substantial environmental impacts.

Carbon emissions

Life-cycle greenhouse gas emissions of electricity supply technologies, median values calculated by IPCC[251]

Nuclear power is one of the leading low carbon power generation methods of producing electricity, and in terms of total life-cycle greenhouse gas emissions per unit of energy generated, has emission values comparable to or lower than renewable energy.[252][253] A 2014 analysis of the carbon footprint literature by the Intergovernmental Panel on Climate Change (IPCC) reported that the embodied total life-cycle emission intensity of nuclear power has a median value of 12 g CO2eq/kWh, which is the lowest among all commercial baseload energy sources.[251][254] This is contrasted with coal and natural gas at 820 and 490 g CO2 eq/kWh.[251][254] As of 2021, nuclear reactors worldwide have helped avoid the emission of 72 billion tonnes of carbon dioxide since 1970, compared to coal-fired electricity generation, according to a report.[204][255]

Radiation

The average dose from natural background radiation is 2.4 millisievert per year (mSv/a) globally. It varies between 1 mSv/a and 13 mSv/a, depending mostly on the geology of the location. According to the United Nations (UNSCEAR), regular nuclear power plant operations, including the nuclear fuel cycle, increases this amount by 0.0002 mSv/a of public exposure as a global average. The average dose from operating nuclear power plants to the local populations around them is less than 0.0001 mSv/a.[256] For comparison, the average dose to those living within 50 miles (80 km) of a coal power plant is over three times this dose, at 0.0003 mSv/a.[257]

Chernobyl resulted in the most affected surrounding populations and male recovery personnel receiving an average initial 50 to 100 mSv over a few hours to weeks, while the remaining global legacy of the worst nuclear power plant accident in average exposure is 0.002 mSv/a and is continuously dropping at the decaying rate, from the initial high of 0.04 mSv per person averaged over the entire populace of the Northern Hemisphere in the year of the accident in 1986.[256]

Debate

A comparison of prices over time for energy from nuclear fission and from other sources. Over the presented time, thousands of wind turbines and similar were built on assembly lines in mass production resulting in an economy of scale. While nuclear remains bespoke, many first of their kind facilities added in the timeframe indicated and none are in serial production. Our World in Data notes that this cost is the global average, while the 2 projects that drove nuclear pricing upwards were in the US. The organization recognises that the median cost of the most exported and produced nuclear energy facility in the 2010s the South Korean APR1400, remained "constant", including in export.[258]
LCOE is a measure of the average net present cost of electricity generation for a generating plant over its lifetime. As a metric, it remains controversial as the lifespan of units are not independent but manufacturer projections, not a demonstrated longevity.

The nuclear power debate concerns the controversy which has surrounded the deployment and use of nuclear fission reactors to generate electricity from nuclear fuel for civilian purposes.[25][259][26]

Proponents of nuclear energy regard it as a sustainable energy source that reduces carbon emissions and increases energy security by decreasing dependence on other energy sources that are also[89][90][91] often dependent on imports.[260][261][262] For example, proponents note that annually, nuclear-generated electricity reduces 470 million metric tons of carbon dioxide emissions that would otherwise come from fossil fuels.[263] Additionally, the amount of comparatively low waste that nuclear energy does create is safely disposed of by the large scale nuclear energy production facilities or it is repurposed/recycled for other energy uses.[264] M. King Hubbert, who popularized the concept of peak oil, saw oil as a resource that would run out and considered nuclear energy its replacement.[265] Proponents also claim that the present quantity of nuclear waste is small and can be reduced through the latest technology of newer reactors and that the operational safety record of fission-electricity in terms of deaths is so far "unparalleled".[14] Kharecha and Hansen estimated that "global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning" and, if continued, it could prevent up to 7 million deaths and 240 GtCO2-eq emissions by 2050.[204]

Proponents also bring to attention the opportunity cost of using other forms of electricity. For example, the Environmental Protection Agency estimates that coal kills 30,000 people a year,[266] as a result of its environmental impact, while 60 people died in the Chernobyl disaster.[267] A real world example of impact provided by proponents is the 650,000 ton increase in carbon emissions in the two months following the closure of the Vermont Yankee nuclear plant.[268]

Opponents believe that nuclear power poses many threats to people's health and environment[269][270] such as the risk of nuclear weapons proliferation, long-term safe waste management and terrorism in the future.[271][272] They also contend that nuclear power plants are complex systems where many things can and have gone wrong.[273][274] Costs of the Chernobyl disaster amount to ≈$68 billion as of 2019 and are increasing,[34] the Fukushima disaster is estimated to cost taxpayers ~$187 billion,[189] and radioactive waste management is estimated to cost the Eureopean Union nuclear operators ~$250 billion by 2050.[191] However, in countries that already use nuclear energy, when not considering reprocessing, intermediate nuclear waste disposal costs could be relatively fixed to certain but unknown degrees[275] "as the main part of these costs stems from the operation of the intermediate storage facility".[276]

Critics find that one of the largest drawbacks to building new nuclear fission power plants are the large construction and operating costs when compared to alternatives of sustainable energy sources.[54][277][83][243][278] Further costs include ongoing research and development, expensive reprocessing in cases where such is practiced[72][73][74][76] and decommissioning.[279][280][281] Proponents note that focussing on the levelized cost of energy (LCOE), however, ignores the value premium associated with 24/7 dispatchable electricity and the cost of storage and backup systems necessary to integrate variable energy sources into a reliable electrical grid.[282] "Nuclear thus remains the dispatchable low-carbon technology with the lowest expected costs in 2025. Only large hydro reservoirs can provide a similar contribution at comparable costs but remain highly dependent on the natural endowments of individual countries."[283]

Anti-nuclear protest near nuclear waste disposal centre at Gorleben in northern Germany

Overall, many opponents find that nuclear energy cannot meaningfully contribute to climate change mitigation. In general, they find it to be, too dangerous, too expensive, to take too long for deployment, to be an obstacle to achieving a transition towards sustainability and carbon-neutrality,[83][284][285][286] effectively being a distracting[287][288] competition for resources (i.e. human, financial, time, infrastructure and expertise) for the deployment and development of alternative, sustainable, energy system technologies[84][288][83][289] (such as for wind, ocean and solar[83] – including e.g. floating solar – as well as ways to manage their intermittency other than nuclear baseload[290] generation such as dispatchable generation, renewables-diversification,[291][292] super grids, flexible energy demand and supply regulating smart grids and energy storage[293][294][295][296][297] technologies).[298][299][300][301][302][303][304][305][250]

Nevertheless, there is ongoing research and debate over costs of new nuclear, especially in regions where i.a. seasonal energy storage is difficult to provide and which aim to phase out fossil fuels in favor of low carbon power faster than the global average.[306] Some find that financial transition costs for a 100% renewables-based European energy system that has completely phased out nuclear energy could be more costly by 2050 based on current technologies (i.e. not considering potential advances in e.g. green hydrogen, transmission and flexibility capacities, ways to reduce energy needs, geothermal energy and fusion energy) when the grid only extends across Europe.[307] Arguments of economics and safety are used by both sides of the debate.

Comparison with renewable energy

Slowing global warming requires a transition to a low-carbon economy, mainly by burning far less fossil fuel. Limiting global warming to 1.5 °C is technically possible if no new fossil fuel power plants are built from 2019.[308] This has generated considerable interest and dispute in determining the best path forward to rapidly replace fossil-based fuels in the global energy mix,[309][310] with intense academic debate.[311][312] Sometimes the IEA says that countries without nuclear should develop it as well as their renewable power.[313]

World total primary energy supply of 162,494 TWh (or 13,792 Mtoe) by fuels in 2017 (IEA, 2019)[314]: 6, 8 

  Oil (32%)
  Coal/Peat/Shale (27.1%)
  Natural Gas (22.2%)
  Biofuels and waste (9.5%)
  Nuclear (4.9%)
  Hydro (2.5%)
  Others (Renewables) (1.8%)

Several studies suggest that it might be theoretically possible to cover a majority of world energy generation with new renewable sources. The Intergovernmental Panel on Climate Change (IPCC) has said that if governments were supportive, renewable energy supply could account for close to 80% of the world's energy use by 2050.[315] While in developed nations the economically feasible geography for new hydropower is lacking, with every geographically suitable area largely already exploited,[316] some proponents of wind and solar energy claim these resources alone could eliminate the need for nuclear power.[312][317]

Nuclear power is comparable to, and in some cases lower, than many renewable energy sources in terms of lives lost in the past per unit of electricity delivered.[202][200][318] Depending on recycling of renewable energy technologies, nuclear reactors may produce a much smaller volume of waste, although much more toxic, expensive to manage and longer-lived.[319][246] A nuclear plant also needs to be disassembled and removed and much of the disassembled nuclear plant needs to be stored as low-level nuclear waste for a few decades.[320] The disposal and management of the wide variety[321] of radioactive waste, of which there are over one quarter of a million tons as of 2018, can cause future damage and costs across the world for over or during hundreds of thousands of years[322][323][324] – possibly over a million years,[325][326][327][328] due to issues such as leakage,[329] malign retrieval, vulnerability to attacks (including of reprocessing[75][72] and power plants), groundwater contamination, radiation and leakage to above ground, brine leakage or bacterial corrosion.[330][325][331][332] The European Commission Joint Research Centre found that as of 2021 the necessary technologies for geological disposal of nuclear waste are now available and can be deployed.[333] Corrosion experts noted in 2020 that putting the problem of storage off any longer "isn't good for anyone".[334] Separated plutonium and enriched uranium could be used for nuclear weapons, which – even with the current centralized control (e.g. state-level) and level of prevalence – are considered to be a difficult and substantial global risk for substantial future impacts on human health, lives, civilization and the environment.[72][245][246][247][248]

Speed of transition and investment needed

Analysis in 2015 by professor Barry W. Brook and colleagues found that nuclear energy could displace or remove fossil fuels from the electric grid completely within 10 years. This finding was based on the historically modest and proven rate at which nuclear energy was added in France and Sweden during their building programs in the 1980s.[335][336] In a similar analysis, Brook had earlier determined that 50% of all global energy, including transportation synthetic fuels etc., could be generated within approximately 30 years if the global nuclear fission build rate was identical to historical proven installation rates calculated in GW per year per unit of global GDP (GW/year/$).[337] This is in contrast to the conceptual studies for 100% renewable energy systems, which would require an order of magnitude more costly global investment per year, which has no historical precedent.[338] These renewable scenarios would also need far greater land devoted to onshore wind and onshore solar projects.[337][338] Brook notes that the "principal limitations on nuclear fission are not technical, economic or fuel-related, but are instead linked to complex issues of societal acceptance, fiscal and political inertia, and inadequate critical evaluation of the real-world constraints facing [the other] low-carbon alternatives."[337]

Scientific data indicates that – assuming 2021 emissions levels – humanity only has a carbon budget equivalent to 11 years of emissions left for limiting warming to 1.5 °C[339][340] while the construction of new nuclear reactors took a median of 7.2–10.9 years in 2018–2020,[332] substantially longer than, alongside other measures, scaling up the deployment of wind and solar – especially for novel reactor types – as well as being more risky, often delayed and more dependent on state-support.[341][342][285][287][83][343][298] Researchers have cautioned that novel nuclear technologies – which have been in development since decades,[344][83][277] are less tested, have higher proliferation risks, have more new safety problems, are often far from commercialization and are more expensive[277][83][243][345] – are not available in time.[79][84][346][287][347][297][348] Critics of nuclear energy often only oppose nuclear fission energy but not nuclear fusion; however, fusion energy is unlikely to be commercially widespread before 2050.[349][350][351][352][353]

Land use

The median land area used by US nuclear power stations per 1 GW installed capacity is 1.3 square miles (3.4 km2).[354][355] To generate the same amount of electricity annually (taking into account capacity factors) from solar PV would require about 60 square miles (160 km2), and from a wind farm about 310 square miles (800 km2).[354][355] Not included in this, is land required for the associated transmission lines, water supply, rail lines, mining and processing of nuclear fuel, and for waste disposal.[356]

Research

Advanced fission reactor designs

Current fission reactors in operation around the world are second or third generation systems, with most of the first-generation systems having been already retired. Research into advanced generation IV reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve economics, safety, proliferation resistance, natural resource use and the ability to consume existing nuclear waste in the production of electricity. Most of these reactors differ significantly from current operating light water reactors, and are expected to be available for commercial construction after 2030.[357]

Hybrid fusion-fission

Hybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s and was briefly advocated by Hans Bethe during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to delays in the realization of pure fusion. When a sustained nuclear fusion power plant is built, it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel, reducing the volume of nuclear waste by orders of magnitude, and more importantly, eliminating all actinides present in the spent fuel, substances which cause security concerns.[358]

Fusion

Schematic of the ITER tokamak under construction in France

Nuclear fusion reactions have the potential to be safer and generate less radioactive waste than fission.[359][360] These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s. Nuclear fusion research is underway but fusion energy is not likely to be commercially widespread before 2050.[361][362][363]

Several experimental nuclear fusion reactors and facilities exist. The largest and most ambitious international nuclear fusion project currently in progress is ITER, a large tokamak under construction in France. ITER is planned to pave the way for commercial fusion power by demonstrating self-sustained nuclear fusion reactions with positive energy gain. Construction of the ITER facility began in 2007, but the project has run into many delays and budget overruns. The facility is now not expected to begin operations until the year 2027 – 11 years after initially anticipated.[364] A follow on commercial nuclear fusion power station, DEMO, has been proposed.[349][365] There are also suggestions for a power plant based upon a different fusion approach, that of an inertial fusion power plant.

