stringtranslate.com

Солнце

Солнце — звезда в центре Солнечной системы . Это массивная, почти идеальная сфера горячей плазмы , нагретая добела ядерными реакциями синтеза в ее ядре, излучающая энергию со своей поверхности в основном в виде видимого света и инфракрасного излучения с 10% в ультрафиолетовом диапазоне. Это, безусловно, самый важный источник энергии для жизни на Земле . Солнце было объектом почитания во многих культурах. Оно было центральным предметом астрономических исследований с древних времен .

Солнце вращается вокруг Галактического центра на расстоянии от 24 000 до 28 000 световых лет . С Земли этоастрономическая единица (1,496 × 10 8  км ) или около 8 световых минут . Его диаметр составляет около1,391,400 км (864 600 миль ), в 109 раз больше Земли. Его масса примерно в 330 000 раз больше массы Земли, что составляет около 99,86% от общей массы Солнечной системы. Примерно три четверти массы Солнца состоит из водорода (~73%); остальное в основном гелий (~25%), с гораздо меньшим количеством более тяжелых элементов, включая кислород , углерод , неон и железо .

Солнце — звезда главной последовательности класса G (G2V), неофициально называемая желтым карликом , хотя на самом деле ее свет белый. Оно образовалось примерно 4,6 миллиарда [a] лет назад в результате гравитационного коллапса материи в области большого молекулярного облака . Большая часть этой материи собралась в центре, тогда как остальная часть сплющилась в орбитальный диск, который стал Солнечной системой . Центральная масса стала настолько горячей и плотной, что в конечном итоге инициировала ядерный синтез в своем ядре . Каждую секунду ядро ​​Солнца сплавляет около 600 миллиардов килограммов (кг) водорода в гелий и преобразует 4 миллиарда кг материи в энергию .

Примерно через 4–7 миллиардов лет, когда термоядерный синтез водорода в ядре Солнца уменьшится до точки, в которой Солнце больше не будет находиться в гидростатическом равновесии , его ядро ​​претерпит заметное увеличение плотности и температуры, что приведет к расширению его внешних слоев, в конечном итоге превратив Солнце в красного гиганта . Этот процесс сделает Солнце достаточно большим, чтобы сделать Землю непригодной для жизни примерно через пять миллиардов лет от настоящего момента. Модели предполагают, что после фазы красного гиганта Солнце сбросит свои внешние слои и станет плотным типом остывающей звезды ( белым карликом ) и больше не будет вырабатывать энергию путем термоядерного синтеза, но оно все еще будет светиться и выделять тепло от своего предыдущего синтеза в течение, возможно, триллионов лет. После этого, как предполагается, оно станет сверхплотным черным карликом , выделяющим ничтожно мало энергии.

Этимология

Английское слово sun произошло от древнеанглийского sunne . Родственные слова появляются в других германских языках , включая западно-фризский sinne , голландский zon , нижненемецкий Sünn , стандартный немецкий Sonne , баварский Sunna , древнескандинавский sunna и готский sunnō . Все эти слова происходят от протогерманского * sunnōn . [17] [18] Это в конечном итоге связано со словом, обозначающим солнце, в других ветвях индоевропейской языковой семьи, хотя в большинстве случаев обнаруживается основа именительного падежа с буквой l , а не основа родительного падежа с буквой n , как, например, в латинском sōl , древнегреческом ἥλιος ( hēlios ), валлийском haul и чешском slunce , а также (с *l > r ) санскритском स्वर् ( svár ) и персидском خور ( xvar ). Действительно, основа l сохранилась также в протогерманском языке, как * sōwelan , которая дала начало готскому sauil (наряду с sunnō ) и древнескандинавскому прозаическому sól (наряду с поэтическим sunna ), а через него и словам, обозначающим солнце в современных скандинавских языках: шведскому и датскому sol , исландскому sól и т. д. [18]

Основные прилагательные для Солнца в английском языке — sunny для солнечного света и, в техническом контексте, solar ( / ˈ s l ər / ), [3] от латинского sol [19] — последнее встречается в таких терминах, как солнечные сутки , солнечное затмение и Солнечная система . От греческого helios происходит редкое прилагательное heliac ( / ˈ h l i æ k / ). [20] В английском языке греческие и латинские слова встречаются в поэзии как олицетворения Солнца, Helios ( / ˈ h l i ə s / ) и Sol ( / ˈ s ɒ l / ), [2] [1] в то время как в научной фантастике Sol может использоваться, чтобы отличить Солнце от других звезд. Термин sol с маленькой буквы s используется планетарными астрономами для продолжительности солнечных суток на другой планете, такой как Марс . [21]

Английское название дня недели Sunday происходит от древнеанглийского Sunnandæg «день солнца», германской интерпретации латинского выражения diēs sōlis , которое в свою очередь является переводом древнегреческого ἡμέρα ἡλίου ( hēmera hēliou ) «день солнца». [22] Астрономический символ Солнца — круг с точкой в ​​центре,☉. [23] Он используется для таких единиц, как M ( масса Солнца ), R ( радиус Солнца ) и L ( светимость Солнца ). [24] [25]

Общая характеристика

Солнце — звезда главной последовательности класса G , составляющая около 99,86% массы Солнечной системы. [26] Его абсолютная величина составляет +4,83, что, по оценкам, ярче, чем около 85% звезд в Млечном Пути , большинство из которых являются красными карликами . [27] [28] Оно массивнее, чем 95% близлежащих звезд в пределах 7 пк. (~23lt лет) [29] Солнце — звезда населения I , или богатая тяжелыми элементами, [b] . [30] Его образование примерно 4,6 миллиарда лет назад могло быть вызвано ударными волнами от одной или нескольких близлежащих сверхновых . [31] [32] Это подтверждается высоким содержанием тяжелых элементов в Солнечной системе, таких как золото и уран , по сравнению с содержанием этих элементов в так называемых звездах населения II , бедных тяжелыми элементами. Тяжелые элементы, вероятнее всего, могли быть получены в результате эндотермических ядерных реакций во время вспышки сверхновой или путем трансмутации посредством поглощения нейтронов внутри массивной звезды второго поколения. [30]

Солнце, безусловно, является самым ярким объектом на земном небе , его видимая величина составляет −26,74. [33] [34] Это примерно в 13 миллиардов раз ярче, чем следующая по яркости звезда, Сириус , видимая величина которой составляет −1,46. [35]

Одна астрономическая единица (около 150 миллионов километров; 93 миллиона миль) определяется как среднее расстояние между центрами Солнца и Земли. Мгновенное расстояние изменяется примерно на ± 2,5 миллиона км или 1,55 миллиона миль, когда Земля движется от перигелия ~ 3 января до афелия ~ 4 июля. [36] На своем среднем расстоянии свет проходит от горизонта Солнца до горизонта Земли примерно за 8 минут и 20 секунд, [37] в то время как свет от ближайших точек Солнца и Земли проходит примерно на две секунды меньше. Энергия этого солнечного света поддерживает почти всю жизнь [c] на Земле посредством фотосинтеза , [38] и управляет климатом и погодой Земли . [39]

Солнце не имеет определенной границы, но его плотность экспоненциально уменьшается с увеличением высоты над фотосферой . [40] Для целей измерения радиусом Солнца считается расстояние от его центра до края фотосферы, видимой поверхности Солнца. [41] Согласно этой мере, Солнце представляет собой почти идеальную сферу со сплющенностью, оцениваемой в 9 миллионных, [42] [43] [44] что означает, что его полярный диаметр отличается от его экваториального диаметра всего на 10 километров (6,2 мили). [45] Приливное воздействие планет слабое и не оказывает существенного влияния на форму Солнца. [46]

Вращение

Солнце вращается быстрее на своем экваторе, чем на своих полюсах . Это дифференциальное вращение вызвано конвективным движением из-за переноса тепла и силой Кориолиса из-за вращения Солнца. В системе отсчета, определяемой звездами, период вращения составляет приблизительно 25,6 дней на экваторе и 33,5 дня на полюсах. Если смотреть с Земли, когда она вращается вокруг Солнца, видимый период вращения Солнца на его экваторе составляет около 28 дней. [47] Если смотреть с точки зрения над его северным полюсом, Солнце вращается против часовой стрелки вокруг своей оси вращения. [d] [48]

Обзор солнечных аналогов показывает, что раннее Солнце вращалось в десять раз быстрее, чем сегодня. Это сделало бы поверхность намного более активной, с большим рентгеновским и ультрафиолетовым излучением. Солнечные пятна покрывали бы 5–30% поверхности. [49] Скорость вращения постепенно замедлялась магнитным торможением , поскольку магнитное поле Солнца взаимодействовало с исходящим солнечным ветром. [50] Остатки этого быстрого изначального вращения все еще сохранились в ядре Солнца, которое, как было обнаружено, вращается со скоростью один раз в неделю; в четыре раза больше средней скорости вращения поверхности. [51] [52]

Состав

Солнце состоит в основном из элементов водорода и гелия . В это время жизни Солнца они составляют 74,9% и 23,8% соответственно массы Солнца в фотосфере. [53] Все более тяжелые элементы, называемые в астрономии металлами , составляют менее 2% массы, причем наиболее распространенными являются кислород (примерно 1% массы Солнца), углерод (0,3%), неон (0,2%) и железо (0,2%). [54]

Первоначальный химический состав Солнца был унаследован от межзвездной среды , из которой оно образовалось. Первоначально он состоял примерно из 71,1% водорода, 27,4% гелия и 1,5% более тяжелых элементов. [53] Водород и большая часть гелия в Солнце были произведены в результате нуклеосинтеза Большого взрыва в первые 20 минут существования Вселенной, а более тяжелые элементы были произведены предыдущими поколениями звезд до того, как образовалось Солнце, и распространились в межзвездной среде на последних стадиях звездной жизни и в результате таких событий, как сверхновые . [55]