Fusion-powered electricity generation was initially believed to be readily achievable, as fission-electric power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2020, more than 80 years after the first attempts, commercialization of fusion power production was thought to be unlikely before 2050.[349][350][351][352][353]

To enhance and accelerate the development of fusion energy, the United States Department of Energy (DOE) granted $46 million to eight firms, including Commonwealth Fusion Systems and Tokamak Energy Inc, in 2023. This ambitious initiative aims to introduce pilot-scale fusion within a decade.[366]

See also

References

  1. ^ a b "PRIS - Home". pris.iaea.org. Archived from the original on 2018-06-13. Retrieved 2023-08-22.
  2. ^ "Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology Legacy". www.ne.anl.gov. Retrieved 24 March 2021.
  3. ^ Wellerstein, Alex (2008). "Inside the atomic patent office". Bulletin of the Atomic Scientists. 64 (2): 26–31. Bibcode:2008BuAtS..64b..26W. doi:10.2968/064002008. ISSN 0096-3402.
  4. ^ "The Einstein Letter". Atomicarchive.com. Archived from the original on 2013-06-28. Retrieved 2013-06-22.
  5. ^ "Nautilus (SSN-571)". US Naval History and Heritage Command (US Navy).
  6. ^ Wendt, Gerald; Geddes, Donald Porter (1945). The Atomic Age Opens. New York: Pocket Books. Archived from the original on 2016-03-28. Retrieved 2017-11-03.
  7. ^ "Reactors Designed by Argonne National Laboratory: Fast Reactor Technology". U.S. Department of Energy, Argonne National Laboratory. 2012. Archived from the original on 2021-04-18. Retrieved 2012-07-25.
  8. ^ "Reactor Makes Electricity". Popular Mechanics. Hearst Magazines. March 1952. p. 105.
  9. ^ a b "50 Years of Nuclear Energy" (PDF). International Atomic Energy Agency. Archived (PDF) from the original on 2010-01-07. Retrieved 2006-11-09.
  10. ^ "STR (Submarine Thermal Reactor) in "Reactors Designed by Argonne National Laboratory: Light Water Reactor Technology Development"". U.S. Department of Energy, Argonne National Laboratory. 2012. Archived from the original on 2012-06-22. Retrieved 2012-07-25.
  11. ^ Rockwell, Theodore (1992). The Rickover Effect. Naval Institute Press. p. 162. ISBN 978-1-55750-702-0.
  12. ^ "From Obninsk Beyond: Nuclear Power Conference Looks to Future". International Atomic Energy Agency. 2004-06-23. Archived from the original on 2006-11-15. Retrieved 2006-06-27.
  13. ^ Hill, C. N. (2013). An atomic empire: a technical history of the rise and fall of the British atomic energy programme. London, England: Imperial College Press. ISBN 978-1-908977-43-4.
  14. ^ a b Bernard L. Cohen (1990). The Nuclear Energy Option: An Alternative for the 90s. New York: Plenum Press. ISBN 978-0-306-43567-6.
  15. ^ Beder, Sharon (2006). "The Japanese Situation, English version of conclusion of Sharon Beder, "Power Play: The Fight to Control the World's Electricity"". Soshisha, Japan. Archived from the original on 2011-03-17. Retrieved 2009-05-15.
  16. ^ Palfreman, Jon (1997). "Why the French Like Nuclear Energy". Frontline. Public Broadcasting Service. Archived from the original on 25 August 2007. Retrieved 25 August 2007.
  17. ^ de Preneuf, Rene. "Nuclear Power in France – Why does it Work?". Archived from the original on 13 August 2007. Retrieved 25 August 2007.
  18. ^ a b "Nuclear Share of Electricity Generation in 2019". Power Reactor Information System. International Atomic Energy Agency. Archived from the original on 2023-04-08. Retrieved 2021-01-09.
  19. ^ Garb, Paula (1999). "Review of Critical Masses: Opposition to Nuclear Power in California, 1958–1978". Journal of Political Ecology. 6. Archived from the original on 2018-06-01. Retrieved 2011-03-14.
  20. ^ a b c Rüdig, Wolfgang, ed. (1990). Anti-nuclear Movements: A World Survey of Opposition to Nuclear Energy. Detroit, Michigan: Longman Current Affairs. p. 1. ISBN 978-0-8103-9000-3.
  21. ^ Martin, Brian (2007). "Opposing nuclear power: past and present". Social Alternatives. 26 (2): 43–47. Archived from the original on 2019-05-10. Retrieved 2011-03-14.
  22. ^ Mills, Stephen; Williams, Roger (1986). Public acceptance of new technologies: an international review. London: Croom Helm. pp. 375–376. ISBN 978-0-7099-4319-8.
  23. ^ Robert Gottlieb (2005). Forcing the Spring: The Transformation of the American Environmental Movement, Revised Edition, Island Press, p. 237.
  24. ^ Falk, Jim (1982). Global Fission: The Battle Over Nuclear Power. Melbourne, Australia: Oxford University Press. pp. 95–96. ISBN 978-0-19-554315-5.
  25. ^ a b Walker, J. Samuel (2004). Three Mile Island: A Nuclear Crisis in Historical Perspective Archived 2023-03-23 at the Wayback Machine (Berkeley, California: University of California Press), pp. 10–11.
  26. ^ a b Herbert P. Kitschelt (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 57. doi:10.1017/s000712340000380x. S2CID 154479502. Archived (PDF) from the original on 2010-08-21. Retrieved 2010-02-28.
  27. ^ Kitschelt, Herbert P. (1986). "Political Opportunity and Political Protest: Anti-Nuclear Movements in Four Democracies" (PDF). British Journal of Political Science. 16 (1): 71. doi:10.1017/s000712340000380x. S2CID 154479502. Archived (PDF) from the original on 2010-08-21. Retrieved 2010-02-28.
  28. ^ "Costs of Nuclear Power Plants – What Went Wrong?". www.phyast.pitt.edu. Archived from the original on 2010-04-13. Retrieved 2007-12-04.
  29. ^ Ginn, Vance; Raia, Elliott (August 18, 2017). "nuclear energy may soon be free from its tangled regulatory web". Washington Examiner. Archived from the original on January 6, 2019. Retrieved January 6, 2019.
  30. ^ "Nuclear Power: Outlook for New U.S. Reactors" (PDF). p. 3. Archived (PDF) from the original on 2015-09-24. Retrieved 2015-10-18.
  31. ^ Cook, James (1985-02-11). "Nuclear Follies". Forbes Magazine.
  32. ^ Thorpe, Gary S. (2015). AP Environmental Science, 6th ed. Barrons Educational Series. ISBN 978-1-4380-6728-5. ISBN 1-4380-6728-3
  33. ^ "Chernobyl Nuclear Accident". www.iaea.org. IAEA. 14 May 2014. Archived from the original on 11 June 2008. Retrieved 23 March 2021.
  34. ^ a b "Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter II – The release, dispersion and deposition of radionuclides" (PDF). OECD-NEA. 2002. Archived (PDF) from the original on 22 June 2015. Retrieved 3 June 2015.
  35. ^ Johnson, Thomas (author/director) (2006). The battle of Chernobyl. Play Film / Discovery Channel. Archived from the original on 2021-03-07. Retrieved 2021-03-23. (see 1996 interview with Mikhail Gorbachev.)
  36. ^ Sassoon, Donald (2014-06-03). Contemporary Italy: Politics, Economy and Society Since 1945. Routledge. ISBN 978-1-317-89377-6.
  37. ^ a b "Analysis: Nuclear renaissance could fizzle after Japan quake". Reuters. 2011-03-14. Archived from the original on 2015-12-08. Retrieved 2011-03-14.
  38. ^ a b "Trend in Electricity Supplied". International Atomic Energy Agency. Archived from the original on 2021-01-11. Retrieved 2021-01-09.
  39. ^ "Analysis: The legacy of the Fukushima nuclear disaster". Carbon Brief. 10 March 2016. Archived from the original on 8 March 2021. Retrieved 24 March 2021.
  40. ^ Westall, Sylvia & Dahl, Fredrik (2011-06-24). "IAEA Head Sees Wide Support for Stricter Nuclear Plant Safety". Scientific American. Archived from the original on 2011-06-25. Retrieved 2011-06-25.
  41. ^ Chandler, Jo (2011-03-19). "Is this the end of the nuclear revival?". The Sydney Morning Herald. Sydney, Australia. Archived from the original on 2020-05-10. Retrieved 2020-02-20.
  42. ^ Belford, Aubrey (2011-03-17). "Indonesia to Continue Plans for Nuclear Power". The New York Times. Archived from the original on 2020-05-10. Retrieved 2017-02-25.
  43. ^ Morgan, Piers (2011-03-17). "Israel Prime Minister Netanyahu: Japan situation has "caused me to reconsider" nuclear power". CNN. Archived from the original on 2019-09-30. Retrieved 2011-03-17.
  44. ^ "Israeli PM cancels plan to build nuclear plant". xinhuanet.com. 2011-03-18. Archived from the original on March 18, 2011. Retrieved 2011-03-17.
  45. ^ "Startup of Sendai Nuclear Power Unit No.1". Kyushu Electric Power Company Inc. 2015-08-11. Archived from the original on 2017-05-25. Retrieved 2015-08-12.
  46. ^ "Japan turns back to nuclear power in post-Fukushima shift". Financial Times. London, England. 24 August 2022. Archived from the original on 30 September 2022. Retrieved November 15, 2022.
  47. ^ a b "Japan Is Reopening Nuclear Power Plants and Planning To Build New Ones". August 25, 2022. Archived from the original on November 15, 2022. Retrieved November 26, 2022.
  48. ^ "January: Taking a fresh look at the future of nuclear power". www.iea.org. Archived from the original on 2016-04-05. Retrieved 2016-04-18.
  49. ^ "Plans for New Reactors Worldwide". World Nuclear Association. October 2015. Archived from the original on 2016-01-31. Retrieved 2016-01-05.
  50. ^ "International Energy outlook 2016". US Energy Information Administration. Archived from the original on 15 August 2016. Retrieved 17 August 2016.
  51. ^ "Plans for New Nuclear Reactors Worldwide". www.world-nuclear.org. World Nuclear Association. Archived from the original on 2018-09-28. Retrieved 2018-09-29.
  52. ^ "Can China become a scientific superpower? – The great experiment". The Economist. 12 January 2019. Archived from the original on 25 January 2019. Retrieved 25 January 2019.
  53. ^ "A global nuclear phaseout or renaissance? | DW | 04.02.2021". Deutsche Welle (www.dw.com). Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  54. ^ a b Griffiths, James. "China's gambling on a nuclear future, but is it destined to lose?". CNN. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  55. ^ a b "Building new nuclear plants in France uneconomical -environment agency". Reuters. 10 December 2018. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  56. ^ World Nuclear Association. "Nuclear Power in Japan". Archived from the original on 2020-04-01. Retrieved 2022-09-12.
  57. ^ "Germany's Uniper to restart coal-fired power plant as Gazprom halts supply to Europe". Reuters. 22 August 2022. Archived from the original on 2022-09-09. Retrieved 2022-09-12.
  58. ^ "Macron bets on nuclear in carbon-neutrality push, announces new reactors". Reuters. 10 February 2022. Archived from the original on 2022-09-14. Retrieved 2022-09-12.
  59. ^ "Department of Energy picks two advanced nuclear reactors for demonstration projects, announces new reactors". Science.org. 16 October 2020. Archived from the original on 24 February 2023. Retrieved 3 March 2023.
  60. ^ "Nuclear Power Reactors in the World – 2015 Edition" (PDF). International Atomic Energy Agency (IAEA). Archived (PDF) from the original on 16 November 2020. Retrieved 26 October 2017.
  61. ^ a b "How does a nuclear reactor make electricity?". www.world-nuclear.org. World Nuclear Association. Archived from the original on 24 August 2018. Retrieved 24 August 2018.
  62. ^ Spyrou, Artemis; Mittig, Wolfgang (2017-12-03). "Atomic age began 75 years ago with the first controlled nuclear chain reaction". Scientific American. Archived from the original on 2018-11-18. Retrieved 2018-11-18.
  63. ^ a b "Stages of the Nuclear Fuel Cycle". NRC Web. Nuclear Regulatory Commission. Archived from the original on 20 April 2021. Retrieved 17 April 2021.
  64. ^ a b c d "Nuclear Fuel Cycle Overview". www.world-nuclear.org. World Nuclear Association. Archived from the original on 20 April 2021. Retrieved 17 April 2021.
  65. ^ "uranium Facts, information, pictures | Encyclopedia.com articles about uranium". Encyclopedia.com. 2001-09-11. Archived from the original on 2016-09-13. Retrieved 2013-06-14.
  66. ^ "Second Thoughts About Nuclear Power" (PDF). A Policy Brief – Challenges Facing Asia. January 2011. Archived from the original (PDF) on January 16, 2013. Retrieved September 11, 2012.
  67. ^ "Uranium resources sufficient to meet projected nuclear energy requirements long into the future". Nuclear Energy Agency (NEA). 2008-06-03. Archived from the original on 2008-12-05. Retrieved 2008-06-16.
  68. ^ Uranium 2007 – Resources, Production and Demand. Nuclear Energy Agency, Organisation for Economic Co-operation and Development. 2008. ISBN 978-92-64-04766-2. Archived from the original on 2009-01-30.
  69. ^ "Energy Supply" (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and table 4.10.
  70. ^ a b c "Waste Management in the Nuclear Fuel Cycle". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-11. Retrieved 2006-11-09.
  71. ^ "Energy Supply" (PDF). p. 271. Archived from the original (PDF) on 2007-12-15. and figure 4.10.
  72. ^ a b c d e "Nuclear Reprocessing: Dangerous, Dirty, and Expensive". Union of Concerned Scientists. Archived from the original on 15 January 2021. Retrieved 26 January 2020.
  73. ^ a b "Toward an Assessment of Future Proliferation Risk" (PDF). Archived (PDF) from the original on 25 November 2021. Retrieved 25 November 2021.
  74. ^ a b Zhang, Hui (1 July 2015). "Plutonium reprocessing, breeder reactors, and decades of debate: A Chinese response". Bulletin of the Atomic Scientists. 71 (4): 18–22. doi:10.1177/0096340215590790. ISSN 0096-3402. S2CID 145763632.
  75. ^ a b Martin, Brian (1 January 2015). "Nuclear power and civil liberties". Faculty of Law, Humanities and the Arts – Papers (Archive): 1–6. Archived from the original on 25 November 2021. Retrieved 26 November 2021.
  76. ^ a b Kemp, R. Scott (29 June 2016). "Environmental Detection of Clandestine Nuclear Weapon Programs". Annual Review of Earth and Planetary Sciences. 44 (1): 17–35. Bibcode:2016AREPS..44...17K. doi:10.1146/annurev-earth-060115-012526. hdl:1721.1/105171. ISSN 0084-6597. Archived from the original on 25 November 2021. Retrieved 26 November 2021. Although commercial reprocessing involves large, expensive facilities, some of which are identifiable in structure, a small, makeshift operation using standard industrial supplies is feasible (Ferguson 1977, US GAO 1978). Such a plant could be constructed to have no visual signatures that would reveal its location by overhead imaging, could be built in several months, and once operational could produce weapon quantities of fissile material in several days
  77. ^ Monnet, Antoine; Gabriel, Sophie; Percebois, Jacques (1 September 2017). "Long-term availability of global uranium resources" (PDF). Resources Policy. 53: 394–407. Bibcode:2017RePol..53..394M. doi:10.1016/j.resourpol.2017.07.008. ISSN 0301-4207. Archived (PDF) from the original on 31 October 2021. Retrieved 1 December 2021. However, it can be seen that the simulation in scenario A3 stops in 2075 due to a shortage: the R/P ratio cancels itself out. The detailed calculations also show that even though it does not cancel itself out in scenario C2, the R/P ratio constantly deteriorates, falling from 130 years in 2013 to 10 years around 2100, which raises concerns of a shortage around that time. The exploration constraints thus affect the security of supply.
  78. ^ Haji, Maha N.; Drysdale, Jessica; Buesseler, Ken; Slocum, Alexander H. (25 June 2017). "Ocean Testing of a Symbiotic Device to Harvest Uranium From Seawater Through the Use of Shell Enclosures". Proceedings of the 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar. Archived from the original on 26 November 2021. Retrieved 28 November 2021 – via OnePetro.
  79. ^ a b c Muellner, Nikolaus; Arnold, Nikolaus; Gufler, Klaus; Kromp, Wolfgang; Renneberg, Wolfgang; Liebert, Wolfgang (1 August 2021). "Nuclear energy - The solution to climate change?". Energy Policy. 155: 112363. Bibcode:2021EnPol.15512363M. doi:10.1016/j.enpol.2021.112363. ISSN 0301-4215. S2CID 236254316.
  80. ^ Chen, Yanxin; Martin, Guillaume; Chabert, Christine; Eschbach, Romain; He, Hui; Ye, Guo-an (1 March 2018). "Prospects in China for nuclear development up to 2050" (PDF). Progress in Nuclear Energy. 103: 81–90. Bibcode:2018PNuE..103...81C. doi:10.1016/j.pnucene.2017.11.011. ISSN 0149-1970. S2CID 126267852. Archived (PDF) from the original on 16 December 2021. Retrieved 1 December 2021.
  81. ^ Gabriel, Sophie; Baschwitz, Anne; Mathonnière, Gilles; Eleouet, Tommy; Fizaine, Florian (1 August 2013). "A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets". Annals of Nuclear Energy. 58: 213–220. Bibcode:2013AnNuE..58..213G. doi:10.1016/j.anucene.2013.03.010. ISSN 0306-4549.
  82. ^ Shang, Delei; Geissler, Bernhard; Mew, Michael; Satalkina, Liliya; Zenk, Lukas; Tulsidas, Harikrishnan; Barker, Lee; El-Yahyaoui, Adil; Hussein, Ahmed; Taha, Mohamed; Zheng, Yanhua; Wang, Menglai; Yao, Yuan; Liu, Xiaodong; Deng, Huidong; Zhong, Jun; Li, Ziying; Steiner, Gerald; Bertau, Martin; Haneklaus, Nils (1 April 2021). "Unconventional uranium in China's phosphate rock: Review and outlook". Renewable and Sustainable Energy Reviews. 140: 110740. Bibcode:2021RSERv.14010740S. doi:10.1016/j.rser.2021.110740. ISSN 1364-0321. S2CID 233577205.
  83. ^ a b c d e f g h Wealer, Ben; Breyer, Christian; Hennicke, Peter; Hirsch, Helmut; von Hirschhausen, Christian; Klafka, Peter; Kromp-Kolb, Helga; Präger, Fabian; Steigerwald, Björn; Traber, Thure; Baumann, Franz; Herold, Anke; Kemfert, Claudia; Kromp, Wolfgang; Liebert, Wolfgang; Müschen, Klaus (16 October 2021). "Kernenergie und Klima". Diskussionsbeiträge der Scientists for Future (in German). doi:10.5281/zenodo.5573718.
  84. ^ a b c d "Hidden military implications of 'building back' with new nuclear in the UK" (PDF). Archived (PDF) from the original on 23 October 2021. Retrieved 24 November 2021.
  85. ^ "USGS Scientific Investigations Report 2012–5239: Critical Analysis of World Uranium Resources". pubs.usgs.gov. Archived from the original on 19 January 2022. Retrieved 28 November 2021.
  86. ^ Barthel, F. H. (2007). "Thorium and unconventional uranium resources". International Atomic Energy Agency. Archived from the original on 2021-11-28. Retrieved 2021-11-28.
  87. ^ Dungan, K.; Butler, G.; Livens, F. R.; Warren, L. M. (1 August 2017). "Uranium from seawater – Infinite resource or improbable aspiration?". Progress in Nuclear Energy. 99: 81–85. Bibcode:2017PNuE...99...81D. doi:10.1016/j.pnucene.2017.04.016. ISSN 0149-1970.
  88. ^ Fang, Jianchun; Lau, Chi Keung Marco; Lu, Zhou; Wu, Wanshan (1 September 2018). "Estimating Peak uranium production in China – Based on a Stella model". Energy Policy. 120: 250–258. Bibcode:2018EnPol.120..250F. doi:10.1016/j.enpol.2018.05.049. ISSN 0301-4215. S2CID 158066671.
  89. ^ a b Jewell, Jessica; Vetier, Marta; Garcia-Cabrera, Daniel (1 May 2019). "The international technological nuclear cooperation landscape: A new dataset and network analysis" (PDF). Energy Policy. 128: 838–852. Bibcode:2019EnPol.128..838J. doi:10.1016/j.enpol.2018.12.024. ISSN 0301-4215. S2CID 159233075. Archived (PDF) from the original on 28 May 2022. Retrieved 31 May 2022.
  90. ^ a b Xing, Wanli; Wang, Anjian; Yan, Qiang; Chen, Shan (1 December 2017). "A study of China's uranium resources security issues: Based on analysis of China's nuclear power development trend". Annals of Nuclear Energy. 110: 1156–1164. Bibcode:2017AnNuE.110.1156X. doi:10.1016/j.anucene.2017.08.019. ISSN 0306-4549.
  91. ^ a b Yue, Qiang; He, Jingke; Stamford, Laurence; Azapagic, Adisa (2017). "Nuclear Power in China: An Analysis of the Current and Near-Future Uranium Flows". Energy Technology. 5 (5): 681–691. doi:10.1002/ente.201600444. ISSN 2194-4296.
  92. ^ Ferronsky, V. I.; Polyakov, V. A. (2012). Isotopes of the Earth's Hydrosphere. Springer. p. 399. ISBN 978-94-007-2856-1.
  93. ^ "Toxicological profile for thorium" (PDF). Agency for Toxic Substances and Disease Registry. 1990. p. 76. Archived (PDF) from the original on 2018-04-22. Retrieved 2018-10-09. world average concentration in seawater is 0.05 μg/L (Harmsen and De Haan 1980)
  94. ^ Huh, C. A.; Bacon, M. P. (2002). "Determination of thorium concentration in seawater by neutron activation analysis". Analytical Chemistry. 57 (11): 2138–2142. doi:10.1021/ac00288a030.
  95. ^ a b Seko, Noriaki (July 29, 2013). "The current state of promising research into extraction of uranium from seawater – Utilization of Japan's plentiful seas". Global Energy Policy Research. Archived from the original on October 9, 2018. Retrieved October 9, 2018.
  96. ^ Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary (2014). "Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology". Journal of Marine Science and Engineering. 2: 81–92. doi:10.3390/jmse2010081.
  97. ^ Alexandratos SD, Kung S (April 20, 2016). "Uranium in Seawater". Industrial & Engineering Chemistry Research. 55 (15): 4101–4362. doi:10.1021/acs.iecr.6b01293.
  98. ^ a b c d Finck, Philip. "Current Options for the Nuclear Fuel Cycle" (PDF). JAIF. Archived from the original (PDF) on 2012-04-12.
  99. ^ a b "Backgrounder on Radioactive Waste". NRC. Nuclear Regulatory Commission. Archived from the original on 13 November 2017. Retrieved 20 April 2021.
  100. ^ "A fast reactor system to shorten the lifetime of long-lived fission products".
  101. ^ "Radioactivity: Minor Actinides". www.radioactivity.eu.com. Archived from the original on 2018-12-11. Retrieved 2018-12-23.
  102. ^ Ojovan, Michael I. (2014). An introduction to nuclear waste immobilisation, second edition (2nd ed.). Kidlington, Oxford, U.K.: Elsevier. ISBN 978-0-08-099392-8.
  103. ^ "High-level radioactive waste". nuclearsafety.gc.ca. Canadian Nuclear Safety Commission. February 3, 2014. Archived from the original on April 14, 2022. Retrieved April 19, 2022.
  104. ^ Hedin, A. (1997). Spent nuclear fuel - how dangerous is it? A report from the project 'Description of risk' (Technical report). Energy Technology Data Exchange.