С момента образования Солнца основной процесс термоядерного синтеза включал синтез водорода в гелий. За последние 4,6 миллиарда лет количество гелия и его расположение внутри Солнца постепенно менялись. Доля гелия в ядре увеличилась с примерно 24% до примерно 60% из-за термоядерного синтеза, а часть гелия и тяжелых элементов осели из фотосферы к центру Солнца из-за гравитации . Пропорции более тяжелых элементов не изменились. Тепло переносится наружу из ядра Солнца излучением, а не конвекцией (см. Зона излучения ниже), поэтому продукты термоядерного синтеза не выносятся наружу теплом; они остаются в ядре, [56] и постепенно начало формироваться внутреннее ядро ​​гелия, которое не может быть синтезировано, потому что в настоящее время ядро ​​Солнца недостаточно горячее или плотное, чтобы синтезировать гелий. В нынешней фотосфере доля гелия снижена, а металличность составляет всего 84% от того, что было в протозвездной фазе (до начала ядерного синтеза в ядре). В будущем гелий продолжит накапливаться в ядре, и примерно через 5 миллиардов лет это постепенное накопление в конечном итоге приведет к тому, что Солнце выйдет из главной последовательности и станет красным гигантом . [57]

Химический состав фотосферы обычно считается репрезентативным для состава изначальной Солнечной системы. [58] Обычно описанное выше содержание тяжелых элементов на Солнце измеряется как с помощью спектроскопии фотосферы Солнца, так и путем измерения содержания в метеоритах , которые никогда не нагревались до температур плавления. Считается, что эти метеориты сохраняют состав протозвездного Солнца и, таким образом, не подвержены влиянию осаждения тяжелых элементов. Оба метода в целом хорошо согласуются. [59]

Структура и слияние

Иллюстрация структуры Солнца, в искусственных цветах для контраста.

Основной

Ядро Солнца простирается от центра примерно на 20–25% солнечного радиуса. [60] Его плотность составляет до150 г/см 3 [61] [62] (примерно в 150 раз больше плотности воды) и температура близка к 15,7 миллионам кельвинов (К). [62] Напротив, температура поверхности Солнца составляет около5800 K. Недавний анализ данных миссии SOHO поддерживает идею о том, что ядро ​​вращается быстрее, чем радиационная зона за его пределами. [60] На протяжении большей части жизни Солнца энергия вырабатывалась путем ядерного синтеза в области ядра через протон-протонную цепочку ; этот процесс превращает водород в гелий. [63] В настоящее время 0,8% энергии, вырабатываемой на Солнце, поступает из другой последовательности реакций синтеза, называемой циклом CNO ; ожидается, что доля, поступающая из цикла CNO, будет увеличиваться по мере того, как Солнце становится старше и ярче. [64] [65]

Ядро — единственная область Солнца, которая производит заметное количество тепловой энергии посредством синтеза; 99% энергии Солнца генерируется в самых внутренних 24% его радиуса, и почти никакой синтез не происходит за пределами 30% радиуса. Остальная часть Солнца нагревается этой энергией, поскольку она передается наружу через множество последовательных слоев, в конечном итоге в солнечную фотосферу, где она уходит в космос посредством излучения (фотоны) или адвекции (массивные частицы). [66] [67]

Иллюстрация цепочки реакций протон-протон из водорода с образованием дейтерия , гелия-3 и обычного гелия-4

Протон-протонная цепочка происходит вокруг9,2 × 10 37 раз каждую секунду в ядре, преобразуя около 3,7 × 1038 протонов в альфа-частицы (ядра гелия) каждую секунду (из общего числа ~8,9 × 1056 свободных протонов на Солнце), или около6,2 × 10 11  кг/с . Однако каждому протону (в среднем) требуется около 9 миллиардов лет, чтобы слиться с другим с помощью цепи PP. [66] Слияние четырех свободных протонов (ядер водорода) в одну альфа-частицу (ядро гелия) высвобождает около 0,7% от слитой массы в виде энергии, [68] поэтому Солнце высвобождает энергию со скоростью преобразования массы в энергию 4,26 миллиарда кг/с (что требует 600 миллиардов кг водорода [69] ), для 384,6  йоттаватт (3,846 × 10 26  Вт ), [5] или 9,192 × 1010  мегатонн тротила в секунду. Большая выходная мощность Солнца обусловлена ​​в основном огромным размером и плотностью его ядра (по сравнению с Землей и объектами на Земле), при этом на кубический метр вырабатывается лишь довольно небольшое количество энергии . Теоретические модели внутренней части Солнца указывают на максимальную плотность мощности или производство энергии приблизительно 276,5 Вт на кубический метр в центре ядра, [70] что, по словам Карла Крушельницкого , примерно равно плотности мощности внутри компостной кучи . [71]

Скорость синтеза в ядре находится в самокорректирующемся равновесии: немного более высокая скорость синтеза заставила бы ядро ​​сильнее нагреться и немного расшириться под действием веса внешних слоев, уменьшив плотность и, следовательно, скорость синтеза и исправив возмущение ; а немного более низкая скорость заставила бы ядро ​​немного остыть и сжаться, увеличив плотность и скорость синтеза и снова вернув ее к нынешнему уровню. [72] [73]

Зона радиации

Иллюстрация внутренней структуры различных звезд в зависимости от массы. Солнце в середине имеет внутреннюю излучающую зону и внешнюю конвективную зону.

Лучистая зона — самый толстый слой Солнца, толщиной 0,45 солнечных радиусов. От ядра до примерно 0,7 солнечных радиусов тепловое излучение является основным средством передачи энергии. [74] Температура падает примерно от 7 миллионов до 2 миллионов кельвинов с увеличением расстояния от ядра. [62] Этот температурный градиент меньше значения адиабатического градиента и, следовательно, не может вызывать конвекцию, что объясняет, почему передача энергии через эту зону осуществляется излучением, а не тепловой конвекцией. [62] Ионы водорода и гелия испускают фотоны, которые проходят лишь короткое расстояние, прежде чем поглощаются другими ионами. [74] Плотность падает в сто раз (с 20 000 кг/м 3 до 200 кг/м 3 ) между 0,25 солнечных радиусов и 0,7 радиусов, вершиной лучистой зоны. [74]

Тахоклин

Зона излучения и зона конвекции разделены переходным слоем, тахоклином . Это область, где резкое изменение режима между равномерным вращением зоны излучения и дифференциальным вращением зоны конвекции приводит к большому сдвигу между ними — состоянию, когда последовательные горизонтальные слои скользят мимо друг друга. [75] В настоящее время предполагается, что магнитное динамо, или солнечное динамо , внутри этого слоя генерирует магнитное поле Солнца . [62]

Конвективная зона

Зона конвекции Солнца простирается от 0,7 радиуса Солнца (500 000 км) до поверхности. В этом слое солнечная плазма недостаточно плотная или горячая, чтобы передавать тепловую энергию недр наружу посредством излучения. Вместо этого плотность плазмы достаточно низкая, чтобы позволить конвективным потокам развиваться и перемещать энергию Солнца наружу к его поверхности. Материал, нагретый в тахоклине, забирает тепло и расширяется, тем самым уменьшая свою плотность и позволяя ему подниматься. В результате упорядоченное движение массы развивается в тепловые ячейки, которые переносят большую часть тепла наружу в фотосферу Солнца выше. Как только материал диффузионно и радиационно охлаждается прямо под поверхностью фотосферы, его плотность увеличивается, и он опускается к основанию зоны конвекции, где он снова забирает тепло из верхней части лучистой зоны, и конвективный цикл продолжается. В фотосфере температура упала в 350 раз до 5700 К (9800 °F), а плотность составила всего 0,2 г/м 3 (примерно 1/10 000 плотности воздуха на уровне моря и 1 миллионная часть плотности внутреннего слоя конвективной зоны). [62]

Тепловые колонны конвективной зоны формируют отпечаток на поверхности Солнца, придавая ей зернистый вид, называемый солнечной грануляцией в наименьшем масштабе и супергрануляцией в более крупных масштабах. Турбулентная конвекция в этой внешней части солнечной недр поддерживает «мелкомасштабное» динамо-действие над приповерхностным объемом Солнца. [62] Тепловые колонны Солнца являются ячейками Бенара и имеют форму примерно шестиугольных призм. [76]

Фотосфера

Миазмы плазмы
Изображение ячеистых структур поверхности Солнца

Видимая поверхность Солнца, фотосфера, представляет собой слой, ниже которого Солнце становится непрозрачным для видимого света. [77] Фотоны, образующиеся в этом слое, покидают Солнце через прозрачную солнечную атмосферу над ним и становятся солнечным излучением, солнечным светом. Изменение непрозрачности происходит из-за уменьшения количества ионов H− , которые легко поглощают видимый свет. [ 77] И наоборот, воспринимаемый видимый свет образуется, когда электроны реагируют с атомами водорода, образуя ионы H− . [ 78] [79]

Фотосфера имеет толщину от десятков до сотен километров и немного менее непрозрачна, чем воздух на Земле. Поскольку верхняя часть фотосферы холоднее нижней, изображение Солнца кажется ярче в центре, чем на краю или краю солнечного диска, в явлении, известном как потемнение к краю . [77] Спектр солнечного света имеет приблизительно спектр черного тела , излучающего при 5772 К (9930 °F), [12] перемежаемый атомными линиями поглощения из разреженных слоев над фотосферой. Фотосфера имеет плотность частиц ~1023 м  − 3 (около 0,37% от числа частиц на объем атмосферы Земли на уровне моря). Фотосфера не полностью ионизирована — степень ионизации составляет около 3%, оставляя почти весь водород в атомарной форме. [80]

Атмосфера

Атмосфера Солнца состоит из пяти слоев: фотосферы, хромосферы , переходной области , короны и гелиосферы .