  105. ^ Bruno, Jordi; Duro, Laura; Diaz-Maurin, François (2020). "Chapter 13 – Spent nuclear fuel and disposal". Advances in Nuclear Fuel Chemistry. Woodhead Publishing Series in Energy. Woodhead Publishing. pp. 527–553. doi:10.1016/B978-0-08-102571-0.00014-8. ISBN 978-0-08-102571-0. S2CID 216544356. Archived from the original on 2021-09-20. Retrieved 2021-09-20.
  106. ^ Ojovan, M. I.; Lee, W. E. (2005). An Introduction to Nuclear Waste Immobilisation. Amsterdam, Netherlands: Elsevier Science Publishers. p. 315. ISBN 978-0-08-044462-8.
  107. ^ National Research Council (1995). Technical Bases for Yucca Mountain Standards. Washington, DC: National Academy Press. p. 91. ISBN 978-0-309-05289-4.
  108. ^ "The Status of Nuclear Waste Disposal". The American Physical Society. January 2006. Archived from the original on 2008-05-16. Retrieved 2008-06-06.
  109. ^ "Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada; Proposed Rule" (PDF). United States Environmental Protection Agency. 2005-08-22. Archived (PDF) from the original on 2008-06-26. Retrieved 2008-06-06.
  110. ^ "CRS Report for Congress. Radioactive Waste Streams: Waste Classification for Disposal" (PDF). Archived (PDF) from the original on 2017-08-29. Retrieved 2018-12-22. The Nuclear Waste Policy Act of 1982 (NWPA) defined irradiated fuel as spent nuclear fuel, and the byproducts as high-level waste.
  111. ^ Vandenbosch 2007, p. 21.
  112. ^ Clark, Duncan (2012-07-09). "Nuclear waste-burning reactor moves a step closer to reality | Environment | guardian.co.uk". Guardian. London, England. Archived from the original on 2022-10-08. Retrieved 2013-06-14.
  113. ^ Monbiot, George (5 December 2011). "A Waste of Waste". Monbiot.com. Archived from the original on 2013-06-01. Retrieved 2013-06-14.
  114. ^ "Energy From Thorium: A Nuclear Waste Burning Liquid Salt Thorium Reactor". YouTube. 2009-07-23. Archived from the original on 2021-12-11. Retrieved 2013-06-14.
  115. ^ "Role of Thorium to Supplement Fuel Cycles of Future Nuclear Energy Systems" (PDF). IAEA. 2012. Archived (PDF) from the original on 6 May 2021. Retrieved 7 April 2021. Once irradiated in a reactor, the fuel of a thorium–uranium cycle contains an admixture of 232U (half-life 68.9 years) whose radioactive decay chain includes emitters (particularly 208Tl) of high energy gamma radiation (2.6 MeV). This makes spent thorium fuel treatment more difficult, requires remote handling/control during reprocessing and during further fuel fabrication, but on the other hand, may be considered as an additional non-proliferation barrier.
  116. ^ "NRC: Low-Level Waste". www.nrc.gov. Archived from the original on 17 August 2018. Retrieved 28 August 2018.
  117. ^ "The Challenges of Nuclear Power". Archived from the original on 2017-05-10. Retrieved 2013-01-04.
  118. ^ "Coal Ash Is More Radioactive than Nuclear Waste". Scientific American. 2007-12-13. Archived from the original on 2013-06-12. Retrieved 2012-09-11.
  119. ^ Gabbard, Alex (2008-02-05). "Coal Combustion: Nuclear Resource or Danger". Oak Ridge National Laboratory. Archived from the original on February 5, 2007. Retrieved 2008-01-31.
  120. ^ "Coal ash is not more radioactive than nuclear waste". CE Journal. 2008-12-31. Archived from the original on 2009-08-27.
  121. ^ "Yankee Nuclear Power Plant". Yankeerowe.com. Archived from the original on 2006-03-03. Retrieved 2013-06-22.
  122. ^ "Why nuclear energy". Generation Atomic. 26 January 2021. Archived from the original on 23 December 2018. Retrieved 22 December 2018.
  123. ^ "NPR Nuclear Waste May Get A Second Life". NPR. Archived from the original on 2018-12-23. Retrieved 2018-12-22.
  124. ^ "Energy Consumption of the United States - The Physics Factbook". hypertextbook.com. Archived from the original on 2018-12-23. Retrieved 2018-12-22.
  125. ^ "NRC: Dry Cask Storage". Nrc.gov. 2013-03-26. Archived from the original on 2013-06-02. Retrieved 2013-06-22.
  126. ^ a b Montgomery, Scott L. (2010). The Powers That Be, University of Chicago Press, p. 137.
  127. ^ "international Journal of Environmental Studies, The Solutions for Nuclear waste, December 2005" (PDF). Archived from the original (PDF) on 2013-04-26. Retrieved 2013-06-22.
  128. ^ "Oklo: Natural Nuclear Reactors". U.S. Department of Energy Office of Civilian Radioactive Waste Management, Yucca Mountain Project, DOE/YMP-0010. November 2004. Archived from the original on 2009-08-25. Retrieved 2009-09-15.
  129. ^ a b Gore, Al (2009). Our Choice: A Plan to Solve the Climate Crisis. Emmaus, Pennsylvania: Rodale. pp. 165–166. ISBN 978-1-59486-734-7.
  130. ^ Muller, Richard A.; Finsterle, Stefan; Grimsich, John; Baltzer, Rod; Muller, Elizabeth A.; Rector, James W.; Payer, Joe; Apps, John (May 29, 2019). "Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes". Energies. 12 (11): 2052. doi:10.3390/en12112052.
  131. ^ Mallants, Dirk; Travis, Karl; Chapman, Neil; Brady, Patrick V.; Griffiths, Hefin (February 14, 2020). "The State of the Science and Technology in Deep Borehole Disposal of Nuclear Waste". Energies. 13 (4): 833. doi:10.3390/en13040833.
  132. ^ "A Nuclear Power Renaissance?". Scientific American. 2008-04-28. Archived from the original on 2017-05-25. Retrieved 2008-05-15.
  133. ^ von Hippel, Frank N. (April 2008). "Nuclear Fuel Recycling: More Trouble Than It's Worth". Scientific American. Archived from the original on 2008-11-19. Retrieved 2008-05-15.
  134. ^ "Licence granted for Finnish used fuel repository". World Nuclear News. 2015-11-12. Archived from the original on 2015-11-24. Retrieved 2018-11-18.
  135. ^ Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J. (May 2014). "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles". Energy. 69: 199–211. Bibcode:2014Ene....69..199P. doi:10.1016/j.energy.2014.02.069.
  136. ^ a b c R. Stephen Berry and George S. Tolley, Nuclear Fuel Reprocessing Archived 2017-05-25 at the Wayback Machine, The University of Chicago, 2013.
  137. ^ Fairley, Peter (February 2007). "Nuclear Wasteland". IEEE Spectrum. Archived from the original on 2020-08-05. Retrieved 2020-02-02.
  138. ^ a b "Processing of Used Nuclear Fuel". World Nuclear Association. 2018. Archived from the original on 2018-12-25. Retrieved 2018-12-26.
  139. ^ Campbell, D. O.; Gift, E. H. (1978). Proliferation-resistant nuclear fuel cycles. [Spiking of plutonium with /sup 238/Pu] (Technical report). Oak Ridge National Laboratory. doi:10.2172/6743129. OSTI 6743129 – via Office of Scientific and Technical Information.
  140. ^ Fedorov, M. I.; Dyachenko, A. I.; Balagurov, N. A.; Artisyuk, V. V. (2015). "Formation of proliferation-resistant nuclear fuel supplies based on reprocessed uranium for Russian nuclear technologies recipient countries". Nuclear Energy and Technology. 1 (2): 111–116. Bibcode:2015NEneT...1..111F. doi:10.1016/j.nucet.2015.11.023.
  141. ^ Lloyd, Cody; Goddard, Braden (2018). "Proliferation resistant plutonium: An updated analysis". Nuclear Engineering and Design. 330: 297–302. Bibcode:2018NuEnD.330..297L. doi:10.1016/j.nucengdes.2018.02.012.
  142. ^ a b Feiveson, Harold; et al. (2011). "Managing nuclear spent fuel: Policy lessons from a 10-country study". Bulletin of the Atomic Scientists. Archived from the original on 2012-04-26. Retrieved 2016-07-18.
  143. ^ Kok, Kenneth D. (2010). Nuclear Engineering Handbook. CRC Press. p. 332. ISBN 978-1-4200-5391-3.
  144. ^ Jarry, Emmanuel (6 May 2015). "Crisis for Areva's plant as clients shun nuclear". Moneyweb. Reuters. Archived from the original on 23 July 2015. Retrieved 6 May 2015.
  145. ^ David, S. (2005). "Future Scenarios for Fission Based Reactors". Nuclear Physics A. 751: 429–441. Bibcode:2005NuPhA.751..429D. doi:10.1016/j.nuclphysa.2005.02.014.
  146. ^ Brundtland, Gro Harlem (20 March 1987). "Chapter 7: Energy: Choices for Environment and Development". Our Common Future: Report of the World Commission on Environment and Development. Oslo. Archived from the original on 21 January 2013. Retrieved 27 March 2013. Today's primary sources of energy are mainly non-renewable: natural gas, oil, coal, peat, and conventional nuclear power. There are also renewable sources, including wood, plants, dung, falling water, geothermal sources, solar, tidal, wind, and wave energy, as well as human and animal muscle-power. Nuclear reactors that produce their own fuel ('breeders') and eventually fusion reactors are also in this category
  147. ^ John McCarthy (2006). "Facts From Cohen and Others". Progress and its Sustainability. Stanford. Archived from the original on 2007-04-10. Retrieved 2006-11-09. Citing: Cohen, Bernard L. (January 1983). "Breeder reactors: A renewable energy source". American Journal of Physics. 51 (1): 75–76. Bibcode:1983AmJPh..51...75C. doi:10.1119/1.13440. S2CID 119587950.
  148. ^ "Advanced Nuclear Power Reactors". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2010-06-15. Retrieved 2006-11-09.
  149. ^ "Synergy between Fast Reactors and Thermal Breeders for Safe, Clean, and Sustainable Nuclear Power" (PDF). World Energy Council. Archived from the original (PDF) on 2011-01-10. Retrieved 2013-02-03.
  150. ^ Kessler, Rebecca. "Are Fast-Breeder Reactors A Nuclear Power Panacea? by Fred Pearce: Yale Environment 360". E360.yale.edu. Archived from the original on 2013-06-05. Retrieved 2013-06-14.
  151. ^ a b "Fast Neutron Reactors | FBR – World Nuclear Association". www.world-nuclear.org. Archived from the original on 23 December 2017. Retrieved 7 October 2018.
  152. ^ "Prototype fast breeder reactor to be commissioned in two months: IGCAR director". The Times of India. Archived from the original on 15 September 2018. Retrieved 28 August 2018.
  153. ^ "India's breeder reactor to be commissioned in 2013". Hindustan Times. Archived from the original on 2013-04-26. Retrieved 2013-06-14.
  154. ^ a b c "Thorium". Information and Issue Briefs. World Nuclear Association. 2006. Archived from the original on 2013-02-16. Retrieved 2006-11-09.
  155. ^ Invernizzi, Diletta Colette; Locatelli, Giorgio; Velenturf, Anne; Love, Peter ED.; Purnell, Phil; Brookes, Naomi J. (2020-09-01). "Developing policies for the end-of-life of energy infrastructure: Coming to terms with the challenges of decommissioning". Energy Policy. 144: 111677. Bibcode:2020EnPol.14411677I. doi:10.1016/j.enpol.2020.111677. hdl:11311/1204791. ISSN 0301-4215.
  156. ^ "Decommissioning of nuclear installations". www.iaea.org. 17 October 2016. Archived from the original on 21 April 2021. Retrieved 19 April 2021.
  157. ^ Invernizzi, Diletta Colette; Locatelli, Giorgio; Brookes, Naomi J. (2017-08-01). "How benchmarking can support the selection, planning and delivery of nuclear decommissioning projects" (PDF). Progress in Nuclear Energy. 99: 155–164. Bibcode:2017PNuE...99..155I. doi:10.1016/j.pnucene.2017.05.002. Archived (PDF) from the original on 2021-06-14. Retrieved 2021-04-19.
  158. ^ "Backgrounder on Decommissioning Nuclear Power Plants". United States Nuclear Regulatory Commission. Archived from the original on 3 May 2021. Retrieved 27 August 2021. Before a nuclear power plant begins operations, the licensee must establish or obtain a financial mechanism – such as a trust fund or a guarantee from its parent company – to ensure there will be sufficient money to pay for the ultimate decommissioning of the facility
  159. ^ "Share of electricity production from nuclear". Our World in Data. Retrieved 15 August 2023.
  160. ^ "Yearly electricity data". ember-climate.org. 6 Dec 2023. Retrieved 23 Dec 2023.
  161. ^ "Steep decline in nuclear power would threaten energy security and climate goals". International Energy Agency. 2019-05-28. Archived from the original on 2019-10-12. Retrieved 2019-07-08.
  162. ^ Armaroli, Nicola; Balzani, Vincenzo (2011). "Towards an electricity-powered world". Energy and Environmental Science. 4 (9): 3193–3222 [3200]. doi:10.1039/c1ee01249e. S2CID 1752800.
  163. ^ "REN 21. Renewables 2014 Global Status Report" (PDF). Archived (PDF) from the original on 2015-09-24. Retrieved 2015-08-10.
  164. ^ Butler, Nick (3 September 2018). "The challenge for nuclear is to recover its competitive edge". Financial Times. Archived from the original on 2022-12-10. Retrieved 9 September 2018.
  165. ^ "World Nuclear Power Reactors & Uranium Requirements". World Nuclear Association. Archived from the original on 2012-01-14. Retrieved 2022-04-18.
  166. ^ "What's the Lifespan for a Nuclear Reactor? Much Longer Than You Might Think". Energy.gov. Archived from the original on 2020-06-09. Retrieved 2020-06-09.
  167. ^ "Under Construction Reactors". International Atomic Energy Agency. Archived from the original on 2018-11-22. Retrieved 2019-12-15.
  168. ^ EU energy in figures. European Commission. 2020. p. 94. ISBN 978-92-76-19443-9. Archived from the original on 2021-01-07. Retrieved 2021-01-09.
  169. ^ Apt, Jay; Keith, David W.; Morgan, M. Granger (January 1, 1970). "Promoting Low-Carbon Electricity Production". Archived from the original on September 27, 2013.
  170. ^ "The European Strategic Energy Technology Plan SET-Plan Towards a low-carbon future 2010" (PDF). p. 6. Archived from the original (PDF) on 2014-02-11. Retrieved 2015-08-17.
  171. ^ "What is Nuclear Power Plant – How Nuclear Power Plants work | What is Nuclear Power Reactor – Types of Nuclear Power Reactors". EngineersGarage. Archived from the original on 2013-10-04. Retrieved 2013-06-14.
  172. ^ Ragheb, Magdi. "Naval Nuclear Propulsion" (PDF). Archived from the original (PDF) on 2015-02-26. Retrieved 2015-06-04. As of 2001, about 235 naval reactors had been built.
  173. ^ "Nuclear Icebreaker Lenin". Bellona. 2003-06-20. Archived from the original on October 15, 2007. Retrieved 2007-11-01.
  174. ^ Non-electric Applications of Nuclear Power: Seawater Desalination, Hydrogen Production and other Industrial Applications. International Atomic Energy Agency. 2007. ISBN 978-92-0-108808-6. Archived from the original on 27 March 2019. Retrieved 21 August 2018.
  175. ^ What's behind the red-hot uranium boom. Archived 2021-11-29 at the Wayback Machine, CNN, 19 April 2007.
  176. ^ "Synapse Energy |". www.synapse-energy.com. Archived from the original on 2021-01-15. Retrieved 2020-12-29.
  177. ^ Lovering, Jessica R.; Yip, Arthur; Nordhaus, Ted (2016). "Historical construction costs of global nuclear power reactors". Energy Policy. 91: 371–382. Bibcode:2016EnPol..91..371L. doi:10.1016/j.enpol.2016.01.011.
  178. ^ Crooks, Ed (2010-09-12). "Nuclear: New dawn now seems limited to the east". Financial Times. London, England. Archived from the original on 2022-12-10. Retrieved 2010-09-12.
  179. ^ The Future of Nuclear Power. Massachusetts Institute of Technology. 2003. ISBN 978-0-615-12420-9. Archived from the original on 2017-05-18. Retrieved 2006-11-10.
  180. ^ a b c "Projected Costs of Generating Electricity 2020". International Energy Agency & OECD Nuclear Energy Agency. 9 December 2020. Archived from the original on 2 April 2022. Retrieved 12 December 2020.
  181. ^ Update of the MIT 2003 Future of Nuclear Power (PDF). Massachusetts Institute of Technology. 2009. Archived (PDF) from the original on 3 February 2023. Retrieved 21 August 2018.
  182. ^ "Splitting the cost". The Economist. 12 November 2009. Archived from the original on 21 August 2018. Retrieved 21 August 2018.
  183. ^ "Nuclear power's reliability is dropping as extreme weather increases". Ars Technica. 24 July 2021. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  184. ^ Ahmad, Ali (July 2021). "Increase in frequency of nuclear power outages due to changing climate". Nature Energy. 6 (7): 755–762. Bibcode:2021NatEn...6..755A. doi:10.1038/s41560-021-00849-y. ISSN 2058-7546. S2CID 237818619.
  185. ^ "The Canadian Nuclear FAQ – Section A: CANDU Technology". Archived from the original on 2013-11-01. Retrieved 2019-08-05.
  186. ^ A. Lokhov. "Load-following with nuclear power plants" (PDF). Archived (PDF) from the original on 2016-02-22. Retrieved 2016-03-12.
  187. ^ "Indian reactor breaks operating record". World Nuclear News. 25 October 2018. Archived from the original on 4 August 2019. Retrieved 4 August 2019.
  188. ^ "Indian-Designed Nuclear Reactor Breaks Record for Continuous Operation". POWER Magazine. 1 February 2019. Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  189. ^ a b McCurry, Justin (30 January 2017). "Possible nuclear fuel find raises hopes of Fukushima plant breakthrough". The Guardian. Archived from the original on 2 February 2017. Retrieved 3 February 2017.
  190. ^ Gardner, Timothy (13 September 2021). "Illinois approves $700 million in subsidies to Exelon, prevents nuclear plant closures". Reuters. Archived from the original on 3 November 2021. Retrieved 28 November 2021.
  191. ^ a b "Europe faces €253bn nuclear waste bill". The Guardian. 4 April 2016. Retrieved 24 November 2021.
  192. ^ Wade, Will (14 June 2019). "Americans are paying more than ever to store deadly nuclear waste". Los Angeles Times. Archived from the original on 28 November 2021. Retrieved 28 November 2021.
  193. ^ "The World Nuclear Waste Report 2019" (PDF). Archived (PDF) from the original on 29 November 2021. Retrieved 28 November 2021.
  194. ^ Energy Subsidies Archived 2021-12-04 at the Wayback Machine, World Nuclear Association, 2018.
  195. ^ a b c "Nuclear Reactors for Space – World Nuclear Association". world-nuclear.org. Archived from the original on 17 April 2021. Retrieved 17 April 2021.
  196. ^ Patel, Prachi. "Nuclear-Powered Rockets Get a Second Look for Travel to Mars". IEEE Spectrum. Archived from the original on 10 April 2021. Retrieved 17 April 2021.
  197. ^ a b Deitrich, L. W. "Basic principles of nuclear safety" (PDF). International Atomic Energy Agency. Archived (PDF) from the original on 2018-11-19. Retrieved 2018-11-18.
  198. ^ "Emergency core cooling systems (ECCS)". United States Nuclear Regulatory Commission. 2018-07-06. Archived from the original on 2021-04-29. Retrieved 2018-12-10.
  199. ^ "What are the safest and cleanest sources of energy?". Our World in Data. Archived from the original on 2020-11-29. Retrieved 2023-11-15.
  200. ^ a b "Dr. MacKay Sustainable Energy without the hot air". Data from studies by the Paul Scherrer Institute including non EU data. p. 168. Archived from the original on 2012-09-02. Retrieved 2012-09-15.
  201. ^ Nicholson, Brendan (2006-06-05). "Nuclear power 'cheaper, safer' than coal and gas". The Age. Melbourne. Archived from the original on 2008-02-08. Retrieved 2008-01-18.
  202. ^ a b Markandya, A.; Wilkinson, P. (2007). "Electricity generation and health". Lancet. 370 (9591): 979–990. doi:10.1016/S0140-6736(07)61253-7. PMID 17876910. S2CID 25504602. Nuclear power has lower electricity related health risks than Coal, Oil, & gas. ...the health burdens are appreciably smaller for generation from natural gas, and lower still for nuclear power. This study includes the latent or indirect fatalities, for example those caused by the inhalation of fossil fuel created particulate matter, smog induced cardiopulmonary events, black lung etc. in its comparison.
  203. ^ "Nuclear Power Prevents More Deaths Than It Causes | Chemical & Engineering News". Cen.acs.org. Archived from the original on 2014-03-01. Retrieved 2014-01-24.
  204. ^ a b c Kharecha, Pushker A.; Hansen, James E. (2013). "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power". Environmental Science & Technology. 47 (9): 4889–4895. Bibcode:2013EnST...47.4889K. doi:10.1021/es3051197. hdl:2060/20140017100. PMID 23495839.
  205. ^ Normile, Dennis (2012-07-27). "Is Nuclear Power Good for You?". Science. 337 (6093): 395. doi:10.1126/science.337.6093.395-b. Archived from the original on 2013-03-01.
  206. ^ Hasegawa, Arifumi; Tanigawa, Koichi; Ohtsuru, Akira; Yabe, Hirooki; Maeda, Masaharu; Shigemura, Jun; Ohira, Tetsuya; Tominaga, Takako; Akashi, Makoto; Hirohashi, Nobuyuki; Ishikawa, Tetsuo; Kamiya, Kenji; Shibuya, Kenji; Yamashita, Shunichi; Chhem, Rethy K (August 2015). "Health effects of radiation and other health problems in the aftermath of nuclear accidents, with an emphasis on Fukushima" (PDF). The Lancet. 386 (9992): 479–488. doi:10.1016/S0140-6736(15)61106-0. PMID 26251393. S2CID 19289052. Archived (PDF) from the original on 2021-08-28. Retrieved 2021-08-05.
  207. ^ Revkin, Andrew C. (2012-03-10). "Nuclear Risk and Fear, from Hiroshima to Fukushima". The New York Times. Archived from the original on 2015-09-05. Retrieved 2013-07-08.
  208. ^ von Hippel, Frank N. (September–October 2011). "The radiological and psychological consequences of the Fukushima Daiichi accident". Bulletin of the Atomic Scientists. 67 (5): 27–36. Bibcode:2011BuAtS..67e..27V. doi:10.1177/0096340211421588. S2CID 218769799. Archived from the original on 2012-01-13. Retrieved 2013-07-08.
  209. ^ Yamazaki, Tomoko & Ozasa, Shunichi (2011-06-27). "Fukushima Retiree Leads Anti-Nuclear Shareholders at Tepco Annual Meeting". Bloomberg.
  210. ^ Saito, Mari (2011-05-07). "Japan anti-nuclear protesters rally after PM call to close plant". Reuters.
  211. ^ IDO-19313: Additional Analysis of the SL-1 Excursion Archived 2011-09-27 at the Wayback Machine Final Report of Progress July through October 1962, November 21, 1962, Flight Propulsion Laboratory Department, General Electric Company, Idaho Falls, Idaho, U.S. Atomic Energy Commission, Division of Technical Information.
  212. ^ McKeown, William (2003). Idaho Falls: The Untold Story of America's First Nuclear Accident. Toronto, Canada: ECW Press. ISBN 978-1-55022-562-4.
  213. ^ Johnston, Robert (2007-09-23). "Deadliest radiation accidents and other events causing radiation casualties". Database of Radiological Incidents and Related Events. Archived from the original on 2007-10-23. Retrieved 2011-03-14.