Самый холодный слой Солнца — это область минимальной температуры, простирающаяся примерно на500 км над фотосферой и имеет температуру около4100  К. [77] Эта часть Солнца достаточно холодная, чтобы допустить существование простых молекул, таких как оксид углерода и вода, которые можно обнаружить по их спектрам поглощения. [81] Хромосфера, переходная область и корона намного горячее поверхности Солнца. [77] Причина этого не совсем понятна, но данные свидетельствуют о том, что волны Альвена могут иметь достаточно энергии, чтобы нагреть корону. [82]

Переходная область Солнца, полученная солнечным оптическим телескопом Хиноде

Выше минимального температурного слоя находится слой примерноТолщиной 2000 км , в которой доминирует спектр линий излучения и поглощения. [77] Она называется хромосферой от греческого корня chroma , что означает цвет, потому что хромосфера видна как цветная вспышка в начале и конце полных солнечных затмений. [74] Температура хромосферы постепенно увеличивается с высотой, достигая примерно20 000 К вблизи вершины. [77] В верхней части хромосферы гелий становится частично ионизированным . [83]

Над хромосферой, в тонком (около200 км ) переходная область, температура быстро повышается примерно от20 000 К в верхней хромосфере до корональных температур ближе к1 000 000 К. [84] Повышение температуры облегчается полной ионизацией гелия в переходной области, что значительно снижает радиационное охлаждение плазмы. [83] Переходная область не находится на четко определенной высоте. Скорее, она образует своего рода нимб вокруг хромосферных особенностей , таких как спикулы и нити , и находится в постоянном хаотическом движении. [74] Переходная область нелегко увидеть с поверхности Земли, но ее легко наблюдать из космоса с помощью приборов, чувствительных к крайней ультрафиолетовой части спектра . [85]

Во время солнечного затмения солнечную корону можно увидеть невооруженным глазом во время полной фазы.

Корона — это следующий слой Солнца. Нижняя корона, вблизи поверхности Солнца, имеет плотность частиц около 10 15  м −3 до 10 16  м −3 . [83] [e] Средняя температура короны и солнечного ветра составляет около 1 000 000–2 000 000 К; однако в самых горячих регионах она составляет 8 000 000–20 000 000 К. [84] Хотя пока не существует полной теории, объясняющей температуру короны, известно, что по крайней мере часть ее тепла исходит от магнитного пересоединения . [84] [86] Корона — это протяженная атмосфера Солнца, объем которой намного больше объема, заключенного в фотосфере Солнца. Поток плазмы наружу от Солнца в межпланетное пространство — это солнечный ветер . [86]

Гелиосфера, разреженная внешняя атмосфера Солнца, заполнена плазмой солнечного ветра. Этот внешний слой Солнца определяется как начинающийся на расстоянии, где поток солнечного ветра становится сверхальфвеновским — то есть, где поток становится быстрее скорости альфвеновских волн, [87] примерно в 20 солнечных радиусах (0,1 а.е. ). Турбулентность и динамические силы в гелиосфере не могут повлиять на форму солнечной короны внутри, потому что информация может распространяться только со скоростью волн Альвена. Солнечный ветер непрерывно движется наружу через гелиосферу, [88] [89] формируя солнечное магнитное поле в спиральной форме, [86] пока он не скажется на гелиопаузе больше, чем50 а.е. от Солнца. В декабре 2004 года зонд Voyager 1 прошел через ударный фронт, который, как полагают, является частью гелиопаузы. [90] В конце 2012 года Voyager 1 зарегистрировал заметное увеличение столкновений космических лучей и резкое падение частиц с более низкой энергией из солнечного ветра, что позволило предположить, что зонд прошел через гелиопаузу и вошел в межзвездную среду , [91] и действительно сделал это 25 августа 2012 года, примерно в 122 астрономических единицах (18 Тл) от Солнца. [92] Гелиосфера имеет гелиохвост , который тянется позади нее из-за своеобразного движения Солнца через галактику. [93]

28 апреля 2021 года зонд Parker Solar Probe НАСА столкнулся с определенными магнитными и частицевыми условиями на расстоянии 18,8 солнечных радиусов, которые указывали на то, что он проник через поверхность Альвена , границу, разделяющую корону и солнечный ветер, определяемую как место, где скорость Альвена корональной плазмы и скорость крупномасштабного солнечного ветра равны. [94] [95] Во время пролета зонд Parker Solar Probe несколько раз входил в корону и выходил из нее. Это подтвердило прогнозы о том, что критическая поверхность Альвена не имеет формы гладкого шара, а имеет шипы и впадины, которые сморщивают ее поверхность. [94]

Солнечный свет и нейтрино

Солнце видно сквозь легкий туман

Солнце излучает свет во всем видимом спектре , поэтому его цвет белый , с индексом цветового пространства CIE около (0,3, 0,3), если смотреть из космоса или когда Солнце высоко в небе. Солнечное излучение на длину волны достигает пика в зеленой части спектра при просмотре из космоса. [96] [97] Когда Солнце находится очень низко в небе, атмосферное рассеяние делает Солнце желтым, красным, оранжевым или пурпурным, а в редких случаях даже зеленым или синим . Несмотря на его типичную белизну (белые солнечные лучи, белый окружающий свет, белое освещение Луны и т. д.), некоторые культуры мысленно представляют Солнце желтым, а некоторые даже красным; причины этого являются культурными, а точные являются предметом споров. [98] Солнце классифицируется как звезда G2 , [66] что означает, что это звезда главной последовательности типа G , причем 2 указывает на то, что температура его поверхности находится во втором диапазоне класса G.

Солнечная постоянная — это количество энергии, которое Солнце выделяет на единицу площади, которая непосредственно подвергается воздействию солнечного света. Солнечная постоянная приблизительно равна1368 Вт/м 2 (ватт на квадратный метр) на расстоянии одной астрономической единицы (АЕ) от Солнца (то есть на орбите Земли или вблизи нее). [99] Солнечный свет на поверхности Земли ослабляется атмосферой Земли , поэтому на поверхность (ближе к1000 Вт/м2 ) в ясных условиях, когда Солнце находится вблизи зенита . [100] Солнечный свет в верхней части атмосферы Земли состоит (по общей энергии) примерно из 50% инфракрасного света, 40% видимого света и 10% ультрафиолетового света. [101] Атмосфера отфильтровывает более 70% солнечного ультрафиолета, особенно на более коротких длинах волн. [102] Солнечное ультрафиолетовое излучение ионизирует дневную верхнюю атмосферу Земли, создавая электропроводящую ионосферу . [103]

Ультрафиолетовый свет от Солнца обладает антисептическими свойствами и может использоваться для дезинфекции инструментов и воды. Это излучение вызывает солнечные ожоги и имеет другие биологические эффекты, такие как выработка витамина D и загар . Это основная причина рака кожи . Ультрафиолетовый свет сильно ослабляется озоновым слоем Земли , поэтому количество УФ сильно варьируется в зависимости от широты и частично отвечает за многие биологические адаптации, включая изменения цвета кожи человека в разных регионах Земли. [104]

150 миллионов километров от Солнца до Земли
Оказавшись за пределами поверхности Солнца, нейтрино и фотоны движутся со скоростью света .

Высокоэнергетические гамма- фотоны , первоначально высвобождаемые при реакциях синтеза в ядре, почти немедленно поглощаются солнечной плазмой радиационной зоны, обычно после прохождения всего нескольких миллиметров. Повторное излучение происходит в случайном направлении и обычно с немного меньшей энергией. При такой последовательности излучений и поглощений излучению требуется много времени, чтобы достичь поверхности Солнца. Оценки времени путешествия фотона колеблются от 10 000 до 170 000 лет. [105] Напротив, нейтрино , которые составляют около 2% от общего производства энергии Солнцем, требуется всего 2,3 секунды, чтобы достичь поверхности. Поскольку перенос энергии на Солнце представляет собой процесс, в котором фотоны находятся в термодинамическом равновесии с материей , временной масштаб переноса энергии на Солнце больше, порядка 30 000 000 лет. Это время, которое потребовалось бы Солнцу, чтобы вернуться в стабильное состояние, если бы скорость генерации энергии в его ядре внезапно изменилась. [106]

Электронные нейтрино высвобождаются в результате реакций синтеза в ядре, но, в отличие от фотонов, они редко взаимодействуют с материей, поэтому почти все они способны немедленно покинуть Солнце. Однако измерения количества этих нейтрино, произведенных на Солнце, ниже, чем предсказывают теории, в 3 раза. В 2001 году открытие нейтринных осцилляций разрешило это несоответствие: Солнце испускает количество электронных нейтрино, предсказанное теорией, но детекторы нейтрино не улавливают 23 из них, поскольку нейтрино изменили аромат к моменту обнаружения. [107]

Магнитная активность

Солнце имеет звездное магнитное поле , которое меняется по всей его поверхности. Его полярное поле составляет 1–2 гаусса (0,0001–0,0002  Тл ), тогда как поле обычно составляет 3000 гаусс (0,3 Тл) в элементах на Солнце, называемых солнечными пятнами , и 10–100 гаусс (0,001–0,01 Тл) в солнечных протуберанцах . [5] Магнитное поле меняется во времени и месте. Квазипериодический 11-летний солнечный цикл является наиболее заметным изменением, в котором количество и размер солнечных пятен увеличиваются и уменьшаются. [108] [109] [110]

Солнечное магнитное поле простирается далеко за пределы самого Солнца. Электропроводящая плазма солнечного ветра переносит магнитное поле Солнца в космос, образуя то, что называется межпланетным магнитным полем . [86] В приближении, известном как идеальная магнитогидродинамика , частицы плазмы движутся только вдоль линий магнитного поля. В результате, текущий наружу солнечный ветер растягивает межпланетное магнитное поле наружу, заставляя его принимать примерно радиальную структуру. Для простого дипольного солнечного магнитного поля с противоположными полусферическими полярностями по обе стороны от солнечного магнитного экватора в солнечном ветре образуется тонкий токовый слой . На больших расстояниях вращение Солнца закручивает дипольное магнитное поле и соответствующий токовый слой в архимедову спиральную структуру, называемую спиралью Паркера . [86]

Солнечное пятно

Большая группа солнечных пятен, наблюдаемая в белом свете

Солнечные пятна видны как темные участки на фотосфере Солнца и соответствуют концентрациям магнитного поля, где конвективный перенос тепла из внутренней части Солнца на поверхность затруднен. В результате солнечные пятна немного холоднее окружающей фотосферы, поэтому они кажутся темными. В типичный солнечный минимум видно немного солнечных пятен, а иногда их вообще не видно. Те, которые появляются, находятся на высоких солнечных широтах. По мере того, как солнечный цикл приближается к своему максимуму , солнечные пятна имеют тенденцию образовываться ближе к солнечному экватору, явление, известное как закон Шпёрера . Самые большие солнечные пятна могут иметь десятки тысяч километров в поперечнике. [111]

11-летний цикл солнечных пятен составляет половину 22-летнего цикла динамо Бабкока -Лейтона , который соответствует колебательному обмену энергией между тороидальными и полоидальными солнечными магнитными полями. В максимуме солнечного цикла внешнее полоидальное дипольное магнитное поле близко к минимальной силе динамо-цикла; но внутреннее тороидальное квадрупольное поле, генерируемое посредством дифференциального вращения внутри тахоклина, близко к максимальной силе. В этой точке динамо-цикла плавучий подъем внутри конвективной зоны заставляет тороидальное магнитное поле выходить через фотосферу, что приводит к появлению пар солнечных пятен, примерно выровненных по оси восток-запад и имеющих следы с противоположными магнитными полярностями. Магнитная полярность пар солнечных пятен чередуется каждый солнечный цикл, явление, описываемое законом Хейла . [112] [113]

Во время фазы спада солнечного цикла энергия смещается из внутреннего тороидального магнитного поля во внешнее полоидальное поле, и солнечные пятна уменьшаются в количестве и размере. В минимуме солнечного цикла тороидальное поле, соответственно, имеет минимальную силу, солнечные пятна относительно редки, а полоидальное поле имеет максимальную силу. С ростом следующего 11-летнего цикла солнечных пятен дифференциальное вращение смещает магнитную энергию обратно из полоидального в тороидальное поле, но с полярностью, противоположной предыдущему циклу. Процесс продолжается непрерывно, и в идеализированном, упрощенном сценарии каждый 11-летний цикл солнечных пятен соответствует изменению, следовательно, общей полярности крупномасштабного магнитного поля Солнца. [114] [115]

Солнечная активность

Измерения с 2005 года изменения солнечного цикла за предыдущие 30 лет

Магнитное поле Солнца приводит ко многим эффектам, которые в совокупности называются солнечной активностью . Солнечные вспышки и корональные выбросы массы, как правило, происходят в группах солнечных пятен. Медленно меняющиеся высокоскоростные потоки солнечного ветра испускаются из корональных дыр на поверхности фотосферы. Как корональные выбросы массы, так и высокоскоростные потоки солнечного ветра переносят плазму и межпланетное магнитное поле наружу в Солнечную систему. [116] Эффекты солнечной активности на Земле включают полярные сияния в умеренных и высоких широтах и ​​нарушение радиосвязи и электроснабжения . Считается, что солнечная активность сыграла большую роль в формировании и развитии Солнечной системы . [117]

Некоторые ученые полагают, что долгосрочное вековое изменение числа солнечных пятен коррелирует с долгосрочным изменением солнечного излучения, [118] что, в свою очередь, может повлиять на долгосрочный климат Земли. [119] Солнечный цикл влияет на космические погодные условия, включая те, которые окружают Землю. Например, в 17 веке солнечный цикл, по-видимому, полностью прекратился на несколько десятилетий; в период, известный как минимум Маундера , наблюдалось несколько солнечных пятен . Это совпало по времени с эпохой Малого ледникового периода , когда Европа испытала необычно низкие температуры. [120] Более ранние продолжительные минимумы были обнаружены с помощью анализа годичных колец деревьев и, по-видимому, совпали с глобальными температурами ниже средних. [121]

Фазы жизни

Обзор эволюции звезды, подобной Солнцу, от коллапсирующей протозвезды слева до стадии красного гиганта справа.

Сегодня Солнце находится примерно на полпути к главной последовательности своей жизни. Оно не менялось кардинально более четырех миллиардов [a] лет и будет оставаться довольно стабильным еще около пяти миллиардов. Однако после того, как водородный синтез в его ядре прекратится, Солнце претерпит кардинальные изменения, как внутренние, так и внешние.

Формирование

Солнце образовалось около 4,6 миллиарда лет назад в результате коллапса части гигантского молекулярного облака , состоявшего в основном из водорода и гелия, которое, вероятно, дало жизнь многим другим звездам. [122] Этот возраст оценивается с помощью компьютерных моделей звездной эволюции и посредством нуклеокосмохронологии . [13] Результат согласуется с радиометрической датировкой старейшего материала Солнечной системы, возрастом 4,567 миллиарда лет. [123] [124] Исследования древних метеоритов выявляют следы стабильных дочерних ядер короткоживущих изотопов, таких как железо-60 , которые образуются только во взрывающихся короткоживущих звездах. Это указывает на то, что одна или несколько сверхновых должны были произойти вблизи места, где образовалось Солнце. Ударная волна от близлежащей сверхновой могла бы спровоцировать образование Солнца, сжав вещество внутри молекулярного облака и заставив определенные области схлопнуться под действием собственной гравитации. [125] Когда один фрагмент облака схлопнулся, он также начал вращаться из-за сохранения углового момента и нагреваться с ростом давления. [126] Большая часть массы сосредоточилась в центре, тогда как остальная часть сплющилась в диск, который стал планетами и другими телами Солнечной системы. [127] [128] Гравитация и давление внутри ядра облака генерировали много тепла, поскольку оно аккумулировало больше вещества из окружающего диска, в конечном итоге вызвав ядерный синтез . [129]

Звезды HD 162826 и HD 186302 имеют сходство с Солнцем и, таким образом, предположительно являются его звездными братьями, образовавшимися в одном и том же молекулярном облаке. [130] [131]

Основная последовательность

Эволюция звезды, подобной Солнцу. Трек звезды с массой в одну солнечную массу на диаграмме Герцшпрунга–Рассела показан от главной последовательности до стадии постасимптотической ветви гигантов.

Солнце находится примерно на полпути к своей главной последовательности стадии, во время которой ядерные реакции синтеза в его ядре превращают водород в гелий. Каждую секунду более четырех миллиардов килограммов материи преобразуются в энергию в ядре Солнца, производя нейтрино и солнечное излучение . При такой скорости Солнце к настоящему времени преобразовало в энергию около 100 масс Земли, около 0,03% от общей массы Солнца. Солнце проведет в общей сложности приблизительно от 10 до 11 миллиардов лет в качестве звезды главной последовательности до фазы красного гиганта Солнца. [132] На отметке в 8 миллиардов лет Солнце будет в своей самой горячей точке, согласно миссии космической обсерватории Gaia Европейского космического агентства в 2022 году. [133]

Солнце постепенно становится горячее в своем ядре, горячее на поверхности, больше по радиусу и ярче за время своего пребывания на главной последовательности: с начала своей жизни на главной последовательности оно расширилось по радиусу на 15%, а температура поверхности увеличилась с 5620 К (9660 °F) до 5772 К (9930 °F), что привело к увеличению светимости на 48% с 0,677 солнечной светимости до его нынешней 1,0 солнечной светимости. Это происходит потому, что атомы гелия в ядре имеют более высокую среднюю молекулярную массу , чем атомы водорода , которые были объединены, что приводит к меньшему тепловому давлению. Поэтому ядро ​​сжимается, позволяя внешним слоям Солнца перемещаться ближе к центру, высвобождая гравитационную потенциальную энергию . Согласно теореме вириала , половина этой высвобождаемой гравитационной энергии уходит на нагрев, что приводит к постепенному увеличению скорости, с которой происходит слияние, и, таким образом, к увеличению светимости. Этот процесс ускоряется по мере того, как ядро ​​постепенно становится плотнее. [134] В настоящее время его яркость увеличивается примерно на 1% каждые 100 миллионов лет. Потребуется не менее 1 миллиарда лет, чтобы из-за такого увеличения на Земле полностью исчезла жидкая вода. [135] После этого Земля перестанет быть способной поддерживать сложную многоклеточную жизнь, и последние оставшиеся многоклеточные организмы на планете испытают окончательное, полное массовое вымирание . [136]

После истощения водорода в ядре

Размер текущего Солнца (сейчас находящегося в главной последовательности ) по сравнению с его предполагаемым размером во время его фазы красного гиганта в будущем.