  214. ^ Schiffman, Richard (2013-03-12). "Two years on, America hasn't learned lessons of Fukushima nuclear disaster". The Guardian. London, England. Archived from the original on 2017-02-02. Retrieved 2016-12-12.
  215. ^ Fackler, Martin (2011-06-01). "Report Finds Japan Underestimated Tsunami Danger". The New York Times. Archived from the original on 2017-02-05. Retrieved 2017-02-25.
  216. ^ "The Worst Nuclear Disasters". Time.com. 2009-03-25. Archived from the original on March 28, 2009. Retrieved 2013-06-22.
  217. ^ Sovacool, B.K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. Bibcode:2008EnPol..36.1802S. doi:10.1016/j.enpol.2008.01.040.
  218. ^ Burgherr, Peter; Hirschberg, Stefan (10 October 2008). "A Comparative Analysis of Accident Risks in Fossil, Hydro, and Nuclear Energy Chains". Human and Ecological Risk Assessment. 14 (5): 947–973. Bibcode:2008HERA...14..947B. doi:10.1080/10807030802387556. S2CID 110522982.
  219. ^ "Chernobyl at 25th anniversary – Frequently Asked Questions" (PDF). World Health Organisation. 23 April 2011. Archived (PDF) from the original on 17 April 2012. Retrieved 14 April 2012.
  220. ^ "Assessing the Chernobyl Consequences". International Atomic Energy Agency. Archived from the original on 30 August 2013.
  221. ^ "UNSCEAR 2008 Report to the General Assembly, Annex D" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2011-08-04. Retrieved 2018-12-15.
  222. ^ "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2019-01-05. Retrieved 2012-05-17.
  223. ^ "Publications: Vienna Convention on Civil Liability for Nuclear Damage". International Atomic Energy Agency. 27 August 2014. Archived from the original on 3 March 2016. Retrieved 8 September 2016.
  224. ^ "Nuclear Power's Role in Generating Electricity" (PDF). Congressional Budget Office. May 2008. Archived (PDF) from the original on 2014-11-29. Retrieved 2016-09-08.
  225. ^ "Availability of Dam Insurance" (PDF). 1999. Archived from the original (PDF) on 2016-01-08. Retrieved 2016-09-08.
  226. ^ a b Ferguson, Charles D. & Settle, Frank A. (2012). "The Future of Nuclear Power in the United States" (PDF). Federation of American Scientists. Archived (PDF) from the original on 2017-05-25. Retrieved 2016-07-07.
  227. ^ "Nuclear Security – Five Years After 9/11". U.S. Nuclear Regulatory Commission. Archived from the original on 15 July 2007. Retrieved 23 July 2007.
  228. ^ Bunn, Matthew & Sagan, Scott (2014). "A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes". The American Academy of Arts & Sciences.
  229. ^ McFadden, Robert D. (1971-11-14). "Damage Is Put at Millions In Blaze at Con Ed Plant". The New York Times. ISSN 0362-4331. Archived from the original on 2020-01-15. Retrieved 2020-01-15.
  230. ^ Knight, Michael (1972-01-30). "Mechanic Seized in Indian Pt. Fire". The New York Times. ISSN 0362-4331. Archived from the original on 2020-01-15. Retrieved 2020-01-15.
  231. ^ a b c "The Bulletin of atomic scientists support the megatons to megawatts program". 2008-10-23. Archived from the original on 2011-07-08. Retrieved 2012-09-15.
  232. ^ "home". usec.com. 2013-05-24. Archived from the original on 2013-06-21. Retrieved 2013-06-14.
  233. ^ a b Miller, Steven E. & Sagan, Scott D. (Fall 2009). "Nuclear power without nuclear proliferation?". Dædalus. 138 (4): 7. doi:10.1162/daed.2009.138.4.7. S2CID 57568427.
  234. ^ "Nuclear Power in the World Today". World-nuclear.org. Archived from the original on 2013-02-12. Retrieved 2013-06-22.
  235. ^ "Uranium Enrichment". www.world-nuclear.org. World Nuclear Association. Archived from the original on 2013-07-01. Retrieved 2015-08-12.
  236. ^ Sovacool, Benjamin K. (2011). Contesting the Future of Nuclear Power: A Critical Global Assessment of Atomic Energy. Hackensack, New Jersey: World Scientific. p. 190. ISBN 978-981-4322-75-1.
  237. ^ "Megatons to Megawatts Eliminates Equivalent of 10,000 Nuclear Warheads". Usec.com. 2005-09-21. Archived from the original on 2013-04-26. Retrieved 2013-06-22.
  238. ^ a b Stover, Dawn (2014-02-21). "More megatons to megawatts". The Bulletin. Archived from the original on 2017-05-04. Retrieved 2015-08-11.
  239. ^ Corley, Anne-Marie. "Against Long Odds, MIT's Thomas Neff Hatched a Plan to Turn Russian Warheads into American Electricity". Archived from the original on 2015-09-04. Retrieved 2015-08-11.
  240. ^ "Future Unclear For 'Megatons To Megawatts' Program". All Things Considered. United States: National Public Radio. 2009-12-05. Archived from the original on 2015-01-12. Retrieved 2013-06-22.
  241. ^ "Life Cycle Assessment of Electricity Generation Options" (PDF). Archived (PDF) from the original on 10 May 2022. Retrieved 24 November 2021.
  242. ^ "Nuclear energy and water use in the columbia river basin" (PDF). Archived (PDF) from the original on 24 November 2021. Retrieved 24 November 2021.
  243. ^ a b c Ramana, M. V.; Ahmad, Ali (1 June 2016). "Wishful thinking and real problems: Small modular reactors, planning constraints, and nuclear power in Jordan". Energy Policy. 93: 236–245. Bibcode:2016EnPol..93..236R. doi:10.1016/j.enpol.2016.03.012. ISSN 0301-4215.
  244. ^ a b Kyne, Dean; Bolin, Bob (July 2016). "Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination". International Journal of Environmental Research and Public Health. 13 (7): 700. doi:10.3390/ijerph13070700. PMC 4962241. PMID 27420080.
  245. ^ a b "Is nuclear power the answer to climate change?". World Information Service on Energy. Archived from the original on 22 April 2020. Retrieved 1 February 2020.
  246. ^ a b c "World Nuclear Waste Report". Archived from the original on 15 June 2023. Retrieved 25 October 2021.
  247. ^ a b Smith, Brice. "Insurmountable Risks: The Dangers of Using Nuclear Power to Combat Global Climate Change – Institute for Energy and Environmental Research". Archived from the original on 30 May 2023. Retrieved 24 November 2021.
  248. ^ a b Prăvălie, Remus; Bandoc, Georgeta (1 March 2018). "Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications". Journal of Environmental Management. 209: 81–92. Bibcode:2018JEnvM.209...81P. doi:10.1016/j.jenvman.2017.12.043. ISSN 1095-8630. PMID 29287177.
  249. ^ Ahearne, John F. (2000). "Intergenerational Issues Regarding Nuclear Power, Nuclear Waste, and Nuclear Weapons". Risk Analysis. 20 (6): 763–770. Bibcode:2000RiskA..20..763A. doi:10.1111/0272-4332.206070. ISSN 1539-6924. PMID 11314726. S2CID 23395683.
  250. ^ a b "CoP 26 Statement | Don't nuke the Climate!". Archived from the original on 25 November 2021. Retrieved 24 November 2021.
  251. ^ a b c "IPCC Working Group III – Mitigation of Climate Change, Annex III: Technology–specific cost and performance parameters" (PDF). IPCC. 2014. table A.III.2. Archived (PDF) from the original on 2018-12-14. Retrieved 2019-01-19.
  252. ^ National Renewable Energy Laboratory (NREL) (2013-01-24). "Nuclear Power Results – Life Cycle Assessment Harmonization". nrel.gov. Archived from the original on 2013-07-02. Retrieved 2013-06-22. Collectively, life cycle assessment literature shows that nuclear power is similar to other renewable and much lower than fossil fuel in total life cycle GHG emissions.
  253. ^ "Life Cycle Assessment Harmonization Results and Findings. Figure 1". NREL. Archived from the original on 2017-05-06. Retrieved 2016-09-08.
  254. ^ a b "IPCC Working Group III – Mitigation of Climate Change, Annex II Metrics & Methodology" (PDF). IPCC. 2014. section A.II.9.3. Archived (PDF) from the original on 2021-04-23. Retrieved 2019-01-19.
  255. ^ "World nuclear performance report 2021". World Nuclear Association. Archived from the original on 2022-04-03. Retrieved 2022-04-19.
  256. ^ a b "UNSCEAR 2008 Report to the General Assembly" (PDF). United Nations Scientific Committee on the Effects of Atomic Radiation. 2008. Archived (PDF) from the original on 2019-01-05. Retrieved 2012-05-17.
  257. ^ "National Safety Council". Nsc.org. Archived from the original on 12 October 2009. Retrieved 18 June 2013.
  258. ^ Roser, Max (1 December 2020). "Why did renewables become so cheap so fast?". Our World in Data.
  259. ^ MacKenzie, James J. (December 1977). "Review of The Nuclear Power Controversy by Arthur W. Murphy". The Quarterly Review of Biology. 52 (4): 467–468. doi:10.1086/410301. JSTOR 2823429.
  260. ^ "U.S. Energy Legislation May Be 'Renaissance' for Nuclear Power". Bloomberg. Archived from the original on 2009-06-26. Retrieved 2017-03-10..
  261. ^ Patterson, Thom (2013-11-03). "Climate change warriors: It's time to go nuclear". CNN. Archived from the original on 2013-11-04. Retrieved 2013-11-05.
  262. ^ "Renewable Energy and Electricity". World Nuclear Association. June 2010. Archived from the original on 2010-06-19. Retrieved 2010-07-04.
  263. ^ "Climate". Archived from the original on 18 February 2022. Retrieved 18 February 2022.
  264. ^ "Radioactive Waste Management". February 2022. Archived from the original on 2016-02-01. Retrieved 2022-02-18.
  265. ^ Hubbert, M. King (June 1956). "Nuclear Energy and the Fossil Fuels 'Drilling and Production Practice'" (PDF). API. p. 36. Archived from the original (PDF) on 2008-05-27. Retrieved 2008-04-18.
  266. ^ Bennett, James E.; Tamura-Wicks, Helen; Parks, Robbie M.; Burnett, Richard T.; Pope, C. Arden; Bechle, Matthew J.; Marshall, Julian D.; Danaei, Goodarz; Ezzati, Majid (23 July 2019). "Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis". PLOS Medicine. 16 (7): e1002856. doi:10.1371/journal.pmed.1002856. PMC 6650052. PMID 31335874.
  267. ^ "Nuclear Power and Energy Independence". 22 October 2008. Archived from the original on 18 February 2022. Retrieved 18 February 2022.
  268. ^ "Climate". Archived from the original on 18 February 2022. Retrieved 18 February 2022.
  269. ^ Weart, Spencer R. (2012). The Rise of Nuclear Fear. Harvard University Press.
  270. ^ Sturgis, Sue. "Investigation: Revelations about Three Mile Island disaster raise doubts over nuclear plant safety". Institute for Southern Studies. Archived from the original on 2010-04-18. Retrieved 2010-08-24.
  271. ^ "Energy Revolution: A Sustainable World Energy Outlook" (PDF). Greenpeace International and European Renewable Energy Council. January 2007. p. 7. Archived from the original (PDF) on 2009-08-06. Retrieved 2010-02-28.
  272. ^ Giugni, Marco (2004). Social protest and policy change: ecology, antinuclear, and peace movements in comparative perspective. Lanham: Rowman & Littlefield. p. 44. ISBN 978-0-7425-1826-1. Archived from the original on 2023-12-24. Retrieved 2015-10-18.
  273. ^ Sovacool, Benjamin K. (2008). "The costs of failure: A preliminary assessment of major energy accidents, 1907–2007". Energy Policy. 36 (5): 1802–1820. Bibcode:2008EnPol..36.1802S. doi:10.1016/j.enpol.2008.01.040.