У Солнца недостаточно массы, чтобы взорваться как сверхновая . Вместо этого, когда примерно через 5 миллиардов лет в ядре закончится водород, термоядерный синтез в ядре прекратится, и ничто не будет препятствовать сжатию ядра. Высвобождение гравитационной потенциальной энергии приведет к увеличению светимости Солнца, что завершит фазу главной последовательности и приведет к расширению Солнца в течение следующего миллиарда лет: сначала в субгиганта , а затем в красного гиганта . [134] [137] [138] Нагрев из-за гравитационного сжатия также приведет к расширению Солнца и термоядерному синтезу водорода в оболочке сразу за пределами ядра, где остается нераспавшийся водород, способствуя увеличению светимости, которая в конечном итоге достигнет более чем в 1000 раз его нынешней светимости. [134] Когда Солнце войдет в фазу ветви красных гигантов (RGB), оно поглотит (и, весьма вероятно, уничтожит) Меркурий и Венеру . Согласно статье 2008 года, орбита Земли первоначально расширится максимум до 1,5 а.е. (220 миллионов км; 140 миллионов миль) из-за потери массы Солнцем. Однако затем орбита Земли начнет сокращаться из-за приливных сил (и, в конечном итоге, сопротивления нижней хромосферы), так что она будет поглощена Солнцем во время вершины фазы ветви красных гигантов через 7,59 миллиарда лет с настоящего момента, через 3,8 и 1 миллион лет после того, как Меркурий и Венера соответственно пострадают от той же участи. [138]

К тому времени, как Солнце достигнет вершины ветви красных гигантов, оно будет примерно в 256 раз больше, чем сегодня, с радиусом 1,19 а.е. (178 миллионов км; 111 миллионов миль). [138] [139] Солнце проведет около миллиарда лет в RGB и потеряет около трети своей массы. [138]

После ветви красных гигантов у Солнца осталось около 120 миллионов лет активной жизни, но многое происходит. Во-первых, ядро ​​(полное вырожденного гелия) яростно воспламеняется во вспышке гелия ; по оценкам, 6% ядра — само по себе 40% массы Солнца — будет преобразовано в углерод в течение нескольких минут посредством процесса тройной альфа . [140] Затем Солнце сжимается примерно до 10 раз своего текущего размера и в 50 раз большей светимости, с температурой немного ниже, чем сегодня. Затем оно достигнет красного сгустка или горизонтальной ветви , но звезда с металличностью Солнца не эволюционирует в синем направлении вдоль горизонтальной ветви. Вместо этого она просто становится умеренно больше и ярче в течение примерно 100 миллионов лет, продолжая реагировать с гелием в ядре. [138]

Когда гелий иссякнет, Солнце повторит расширение, которое последовало за исчерпанием водорода в ядре. Однако на этот раз все происходит быстрее, и Солнце становится больше и ярче. Это фаза асимптотической ветви гигантов , и Солнце попеременно реагирует то с водородом в оболочке, то с гелием в более глубокой оболочке. Примерно через 20 миллионов лет на ранней асимптотической ветви гигантов Солнце становится все более нестабильным, с быстрой потерей массы и тепловыми импульсами , которые увеличивают размер и светимость в течение нескольких сотен лет каждые 100 000 лет или около того. Тепловые импульсы становятся больше с каждым разом, причем более поздние импульсы увеличивают светимость до 5000 раз по сравнению с текущим уровнем. Несмотря на это, максимальный радиус AGB Солнца не будет таким большим, как его максимум кончика RGB: 179 R ☉ , или около 0,832 а.е. (124,5 миллиона км; 77,3 миллиона миль). [138] [141]

Модели различаются в зависимости от скорости и времени потери массы. Модели, которые имеют более высокую потерю массы на ветви красных гигантов, производят меньшие, менее яркие звезды на кончике асимптотической ветви гигантов, возможно, всего в 2000 раз больше светимости и менее чем в 200 раз больше радиуса. [138] Для Солнца предсказываются четыре тепловых импульса, прежде чем оно полностью потеряет свою внешнюю оболочку и начнет создавать планетарную туманность . [142]

Эволюция после асимптотической ветви гигантов происходит еще быстрее. Светимость остается приблизительно постоянной по мере увеличения температуры, при этом выброшенная половина массы Солнца ионизуется в планетарную туманность , когда обнаженное ядро ​​достигает 30 000 К (53 500 °F), как будто оно находится в своего рода голубой петле . Окончательное голое ядро, белый карлик , будет иметь температуру более 100 000 К (180 000 °F) и содержать приблизительно 54,05% современной массы Солнца. [138] (Моделирования показывают, что Солнце может быть одной из наименее массивных звезд, способных образовать планетарную туманность. [143] ) Планетарная туманность рассеется примерно через 10 000 лет, но белый карлик проживет триллионы лет, прежде чем превратиться в гипотетического сверхплотного черного карлика . [144] [145] [146] Таким образом, он не будет выделять больше энергии в течение даже более длительного времени, чем был бы белым карликом. [147]

Расположение

Солнечная система

см. подпись
Солнечная система с размерами Солнца и планет в масштабе. Планеты земной группы справа, газовые и ледяные гиганты слева.

Вокруг Солнца вращается восемь известных планет. В их число входят четыре планеты земной группы ( Меркурий , Венера , Земля и Марс ), два газовых гиганта ( Юпитер и Сатурн ) и два ледяных гиганта ( Уран и Нептун ). В Солнечной системе также есть девять тел, которые обычно считаются карликовыми планетами , и еще несколько кандидатов , пояс астероидов , многочисленные кометы и большое количество ледяных тел, которые лежат за орбитой Нептуна. Шесть планет и множество более мелких тел также имеют свои собственные естественные спутники : в частности, спутниковые системы Юпитера, Сатурна и Урана в некотором роде похожи на миниатюрные версии системы Солнца. [148]

Солнце движется под действием гравитационного притяжения планет. Центр Солнца движется вокруг барицентра Солнечной системы в диапазоне от 0,1 до 2,2 солнечных радиусов. Движение Солнца вокруг барицентра приблизительно повторяется каждые 179 лет, поворачиваясь примерно на 30° в основном из-за синодического периода Юпитера и Сатурна. [149]

Небесное соседство

Схема Местного межзвездного облака , G-облака и окружающих звезд. По состоянию на 2022 год точное расположение Солнечной системы в облаках является открытым вопросом в астрономии. [150]

В радиусе 10 световых лет от Солнца находится относительно немного звезд, ближайшая из которых — тройная звездная система Альфа Центавра , которая находится примерно в 4,4 световых годах от нас и может находиться в G-облаке Местного пузыря . [151] Альфа Центавра A и B — это тесно связанная пара звезд, похожих на Солнце , тогда как ближайшая к Солнцу звезда, небольшой красный карлик Проксима Центавра , вращается вокруг пары на расстоянии 0,2 световых лет. В 2016 году было обнаружено, что потенциально обитаемая экзопланета вращается вокруг Проксимы Центавра, названная Проксима Центавра b , ближайшая к Солнцу подтвержденная экзопланета. [152]

Солнечная система окружена Местным межзвездным облаком , хотя неясно, встроено ли оно в Местное межзвездное облако или находится прямо за краем облака. [153] В области в пределах 300 световых лет от Солнца, известной как Местный пузырь , существует множество других межзвездных облаков . [153] Последняя особенность представляет собой полость в форме песочных часов или сверхпузырь в межзвездной среде диаметром примерно 300 световых лет. Пузырь заполнен высокотемпературной плазмой, что позволяет предположить, что он может быть продуктом нескольких недавних сверхновых. [154]

Местный пузырь — это небольшой сверхпузырь по сравнению с соседними более широкими линейными структурами Волна Рэдклиффа и Сплит (ранее Пояс Гулда ), каждая из которых имеет длину в несколько тысяч световых лет. [155] Все эти структуры являются частью Рукава Ориона , который содержит большинство звезд Млечного Пути, видимых невооруженным глазом. [156]

Группы звезд формируются вместе в звездные скопления , прежде чем раствориться в сопутствующих ассоциациях. Видная группировка, которая видна невооруженным глазом, — это движущаяся группа Большой Медведицы , которая находится примерно в 80 световых годах от нас в пределах Местного пузыря. Ближайшее звездное скопление — Гиады , которое находится на краю Местного пузыря. Ближайшие области звездообразования — это Молекулярное облако Короны Южной , облачный комплекс Ро Змееносца и молекулярное облако Тельца ; последнее находится сразу за Местным пузырем и является частью волны Рэдклиффа. [157]

Звездные пролеты, которые проходят в пределах 0,8 световых лет от Солнца, происходят примерно раз в 100 000 лет. Ближайшим хорошо измеренным подходом была звезда Шольца , которая приблизилась к ~50 000 а.е. от Солнца около ~70 тысяч лет назад, вероятно, проходя через внешнее облако Оорта. [158] Существует 1%-ный шанс на каждый миллиард лет, что звезда пройдет внутри100 а.е. от Солнца, что может привести к разрушению Солнечной системы. [159]

Движение

Общее движение и ориентация Солнца, а также Земли и Луны как его спутников в Солнечной системе.

Будучи частью галактики Млечный Путь, Солнце, взяв с собой всю Солнечную систему, движется по орбите вокруг центра масс галактики со средней скоростью 230 км/с (828 000 км/ч) или 143 мили/с (514 000 миль/ч), [160] совершая один оборот ( галактический год ) примерно за 220–250 миллионов земных лет , [161] сделав это примерно 20 раз с момента образования Солнца. [162] Направление движения Солнца, солнечный апекс , примерно совпадает с направлением звезды Вега . [163]

Идеализированная орбита Солнца вокруг Галактического центра в представлении художника сверху вниз, иллюстрирующего текущую схему расположения Млечного Пути.

Солнце вращается вокруг центра Млечного Пути и движется в направлении созвездия Лебедя со скоростью более 220 километров в секунду (490 000 миль в час). Простая модель движения звезды в галактике дает галактические координаты X , Y и Z (вращающиеся координаты таким образом, что центр галактики всегда находится в направлении X ) как: где U , V и W — соответствующие скорости относительно местного стандарта покоя , A и Bпостоянные Оорта , — угловая скорость галактического вращения относительно местного стандарта покоя, — «эпициклическая частота», а ν — частота вертикальных колебаний. [164] Для Солнца текущие значения U , V , и W оцениваются как км/с, а оценки для других констант составляют A  = 15,5 км/с/ кпк , B  = −12,2 км/с/кпк, κ = 37 км/с/кпк и ν = 74 км/с/кпк. Мы принимаем X (0) и Y (0) равными нулю, а Z (0) оценивается в 17 парсеков. [165] Эта модель подразумевает, что Солнце вращается вокруг точки, которая сама вращается вокруг галактики. Период обращения Солнца вокруг точки равен . что, используя эквивалентность того, что парсек равен 1 км/с умножить на 0,978 миллиона лет, составляет 166 миллионов лет, что короче времени, необходимого точке для того, чтобы обойти галактику. В координатах ( X, Y ) Солнце описывает эллипс вокруг точки, длина которого в направлении Y составляет 1035 парсеков, а ширина в направлении X — 691 парсек. Движущаяся точка в настоящее время находится в Колебание в направлении Z занимает у Солнца 98 парсеков над галактической плоскостью и такое же расстояние под ней с периодом 83 миллиона лет, примерно 2,7 раза за орбиту. [166] Хотя составляет 222 миллиона лет, значение в точке, вокруг которой обращается Солнце, соответствует 235 миллионам лет, и это время, которое требуется точке, чтобы совершить один оборот вокруг галактики. Другие звезды с тем же значением должны тратить такое же количество времени, чтобы обойти галактику, как и Солнце, и, таким образом, оставаться в той же общей близости, что и Солнце.

Орбита Солнца вокруг Млечного Пути возмущена из-за неравномерного распределения массы в Млечном Пути, например, внутри и между спиральными рукавами галактики. Солнечной системе требуется около 225–250 миллионов лет, чтобы завершить один оборот по Млечному Пути (галактический год ), [167] поэтому считается, что за время жизни Солнца она совершила 20–25 оборотов. Орбитальная скорость Солнечной системы вокруг центра Млечного Пути составляет приблизительно 251 км/с (156 миль/с). [168] При такой скорости Солнечной системе требуется около 1190 лет, чтобы пройти расстояние в 1 световой год, или 7 дней, чтобы пройти1 АЕ . [169]

Млечный Путь движется относительно космического микроволнового фонового излучения (CMB) в направлении созвездия Гидры со скоростью 550 км/с, но поскольку Солнце движется относительно галактического центра в направлении Лебедя (галактическая долгота 90°; широта 0°) со скоростью более 200  км/с, результирующая скорость относительно CMB составляет около 370 км/с в направлении Кратера или Льва (галактическая широта 264°, широта 48°). [170] Это на расстоянии 132° от Лебедя.

История наблюдений

Раннее понимание

Солнечная колесница Трундхольма, запряженная лошадью, — скульптура, которая, как полагают, иллюстрирует важную часть скандинавской мифологии бронзового века .

Во многих доисторических и древних культурах Солнце считалось солнечным божеством или другим сверхъестественным существом. [171] [172] В начале первого тысячелетия до нашей эры вавилонские астрономы заметили, что движение Солнца по эклиптике неравномерно, хотя они не знали почему; сегодня известно, что это происходит из-за движения Земли по эллиптической орбите , которая движется быстрее, когда она находится ближе к Солнцу в перигелии, и движется медленнее, когда она находится дальше в афелии. [173]

Одним из первых, кто предложил научное или философское объяснение Солнца, был греческий философ Анаксагор . Он рассуждал, что это был гигантский пылающий шар из металла, даже больше, чем земля Пелопоннеса , и что Луна отражала свет Солнца. [174] Эратосфен оценил расстояние между Землей и Солнцем в третьем веке до нашей эры как « мириады стадий 400 и 80000», перевод которого неоднозначен, подразумевая либо 4 080 000 стадий (755 000 км), либо 804 000 000 стадий (от 148 до 153 миллионов километров или от 0,99 до 1,02 а. е.); последнее значение верно с точностью до нескольких процентов. В первом веке нашей эры Птолемей оценил расстояние как 1210 радиусов Земли , приблизительно 7,71 миллиона километров (0,0515 а. е.). [175]

Теория о том, что Солнце является центром, вокруг которого вращаются планеты, была впервые предложена древним греком Аристархом Самосским в третьем веке до нашей эры [176] и позднее принята Селевком Селевкийским (см. Гелиоцентризм ). [177] Эта точка зрения была развита в более подробной математической модели гелиоцентрической системы в XVI веке Николаем Коперником . [178]

Развитие научного понимания

Sol, Солнце, из книги Гвидо Бонатти « Liber astronomiae » издания 1550 года

Наблюдения солнечных пятен были зафиксированы во времена династии Хань (206 г. до н. э. – 220 г. н. э.) китайскими астрономами , которые вели записи этих наблюдений на протяжении столетий. Аверроэс также дал описание солнечных пятен в 12 веке. [179] Изобретение телескопа в начале 17 века позволило провести подробные наблюдения солнечных пятен Томасу Харриоту , Галилео Галилею и другим астрономам. Галилей утверждал, что солнечные пятна находятся на поверхности Солнца, а не небольшие объекты, проходящие между Землей и Солнцем. [180]

Вклад арабской астрономии включает открытие Аль-Баттани , что направление апогея Солнца (место на орбите Солнца по отношению к неподвижным звездам, где оно, по-видимому, движется медленнее всего) меняется. [181] (В современных гелиоцентрических терминах это вызвано постепенным движением афелия орбиты Земли ). Ибн Юнус наблюдал более 10 000 записей о положении Солнца в течение многих лет, используя большую астролябию . [182]

Из наблюдения за прохождением Венеры в 1032 году персидский астроном и эрудит Ибн Сина пришел к выводу, что Венера находится ближе к Земле, чем Солнце. [183] ​​В 1677 году Эдмунд Галлей наблюдал прохождение Меркурия через Солнце, что привело его к пониманию того, что наблюдения солнечного параллакса планеты (в идеале с использованием прохождения Венеры) можно использовать для тригонометрического определения расстояний между Землей, Венерой и Солнцем. [184] Тщательные наблюдения за прохождением Венеры в 1769 году позволили астрономам вычислить среднее расстояние от Земли до Солнца, составившее 93 726 900 миль (150 838 800 км), что всего на 0,8% больше современного значения. [185]

Солнце в свете водорода-альфа

В 1666 году Исаак Ньютон наблюдал солнечный свет с помощью призмы и показал, что он состоит из света многих цветов. [186] В 1800 году Уильям Гершель открыл инфракрасное излучение за пределами красной части солнечного спектра. [187] В 19 веке наблюдался прогресс в спектроскопических исследованиях Солнца; Йозеф фон Фраунгофер зарегистрировал более 600 линий поглощения в спектре, самые сильные из которых до сих пор часто называют линиями Фраунгофера . В 20 веке появилось несколько специализированных систем для наблюдения за Солнцем, особенно на различных узкополосных длинах волн, например, с использованием фильтрации кальция H (396,9 нм), K (393,37 нм) и водорода-альфа (656,46 нм) . [188]

Во время ранних исследований оптического спектра фотосферы были обнаружены некоторые линии поглощения, которые не соответствовали ни одному химическому элементу, известному тогда на Земле. В 1868 году Норман Локьер выдвинул гипотезу, что эти линии поглощения были вызваны новым элементом, который он назвал гелием , в честь греческого бога Солнца Гелиоса . Двадцать пять лет спустя гелий был выделен на Земле. [189]

В ранние годы современной научной эры источник энергии Солнца был значительной загадкой. Лорд Кельвин предположил, что Солнце представляет собой постепенно охлаждающееся жидкое тело, излучающее внутренний запас тепла. [190] Затем Кельвин и Герман фон Гельмгольц предложили механизм гравитационного сжатия для объяснения выхода энергии, но полученная оценка возраста составила всего 20 миллионов лет, что значительно меньше промежутка времени в не менее 300 миллионов лет, предложенного некоторыми геологическими открытиями того времени. [190] [191] В 1890 году Джозеф Локьер , открывший гелий в солнечном спектре, предложил метеоритную гипотезу образования и эволюции Солнца. [192]

Только в 1904 году было предложено документированное решение. Эрнест Резерфорд предположил, что выход энергии Солнца может поддерживаться внутренним источником тепла, и предложил радиоактивный распад в качестве источника. [193] Однако именно Альберт Эйнштейн дал ключ к источнику выхода энергии Солнца с его соотношением эквивалентности массы и энергии E = mc2 . [194] В 1920 году сэр Артур Эддингтон предположил, что давление и температура в ядре Солнца могут вызвать реакцию ядерного синтеза, в результате которой водород (протоны) объединяются в ядра гелия, что приводит к производству энергии из чистого изменения массы. [ 195] Преобладание водорода на Солнце было подтверждено в 1925 году Сесилией Пейн с использованием теории ионизации, разработанной Мегнад Саха . Теоретическая концепция термоядерного синтеза была разработана в 1930-х годах астрофизиками Субраманьяном Чандрасекаром и Гансом Бете . Ганс Бете рассчитал детали двух основных ядерных реакций, вырабатывающих энергию, которые питают Солнце. [196] [197] В 1957 году Маргарет Бербидж , Джеффри Бербидж , Уильям Фаулер и Фред Хойл показали, что большинство элементов во Вселенной были синтезированы в ходе ядерных реакций внутри звезд, некоторые из которых похожи на Солнце. [198]

Солнечные космические миссии

Иллюстрация Пионера 6, 7, 8 и 9

Первыми спутниками, предназначенными для долгосрочного наблюдения за Солнцем из межпланетного пространства, были Pioneers 6, 7, 8 и 9 НАСА, которые были запущены между 1959 и 1968 годами. Эти зонды вращались вокруг Солнца на расстоянии, близком к расстоянию Земли, и провели первые подробные измерения солнечного ветра и солнечного магнитного поля. Pioneer 9 проработал особенно долго, передавая данные до мая 1983 года. [199] [200]