  274. ^ Cooke, Stephanie (2009). In Mortal Hands: A Cautionary History of the Nuclear Age. New York: Bloomsbury. p. 280. ISBN 978-1-59691-617-3.
  275. ^ Rodriguez, C.; Baxter, A.; McEachern, D.; Fikani, M.; Venneri, F. (1 June 2003). "Deep-Burn: making nuclear waste transmutation practical". Nuclear Engineering and Design. 222 (2): 299–317. Bibcode:2003NuEnD.222..299R. doi:10.1016/S0029-5493(03)00034-7. ISSN 0029-5493.
  276. ^ Geissmann, Thomas; Ponta, Oriana (1 April 2017). "A probabilistic approach to the computation of the levelized cost of electricity". Energy. 124: 372–381. Bibcode:2017Ene...124..372G. doi:10.1016/j.energy.2017.02.078. ISSN 0360-5442.
  277. ^ a b c Ramana, M. V.; Mian, Zia (1 June 2014). "One size doesn't fit all: Social priorities and technical conflicts for small modular reactors". Energy Research & Social Science. 2: 115–124. Bibcode:2014ERSS....2..115R. doi:10.1016/j.erss.2014.04.015. ISSN 2214-6296.
  278. ^ Meckling, Jonas (1 March 2019). "Governing renewables: Policy feedback in a global energy transition". Environment and Planning C: Politics and Space. 37 (2): 317–338. doi:10.1177/2399654418777765. ISSN 2399-6544. S2CID 169975439.
  279. ^ Decommissioning a Nuclear Power Plant Archived 2007-07-14 at the Wayback Machine, 2007-4-20, U.S. Nuclear Regulatory Commission Archived 2020-04-06 at the Wayback Machine, Retrieved 2007-6-12
  280. ^ "Decommissioning at Chernobyl". World-nuclear-news.org. 2007-04-26. Archived from the original on 2010-08-23. Retrieved 2015-11-01.
  281. ^ Wealer, B.; Bauer, S.; Hirschhausen, C. v.; Kemfert, C.; Göke, L. (1 June 2021). "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation". Renewable and Sustainable Energy Reviews. 143: 110836. Bibcode:2021RSERv.14310836W. doi:10.1016/j.rser.2021.110836. ISSN 1364-0321. S2CID 233564525. We conclude that our numerical exercise confirms the literature review, i.e. the economics of nuclear power plants are not favorable to future investments, even though additional costs (decommissioning, long-term storage) and the social costs of accidents are not even considered.
  282. ^ "New nuclear, LTO among cheapest low carbon options, report shows". Reuters Events. Archived from the original on 2022-05-19. Retrieved 2022-04-19.
  283. ^ "Projected Costs of Generating Electricity 2020 – Analysis". IEA. 9 December 2020. Archived from the original on 2022-04-02. Retrieved 2020-12-12.
  284. ^ "Empirically grounded technology forecasts and the energy transition" (PDF). University of Oxford. Archived from the original (PDF) on 2021-10-18.
  285. ^ a b "Nuclear energy too slow, too expensive to save climate: report". Reuters. 24 September 2019. Archived from the original on 16 March 2021. Retrieved 24 November 2021.
  286. ^ Farmer, J. Doyne; Way, Rupert; Mealy, Penny (December 2020). "Estimating the costs of energy transition scenarios using probabilistic forecasting methods" (PDF). University of Oxford. Archived from the original (PDF) on 2021-10-18.
  287. ^ a b c "Scientists pour cold water on Bill Gates' nuclear plans | DW | 08.11.2021". Deutsche Welle (www.dw.com). Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  288. ^ a b "Scientists Warn Experimental Nuclear Plant Backed by Bill Gates Is 'Outright Dangerous'". Common Dreams. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  289. ^ Szyszczak, Erika (1 July 2015). "State aid for energy infrastructure and nuclear power projects". ERA Forum. 16 (1): 25–38. doi:10.1007/s12027-015-0371-6. ISSN 1863-9038. S2CID 154617833.
  290. ^ "The Future of Nuclear Energy in a Carbon-Constrained World" (PDF). Massachusetts Institute of Technology. 2018. Archived (PDF) from the original on 2019-03-27. Retrieved 2019-01-05.
  291. ^ Crespo, Diego (25 July 2019). "STE can replace coal, nuclear and early gas as demonstrated in an hourly simulation over 4 years in the Spanish electricity mix". AIP Conference Proceedings. SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. 2126 (1): 130003. Bibcode:2019AIPC.2126m0003C. doi:10.1063/1.5117645. ISSN 0094-243X. S2CID 201317957.
  292. ^ Benasla, Mokhtar; Hess, Denis; Allaoui, Tayeb; Brahami, Mostefa; Denaï, Mouloud (1 April 2019). "The transition towards a sustainable energy system in Europe: What role can North Africa's solar resources play?". Energy Strategy Reviews. 24: 1–13. Bibcode:2019EneSR..24....1B. doi:10.1016/j.esr.2019.01.007. hdl:2299/21546. ISSN 2211-467X. S2CID 169342098.
  293. ^ Haller, Markus; Ludig, Sylvie; Bauer, Nico (1 August 2012). "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation". Energy Policy. 47: 282–290. Bibcode:2012EnPol..47..282H. doi:10.1016/j.enpol.2012.04.069. ISSN 0301-4215.
  294. ^ Arbabzadeh, Maryam; Sioshansi, Ramteen; Johnson, Jeremiah X.; Keoleian, Gregory A. (30 July 2019). "The role of energy storage in deep decarbonization of electricity production". Nature Communications. 10 (1): 3413. Bibcode:2019NatCo..10.3413A. doi:10.1038/s41467-019-11161-5. ISSN 2041-1723. PMC 6667472. PMID 31363084.
  295. ^ Liu, Jianing; Zhang, Weiqi; Zhou, Rui; Zhong, Jin (July 2012). "Impacts of distributed renewable energy generations on smart grid operation and dispatch". 2012 IEEE Power and Energy Society General Meeting. pp. 1–5. doi:10.1109/PESGM.2012.6344997. ISBN 978-1-4673-2729-9. S2CID 25157226.
  296. ^ Ayodele, T. R.; Ogunjuyigbe, A. S. O. (1 April 2015). "Mitigation of wind power intermittency: Storage technology approach". Renewable and Sustainable Energy Reviews. 44: 447–456. Bibcode:2015RSERv..44..447A. doi:10.1016/j.rser.2014.12.034. ISSN 1364-0321.
  297. ^ a b "The controversial future of nuclear power in the U.S." 4 May 2021. Archived from the original on May 4, 2021. Retrieved 25 November 2021.
  298. ^ a b Khatib, Hisham; Difiglio, Carmine (1 September 2016). "Economics of nuclear and renewables". Energy Policy. 96: 740–750. Bibcode:2016EnPol..96..740K. doi:10.1016/j.enpol.2016.04.013. ISSN 0301-4215.
  299. ^ Gerhards, Christoph; Weber, Urban; Klafka, Peter; Golla, Stefan; Hagedorn, Gregor; Baumann, Franz; Brendel, Heiko; Breyer, Christian; Clausen, Jens; Creutzig, Felix; Daub, Claus-Heinrich; Helgenberger, Sebastian; Hentschel, Karl-Martin; Hirschhausen, Christian von; Jordan, Ulrike; Kemfert, Claudia; Krause, Harald; Linow, Sven; Oei, Pao-Yu; Pehnt, Martin; Pfennig, Andreas; Präger, Fabian; Quaschning, Volker; Schneider, Jens; Spindler, Uli; Stelzer, Volker; Sterner, Michael; Wagener-Lohse, Georg; Weinsziehr, Theresa (22 April 2021). "Klimaverträgliche Energieversorgung für Deutschland – 16 Orientierungspunkte" [Climate-friendly energy supply for Germany—16 points of orientation]. Diskussionsbeiträge der Scientists for Future (in German). doi:10.5281/zenodo.4409334.
  300. ^ Lap, Tjerk; Benders, René; van der Hilst, Floor; Faaij, André (15 March 2020). "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?". Energy. 195: 116948. Bibcode:2020Ene...19516948L. doi:10.1016/j.energy.2020.116948. ISSN 0360-5442. S2CID 214336333.
  301. ^ Bustreo, C.; Giuliani, U.; Maggio, D.; Zollino, G. (1 September 2019). "How fusion power can contribute to a fully decarbonized European power mix after 2050". Fusion Engineering and Design. 146: 2189–2193. Bibcode:2019FusED.146.2189B. doi:10.1016/j.fusengdes.2019.03.150. ISSN 0920-3796. S2CID 133216477.
  302. ^ McPherson, Madeleine; Tahseen, Samiha (15 February 2018). "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure". Energy. 145: 856–870. Bibcode:2018Ene...145..856M. doi:10.1016/j.energy.2018.01.002. ISSN 0360-5442.
  303. ^ Kan, Xiaoming; Hedenus, Fredrik; Reichenberg, Lina (15 March 2020). "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden". Energy. 195: 117015. arXiv:2001.03679. Bibcode:2020Ene...19517015K. doi:10.1016/j.energy.2020.117015. ISSN 0360-5442. S2CID 213083726. There is little economic rationale for Sweden to reinvest in nuclear power. Abundant hydropower allows for a low-cost renewable power system without nuclear.
  304. ^ McPherson, Madeleine; Karney, Bryan (1 November 2017). "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model". Energy. 138: 185–196. Bibcode:2017Ene...138..185M. doi:10.1016/j.energy.2017.07.027. ISSN 0360-5442. Several flexibility options have been proposed to facilitate VRE integration, including interconnecting geographically dispersed resources, interconnecting different VRE types, building flexible and dispatchable generation assets, shifting flexible loads through demand response, shifting electricity generation through storage, curtailing excess generation, interconnections to the transport or heating energy sectors, and improving VRE forecasting methodologies (Delucchi and Jacobson 2011). Previous VRE integration studies have considered different combinations of balancing options, but few have considered all flexibility options simultaneously.
  305. ^ "Barriers to Renewable Energy Technologies | Union of Concerned Scientists". ucsusa.org. Archived from the original on 25 October 2021. Retrieved 25 October 2021. Renewable energy opponents love to highlight the variability of the sun and wind as a way of bolstering support for coal, gas, and nuclear plants, which can more easily operate on-demand or provide "baseload" (continuous) power. The argument is used to undermine large investments in renewable energy, presenting a rhetorical barrier to higher rates of wind and solar adoption. But reality is much more favorable for clean energy.
  306. ^ "Does Hitachi decision mean the end of UK's nuclear ambitions?". The Guardian. 17 January 2019.
  307. ^ Zappa, William; Junginger, Martin; van den Broek, Machteld (1 January 2019). "Is a 100% renewable European power system feasible by 2050?". Applied Energy. 233–234: 1027–1050. Bibcode:2019ApEn..233.1027Z. doi:10.1016/j.apenergy.2018.08.109. ISSN 0306-2619. S2CID 116855350.
  308. ^ Smith; et al. (15 January 2019). "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming". Nature. 10 (1): 101. Bibcode:2019NatCo..10..101S. doi:10.1038/s41467-018-07999-w. PMC 6333788. PMID 30647408.
  309. ^ Ross Koningstein; David Fork (18 November 2014). "What It Would Really Take to Reverse Climate Change". IEEE Spectrum. Archived from the original on 24 November 2016. Retrieved 13 January 2019.
  310. ^ Johnson, Nathanael (2018). "Agree to Agree Fights over renewable standards and nuclear power can be vicious. Here's a list of things that climate hawks agree on". Grist. Archived from the original on 2019-01-16. Retrieved 2019-01-16.
  311. ^ "What's missing from the 100% renewable energy debate". Utility Dive. Archived from the original on 2019-01-06. Retrieved 2019-01-05.
  312. ^ a b Deign, Jason (March 30, 2018). "Renewables or Nuclear? A New Front in the Academic War Over Decarbonization". gtm. Greentech Media. Archived from the original on December 15, 2018. Retrieved December 13, 2018.
  313. ^ "Turkey may benefit from nuclear power in its bid for clean energy". DailySabah. 6 July 2019. Archived from the original on 2019-07-14. Retrieved 2019-07-14.
  314. ^ "2019 Key World Energy Statistics" (PDF). IEA. 2019.[permanent dead link]
  315. ^ Harvey, Fiona (2011-05-09). "Renewable energy can power the world, says landmark IPCC study". The Guardian. London, England. Archived from the original on 2019-03-27. Retrieved 2016-12-12.
  316. ^ "Hydroelectric power water use". USGS. Archived from the original on 2018-11-09. Retrieved 2018-12-13.
  317. ^ Stover, Dawn (January 30, 2014). "Nuclear vs. renewables: Divided they fall". Bulletin of the Atomic Scientists. Archived from the original on March 27, 2019. Retrieved January 30, 2019.
  318. ^ Starfelt, Nils; Wikdahl, Carl-Erik. "Economic Analysis of Various Options of Electricity Generation – Taking into Account Health and Environmental Effects" (PDF). Archived from the original (PDF) on 2007-09-27. Retrieved 2012-09-08.
  319. ^ Biello, David (2009-01-28). "Spent Nuclear Fuel: A Trash Heap Deadly for 250,000 Years or a Renewable Energy Source?". Scientific American. Archived from the original on 2017-09-03. Retrieved 2014-01-24.
  320. ^ "Closing and Decommissioning Nuclear Power Plants" (PDF). United Nations Environment Programme. 2012-03-07. Archived from the original (PDF) on 2016-05-18. Retrieved 2013-01-04.
  321. ^ Ewing, Rodney C.; Whittleston, Robert A.; Yardley, Bruce W. D. (1 August 2016). "Geological Disposal of Nuclear Waste: a Primer" (PDF). Elements. 12 (4): 233–237. Bibcode:2016Eleme..12..233E. doi:10.2113/gselements.12.4.233. ISSN 1811-5209. Archived (PDF) from the original on 16 December 2021. Retrieved 1 December 2021.
  322. ^ Stothard, Michael (14 July 2016). "Nuclear waste: keep out for 100,000 years". Financial Times. Archived from the original on 2022-12-10. Retrieved 28 November 2021.
  323. ^ "High-Level Waste". NRC Web. Archived from the original on 27 November 2021. Retrieved 28 November 2021.
  324. ^ Grambow, Bernd (12 December 2008). "Mobile fission and activation products in nuclear waste disposal". Journal of Contaminant Hydrology. 102 (3): 180–186. Bibcode:2008JCHyd.102..180G. doi:10.1016/j.jconhyd.2008.10.006. ISSN 0169-7722. PMID 19008015.
  325. ^ a b "Kernkraft: 6 Fakten über unseren Atommüll und dessen Entsorgung". www.spektrum.de (in German). Archived from the original on 28 November 2021. Retrieved 28 November 2021.
  326. ^ Rosborg, B.; Werme, L. (30 September 2008). "The Swedish nuclear waste program and the long-term corrosion behaviour of copper". Journal of Nuclear Materials. 379 (1): 142–153. Bibcode:2008JNuM..379..142R. doi:10.1016/j.jnucmat.2008.06.025. ISSN 0022-3115.
  327. ^ Shrader-Frechette, Kristin (1 December 2005). "Mortgaging the future: Dumping ethics with nuclear waste". Science and Engineering Ethics. 11 (4): 518–520. doi:10.1007/s11948-005-0023-2. ISSN 1471-5546. PMID 16279752. S2CID 43721467.
  328. ^ Shrader-Frechette, Kristin (1 November 1991). "Ethical Dilemmas and Radioactive Waste: A Survey of the Issues". Environmental Ethics. 13 (4): 327–343. doi:10.5840/enviroethics199113438.
  329. ^ "Radioactive waste leaking at German storage site: report | DW | 16.04.2018". DW.COM. Deutsche Welle (www.dw.com). Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  330. ^ Libert, Marie; Schütz, Marta Kerber; Esnault, Loïc; Féron, Damien; Bildstein, Olivier (June 2014). "Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes". Bioelectrochemistry. 97: 162–168. doi:10.1016/j.bioelechem.2013.10.001. ISSN 1878-562X. PMID 24177136.
  331. ^ Butler, Declan (27 May 2014). "Nuclear-waste facility on high alert over risk of new explosions". Nature. doi:10.1038/nature.2014.15290. ISSN 1476-4687. S2CID 130354940.
  332. ^ a b "World Nuclear Industry Status Report 2021" (PDF). Archived (PDF) from the original on 7 December 2023. Retrieved 24 November 2021.
  333. ^ "Technical assessment of nuclear energy with respect to the 'do no significant harm' criteria of Regulation (EU) 2020/852 ('Taxonomy Regulation')" (PDF). European Commission Joint Research Centre. 2021. p. 8. Archived (PDF) from the original on 2021-04-26. Retrieved 2021-11-27.
  334. ^ "As nuclear waste piles up, scientists seek the best long-term storage solutions". cen.acs.org. Archived from the original on 28 November 2021. Retrieved 28 November 2021.
  335. ^ Qvist, Staffan A.; Brook, Barry W. (13 May 2015). "Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data". PLOS ONE. 10 (5): e0124074. Bibcode:2015PLoSO..1024074Q. doi:10.1371/journal.pone.0124074. PMC 4429979. PMID 25970621.
  336. ^ "Report: World can Rid Itself of Fossil Fuel Dependence in as little as 10 years". Discovery. Archived from the original on 2019-02-01. Retrieved 2019-01-31.
  337. ^ a b c Brook, Barry W. (2012). "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case". Energy Policy. 42: 4–8. Bibcode:2012EnPol..42....4B. doi:10.1016/j.enpol.2011.11.041.
  338. ^ a b Loftus, Peter J.; Cohen, Armond M.; Long, Jane C. S.; Jenkins, Jesse D. (January 2015). "A critical review of global decarbonization scenarios: what do they tell us about feasibility?" (PDF). WIREs Climate Change. 6 (1): 93–112. Bibcode:2015WIRCC...6...93L. doi:10.1002/wcc.324. S2CID 4835733. Archived from the original (PDF) on 2019-08-06. Retrieved 2019-12-01.
  339. ^ Neuman, Scott (4 November 2021). "Earth has 11 years to cut emissions to avoid dire climate scenarios, a report says". NPR. Archived from the original on 30 May 2022. Retrieved 9 November 2021.
  340. ^ Friedlingstein, Pierre; Jones, Matthew W.; et al. (4 November 2021). "Global Carbon Budget 2021" (PDF). Earth System Science Data Discussions: 1–191. doi:10.5194/essd-2021-386. S2CID 240490309. Archived from the original (PDF) on 24 November 2021. Retrieved 26 November 2021.
  341. ^ Tromans, Stephen (1 March 2019). "State support for nuclear new build". The Journal of World Energy Law & Business. 12 (1): 36–51. doi:10.1093/jwelb/jwy035.
  342. ^ "Nuclear power is too costly, too slow, so it's zero use to Australia's emissions plan". TheGuardian.com. 18 October 2021. Retrieved 24 November 2021.
  343. ^ "Renewables vs. Nuclear: 256-0". World Nuclear Industry Status Report. 12 October 2021. Archived from the original on 24 November 2021. Retrieved 24 November 2021.
  344. ^ "UK poised to confirm funding for mini nuclear reactors for carbon-free energy". The Guardian. 15 October 2021. Retrieved 24 November 2021. Small modular reactors were first developed in the 1950s for use in nuclear-powered submarines. Since then Rolls-Royce has designed reactors for seven classes of submarine and two separate land-based prototype reactors.
  345. ^ ""Advanced" Isn't Always Better | Union of Concerned Scientists". ucsusa.org. Archived from the original on 25 November 2021. Retrieved 25 November 2021.
  346. ^ "Small Modular Reactors – Was ist von den neuen Reaktorkonzepten zu erwarten?". BASE (in German). Archived from the original on 6 June 2022. Retrieved 24 November 2021.
  347. ^ Makhijani, Arjun; Ramana, M. V. (4 July 2021). "Can small modular reactors help mitigate climate change?". Bulletin of the Atomic Scientists. 77 (4): 207–214. Bibcode:2021BuAtS..77d.207M. doi:10.1080/00963402.2021.1941600. ISSN 0096-3402. S2CID 236163222.
  348. ^ "Can Sodium Save Nuclear Power?". Scientific American. Archived from the original on 29 July 2021. Retrieved 24 November 2021.
  349. ^ a b c "Beyond ITER". The ITER Project. Information Services, Princeton Plasma Physics Laboratory. Archived from the original on 2006-11-07. Retrieved 2011-02-05. – Projected fusion power timeline.
  350. ^ a b "A lightbulb moment for nuclear fusion?". The Guardian. 27 October 2019. Retrieved 25 November 2021.
  351. ^ a b Turrell, Arthur (28 August 2021). "The race to give nuclear fusion a role in the climate emergency". The Guardian. Retrieved 26 November 2021.
  352. ^ a b Entler, Slavomir; Horacek, Jan; Dlouhy, Tomas; Dostal, Vaclav (1 June 2018). "Approximation of the economy of fusion energy". Energy. 152: 489–497. Bibcode:2018Ene...152..489E. doi:10.1016/j.energy.2018.03.130. ISSN 0360-5442. S2CID 115968344.
  353. ^ a b Nam, Hoseok; Nam, Hyungseok; Konishi, Satoshi (2021). "Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system". International Journal of Energy Research. 45 (8): 11992–12012. Bibcode:2021IJER...4511992N. doi:10.1002/er.5994. ISSN 1099-114X. S2CID 228937388.
  354. ^ a b "Land Needs for Wind, Solar Dwarf Nuclear Plant's Footprint". nei.org. NEI. July 9, 2015. Archived from the original on January 7, 2019. Retrieved January 6, 2019.
  355. ^ a b "THE ULTIMATE FAST FACTS GUIDE TO NUCLEAR ENERGY" (PDF). United States Department of Energy. 2019-01-01. Archived (PDF) from the original on 2022-06-07. Retrieved 2022-06-07.
  356. ^ "Quadrennial technology review concepts in integrated analysis" (PDF). September 2015. p. 388. Archived (PDF) from the original on 2020-03-07. Retrieved 2019-01-12.
  357. ^ "4th Generation Nuclear Power – OSS Foundation". Ossfoundation.us. Archived from the original on 2014-02-01. Retrieved 2014-01-24.
  358. ^ Gerstner, E. (2009). "Nuclear energy: The hybrid returns" (PDF). Nature. 460 (7251): 25–28. doi:10.1038/460025a. PMID 19571861. S2CID 205047403. Archived (PDF) from the original on 2013-12-20. Retrieved 2013-06-19.
  359. ^ Roth, J. Reece (1986). Introduction to fusion energy. Charlottesville, Va.: Ibis Pub. ISBN 978-0-935005-07-3.
  360. ^ Hamacher, T. & Bradshaw, A. M. (October 2001). "Fusion as a Future Power Source: Recent Achievements and Prospects" (PDF). World Energy Council. Archived from the original (PDF) on 2004-05-06. Retrieved 2010-09-16.
  361. ^ "A lightbulb moment for nuclear fusion?". The Guardian. 27 October 2019. Retrieved 25 November 2021.
  362. ^ Entler, Slavomir; Horacek, Jan; Dlouhy, Tomas; Dostal, Vaclav (1 June 2018). "Approximation of the economy of fusion energy". Energy. 152: 489–497. Bibcode:2018Ene...152..489E. doi:10.1016/j.energy.2018.03.130. ISSN 0360-5442. S2CID 115968344.
  363. ^ Nam, Hoseok; Nam, Hyungseok; Konishi, Satoshi (2021). "Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system". International Journal of Energy Research. 45 (8): 11992–12012. Bibcode:2021IJER...4511992N. doi:10.1002/er.5994. ISSN 1099-114X. S2CID 228937388.
  364. ^ Gibbs, W. Wayt (2013-12-30). "Triple-threat method sparks hope for fusion". Nature. 505 (7481): 9–10. Bibcode:2014Natur.505....9G. doi:10.1038/505009a. PMID 24380935.
  365. ^ "Overview of EFDA Activities". www.efda.org. European Fusion Development Agreement. Archived from the original on 2006-10-01. Retrieved 2006-11-11.
  366. ^ "US announces $46 million in funds to eight nuclear fusion companies" (Press release). 31 May 2023. Archived from the original on 9 June 2023. Retrieved 13 June 2023.

Further reading

External links