В 1970-х годах два космических аппарата Helios и телескопическая установка Apollo Telescope Mount Skylab предоставили ученым важные новые данные о солнечном ветре и солнечной короне. Зонды Helios 1 и 2 были американо-германским сотрудничеством, которое изучало солнечный ветер с орбиты, несущей космический аппарат внутри орбиты Меркурия в перигелии. [201] Космическая станция Skylab, запущенная NASA в 1973 году, включала в себя модуль солнечной обсерватории под названием Apollo Telescope Mount, который управлялся астронавтами, проживающими на станции. [85] Skylab провела первые разрешенные по времени наблюдения области солнечного перехода и ультрафиолетового излучения солнечной короны. [85] Открытия включали первые наблюдения корональных выбросов массы, тогда называемых «корональными транзиентами», и корональных дыр , которые , как теперь известно, тесно связаны с солнечным ветром. [201]

Чертеж зонда Solar Maximum Mission

В 1980 году NASA запустило зонды Solar Maximum Mission . Этот космический аппарат был разработан для наблюдения за гамма-лучами, рентгеновскими лучами и ультрафиолетовым излучением от солнечных вспышек во время высокой солнечной активности и солнечной светимости. Однако всего через несколько месяцев после запуска сбой электроники привел к тому, что зонд перешел в режим ожидания, и он провел следующие три года в этом неактивном состоянии. В 1984 году миссия Space Shuttle Challenger STS-41C извлекла спутник и отремонтировала его электронику, прежде чем снова вывести его на орбиту. Миссия Solar Maximum впоследствии получила тысячи изображений солнечной короны, прежде чем снова войти в атмосферу Земли в июне 1989 года. [202]

Запущенный в 1991 году японский спутник Yohkoh ( Sunbeam ) наблюдал солнечные вспышки в рентгеновском диапазоне длин волн. Данные миссии позволили ученым идентифицировать несколько различных типов вспышек и продемонстрировали, что корона вдали от областей пиковой активности была гораздо более динамичной и активной, чем предполагалось ранее. Yohkoh наблюдал весь солнечный цикл, но перешел в режим ожидания, когда кольцевое затмение в 2001 году заставило его потерять связь с Солнцем. Он был уничтожен повторным входом в атмосферу в 2005 году. [203]

Солнечная и гелиосферная обсерватория , совместно построенная Европейским космическим агентством и НАСА, была запущена 2 декабря 1995 года. [85] Первоначально предполагалось, что она будет работать в течение двух лет, [204] SOHO продолжает работать по состоянию на 2024 год. [205] Расположенный в точке Лагранжа между Землей и Солнцем (в которой гравитационное притяжение обоих равно), SOHO обеспечивает постоянный обзор Солнца на многих длинах волн с момента своего запуска. [85] Помимо прямого наблюдения за Солнцем, SOHO позволил открыть большое количество комет , в основном крошечных околосолнечных комет , которые сгорают при прохождении мимо Солнца. [206]

Испытания космического корабля « Улисс» на вакуумном стенде для балансировки вращения
Художественное представление солнечного зонда Parker

Все эти спутники наблюдали Солнце из плоскости эклиптики, и поэтому подробно наблюдали только его экваториальные области. Зонд Ulysses был запущен в 1990 году для изучения полярных областей Солнца. Сначала он отправился к Юпитеру, чтобы «выстрелить» на орбиту, которая вывела бы его намного выше плоскости эклиптики. Как только Ulysses оказался на своей запланированной орбите, он начал наблюдать за солнечным ветром и напряженностью магнитного поля в высоких солнечных широтах, обнаружив, что солнечный ветер из высоких широт движется со скоростью около 750 км/с, что медленнее, чем ожидалось, и что из высоких широт выходят большие магнитные волны, которые рассеивают галактические космические лучи. [207]

Элементарное изобилие в фотосфере хорошо известно из спектроскопических исследований, но состав внутренней части Солнца изучен хуже. Миссия по возвращению образцов солнечного ветра Genesis была разработана, чтобы позволить астрономам напрямую измерять состав солнечного материала. [208]

Нерешенные проблемы

Корональный нагрев

Нерешенная проблема в астрономии :
Почему корона Солнца намного горячее поверхности Солнца?

Температура фотосферы составляет около 6000 К, тогда как температура короны достигает1 000 000–2 000 000 К. [84] Высокая температура короны показывает, что она нагревается чем-то иным, чем прямая теплопроводность от фотосферы. [86]

Считается, что энергия, необходимая для нагрева короны, обеспечивается турбулентным движением в зоне конвекции под фотосферой, и для объяснения нагрева короны были предложены два основных механизма. [84] Первый — волновой нагрев, при котором звуковые, гравитационные или магнитогидродинамические волны производятся турбулентностью в зоне конвекции. [84] Эти волны распространяются вверх и рассеиваются в короне, отдавая свою энергию окружающей материи в виде тепла. [209] Другой — магнитный нагрев, при котором магнитная энергия непрерывно накапливается фотосферным движением и высвобождается посредством магнитного пересоединения в форме крупных солнечных вспышек и множества похожих, но более мелких событий — нановспышек . [210]

В настоящее время неясно, являются ли волны эффективным механизмом нагрева. Было обнаружено, что все волны, за исключением волн Альвена, рассеиваются или преломляются до достижения короны. [211] Кроме того, волны Альвена нелегко рассеиваются в короне. Поэтому фокус современных исследований сместился в сторону механизмов нагрева вспышек. [84]

Слабое молодое Солнце

Нерешенная проблема в астрономии :
Как на ранней Земле могла быть жидкая вода, если, по прогнозам, интенсивность излучения Солнца составляла всего 70% от сегодняшней?

Теоретические модели развития Солнца предполагают, что 3,8–2,5 миллиарда лет назад, во время архейского эона, Солнце было всего на 75% таким же ярким, как сегодня. Такая слабая звезда не смогла бы поддерживать жидкую воду на поверхности Земли, и, таким образом, жизнь не могла бы развиться. Однако геологические данные показывают, что Земля сохраняла довольно постоянную температуру на протяжении всей своей истории и что молодая Земля была несколько теплее, чем сегодня. Одна из теорий среди ученых заключается в том, что атмосфера молодой Земли содержала гораздо большее количество парниковых газов (таких как углекислый газ , метан ), чем присутствует сегодня, что удерживало достаточно тепла, чтобы компенсировать меньшее количество солнечной энергии, достигавшей ее. [212]

Однако исследование архейских отложений, по-видимому, не согласуется с гипотезой о высоких концентрациях парниковых газов. Вместо этого, умеренный диапазон температур может быть объяснен более низким альбедо поверхности , вызванным меньшей континентальной площадью и отсутствием биологически индуцированных ядер конденсации облаков. Это привело бы к увеличению поглощения солнечной энергии, тем самым компенсируя более низкий выход солнечной энергии. [213]

Наблюдение глазами

Солнце, видимое с Земли, с бликами от линз. Глаз также видит блики, если смотреть прямо на Солнце.

Яркость Солнца может вызвать боль, если смотреть на него невооруженным глазом ; однако, делать это в течение коротких периодов времени не опасно для нормальных нерасширенных глаз . [214] [215] Прямой взгляд на Солнце ( солнцесмотрение ) вызывает фосфеновые визуальные артефакты и временную частичную слепоту. Он также доставляет около 4 милливатт солнечного света на сетчатку, слегка нагревая ее и потенциально вызывая повреждение в глазах, которые не могут должным образом реагировать на яркость. [216] [217] Прямой взгляд на Солнце невооруженным глазом может вызвать вызванные УФ-излучением, похожие на солнечные ожоги поражения на сетчатке, начинающиеся примерно через 100 секунд, особенно в условиях, когда УФ-излучение от Солнца интенсивное и хорошо сфокусированное. [218] [219]

Наблюдение за Солнцем через оптику , концентрирующую свет , например, через бинокль, может привести к необратимому повреждению сетчатки без соответствующего фильтра, который блокирует УФ-излучение и существенно затемняет солнечный свет. При использовании ослабляющего фильтра для наблюдения за Солнцем наблюдателю рекомендуется использовать фильтр, специально предназначенный для этого использования. Некоторые импровизированные фильтры, пропускающие УФ- или ИК- лучи, могут нанести вред глазу при высоких уровнях яркости. [220] Кратковременные взгляды на полуденное Солнце через нефильтрованный телескоп могут вызвать необратимые повреждения. [221]

Во время восхода и заката солнечный свет ослабевает из-за рэлеевского рассеяния и рассеяния Ми из-за особенно долгого прохождения через атмосферу Земли, [222] и Солнце иногда бывает достаточно тусклым, чтобы его можно было комфортно наблюдать невооруженным глазом или безопасно с помощью оптики (при условии отсутствия риска внезапного появления яркого солнечного света через разрыв между облаками). Туманные условия, атмосферная пыль и высокая влажность способствуют этому атмосферному ослаблению. [223]

Оптическое явление , известное как зеленая вспышка , иногда можно увидеть вскоре после заката или перед восходом солнца. Вспышка вызвана тем, что свет от Солнца, находящегося чуть ниже горизонта, изгибается (обычно через температурную инверсию ) в сторону наблюдателя. Свет с более короткими длинами волн (фиолетовый, синий, зеленый) изгибается больше, чем свет с более длинными длинами волн (желтый, оранжевый, красный), но фиолетовый и синий свет рассеиваются больше , оставляя свет, который воспринимается как зеленый. [224]

Религиозные аспекты

Sun and Immortal Birds Gold Ornament by ancient Shu people. The center is a sun pattern with twelve points around which four birds fly in the same counterclockwise direction. Ancient Kingdom of Shu, coinciding with the Shang dynasty.

Solar deities play a major role in many world religions and mythologies.[225] Worship of the Sun was central to civilizations such as the ancient Egyptians, the Inca of South America and the Aztecs of what is now Mexico. In religions such as Hinduism, the Sun is still considered a god, known as Surya. Many ancient monuments were constructed with solar phenomena in mind; for example, stone megaliths accurately mark the summer or winter solstice (for example in Nabta Playa, Egypt; Mnajdra, Malta; and Stonehenge, England); Newgrange, a prehistoric human-built mount in Ireland, was designed to detect the winter solstice; the pyramid of El Castillo at Chichén Itzá in Mexico is designed to cast shadows in the shape of serpents climbing the pyramid at the vernal and autumnal equinoxes.[226]

The ancient Sumerians believed that the Sun was Utu,[227][228] the god of justice and twin brother of Inanna, the Queen of Heaven,[227] who was identified as the planet Venus.[228] Later, Utu was identified with the East Semitic god Shamash.[227][228] Utu was regarded as a helper-deity, who aided those in distress.[227]

Ra from the tomb of Nefertari, 13th century BC

From at least the Fourth Dynasty of Ancient Egypt, the Sun was worshipped as the god Ra, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the New Empire period, the Sun became identified with the dung beetle. In the form of the sun disc Aten, the Sun had a brief resurgence during the Amarna Period when it again became the preeminent, if not only, divinity for the Pharaoh Akhenaton.[229][230] The Egyptians portrayed the god Ra as being carried across the sky in a solar barque, accompanied by lesser gods, and to the Greeks, he was Helios, carried by a chariot drawn by fiery horses. From the reign of Elagabalus in the late Roman Empire the Sun's birthday was a holiday celebrated as Sol Invictus (literally "Unconquered Sun") soon after the winter solstice, which may have been an antecedent to Christmas. Regarding the fixed stars, the Sun appears from Earth to revolve once a year along the ecliptic through the zodiac, and so Greek astronomers categorized it as one of the seven planets (Greek planetes, "wanderer"); the naming of the days of the weeks after the seven planets dates to the Roman era.[231][232][233]

In Proto-Indo-European religion, the Sun was personified as the goddess *Seh2ul.[234][235] Derivatives of this goddess in Indo-European languages include the Old Norse Sól, Sanskrit Surya, Gaulish Sulis, Lithuanian Saulė, and Slavic Solntse.[235] In ancient Greek religion, the sun deity was the male god Helios,[236] who in later times was syncretized with Apollo.[237]

In the Bible, Malachi 4:2 mentions the "Sun of Righteousness" (sometimes translated as the "Sun of Justice"),[238][239] which some Christians have interpreted as a reference to the Messiah (Christ).[240] In ancient Roman culture, Sunday was the day of the sun god. In paganism, the Sun was a source of life, giving warmth and illumination. It was the center of a popular cult among Romans, who would stand at dawn to catch the first rays of sunshine as they prayed. The celebration of the winter solstice (which influenced Christmas) was part of the Roman cult of the unconquered Sun (Sol Invictus). It was adopted as the Sabbath day by Christians. The symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions. Christian churches were built so that the congregation faced toward the sunrise.[241]

Tonatiuh, the Aztec god of the sun,[242] was closely associated with the practice of human sacrifice.[242] The sun goddess Amaterasu is the most important deity in the Shinto religion,[243][244] and she is believed to be the direct ancestor of all Japanese emperors.[243]

See also

Notes

  1. ^ a b All numbers in this article are short scale. One billion is 109, or 1,000,000,000.
  2. ^ In astronomical sciences, the term heavy elements (or metals) refers to all chemical elements except hydrogen and helium.
  3. ^ Hydrothermal vent communities live so deep under the sea that they have no access to sunlight. Bacteria instead use sulfur compounds as an energy source, via chemosynthesis.
  4. ^ Counterclockwise is also the direction of revolution around the Sun for objects in the Solar System and is the direction of axial spin for most objects.
  5. ^ Earth's atmosphere near sea level has a particle density of about 2×1025 m−3.

References

  1. ^ a b "Sol". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. ^ a b "Helios". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 27 March 2020.
  3. ^ a b "solar". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  4. ^ Pitjeva, E. V.; Standish, E. M. (2009). "Proposals for the masses of the three largest asteroids, the Moon–Earth mass ratio and the Astronomical Unit". Celestial Mechanics and Dynamical Astronomy. 103 (4): 365–372. Bibcode:2009CeMDA.103..365P. doi:10.1007/s10569-009-9203-8. ISSN 1572-9478. S2CID 121374703. Archived from the original on 9 July 2019. Retrieved 13 July 2019.
  5. ^ a b c d e f g h i j k l m n o p Williams, D. R. (1 July 2013). "Sun Fact Sheet". NASA Goddard Space Flight Center. Archived from the original on 15 July 2010. Retrieved 12 August 2013.
  6. ^ Zombeck, Martin V. (1990). Handbook of Space Astronomy and Astrophysics 2nd edition. Cambridge University Press. Archived from the original on 3 February 2021. Retrieved 13 January 2016.
  7. ^ Asplund, M.; Grevesse, N.; Sauval, A. J. (2006). "The new solar abundances – Part I: the observations". Communications in Asteroseismology. 147: 76–79. Bibcode:2006CoAst.147...76A. doi:10.1553/cia147s76. ISSN 1021-2043. S2CID 123824232.
  8. ^ "Eclipse 99: Frequently Asked Questions". NASA. Archived from the original on 27 May 2010. Retrieved 24 October 2010.
  9. ^ Francis, Charles; Anderson, Erik (June 2014). "Two estimates of the distance to the Galactic Centre". Monthly Notices of the Royal Astronomical Society. 441 (2): 1105–1114. arXiv:1309.2629. Bibcode:2014MNRAS.441.1105F. doi:10.1093/mnras/stu631. S2CID 119235554.
  10. ^ Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; et al. (2009). "Five-year Wilkinson Microwave Anisotropy Probe observations: data processing, sky maps, and basic results". The Astrophysical Journal Supplement Series. 180 (2): 225–245. arXiv:0803.0732. Bibcode:2009ApJS..180..225H. doi:10.1088/0067-0049/180/2/225. S2CID 3629998.
  11. ^ a b c d e f "Solar System Exploration: Planets: Sun: Facts & Figures". NASA. Archived from the original on 2 January 2008.
  12. ^ a b c Prša, Andrej; Harmanec, Petr; Torres, Guillermo; et al. (1 August 2016). "NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3 * †". The Astronomical Journal. 152 (2): 41. arXiv:1510.07674. doi:10.3847/0004-6256/152/2/41. ISSN 0004-6256.
  13. ^ a b Bonanno, A.; Schlattl, H.; Paternò, L. (2002). "The age of the Sun and the relativistic corrections in the EOS". Astronomy and Astrophysics. 390 (3): 1115–1118. arXiv:astro-ph/0204331. Bibcode:2002A&A...390.1115B. doi:10.1051/0004-6361:20020749. S2CID 119436299.
  14. ^ Connelly, J. N.; Bizzarro, M.; Krot, A. N.; Nordlund, Å.; Wielandt, D.; Ivanova, M. A. (2 November 2012). "The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk". Science. 338 (6107): 651–655. Bibcode:2012Sci...338..651C. doi:10.1126/science.1226919. PMID 23118187. S2CID 21965292.(registration required)
  15. ^ Gray, David F. (November 1992). "The Inferred Color Index of the Sun". Publications of the Astronomical Society of the Pacific. 104 (681): 1035–1038. Bibcode:1992PASP..104.1035G. doi:10.1086/133086.
  16. ^ "The Sun's Vital Statistics". Stanford Solar Center. Archived from the original on 14 October 2012. Retrieved 29 July 2008. Citing Eddy, J. (1979). A New Sun: The Solar Results From Skylab. NASA. p. 37. NASA SP-402. Archived from the original on 30 July 2021. Retrieved 12 July 2017.
  17. ^ Barnhart, R.K. (1995). The Barnhart Concise Dictionary of Etymology. HarperCollins. p. 776. ISBN 978-0-06-270084-1.
  18. ^ a b Orel, Vladimir (2003). A Handbook of Germanic Etymology. Leiden: Brill Publishers. p. 41. ISBN 978-9-00-412875-0 – via Internet Archive.
  19. ^ Little, William; Fowler, H. W.; Coulson, J. (1955). "Sol". Oxford Universal Dictionary on Historical Principles (3rd ed.). ASIN B000QS3QVQ.
  20. ^ "heliac". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  21. ^ "Opportunity's View, Sol 959 (Vertical)". NASA. 15 November 2006. Archived from the original on 22 October 2012. Retrieved 1 August 2007.
  22. ^ Barnhart, R. K. (1995). The Barnhart Concise Dictionary of Etymology. HarperCollins. p. 778. ISBN 978-0-06-270084-1.
  23. ^ Allen, Clabon W.; Cox, Arthur N. (2000). Cox, Arthur N. (ed.). Allen's Astrophysical Quantities (4th ed.). Springer. p. 2. ISBN 978-0-38-798746-0 – via Google Books.
  24. ^ "solar mass". Oxford Reference. Retrieved 26 May 2024.
  25. ^ Weissman, Paul; McFadden, Lucy-Ann; Johnson, Torrence (18 September 1998). Encyclopedia of the Solar System. Academic Press. pp. 349, 820. ISBN 978-0-08-057313-7.
  26. ^ Woolfson, M. (2000). "The origin and evolution of the solar system" (PDF). Astronomy & Geophysics. 41 (1): 12. Bibcode:2000A&G....41a..12W. doi:10.1046/j.1468-4004.2000.00012.x. Archived (PDF) from the original on 11 July 2020. Retrieved 12 April 2020.
  27. ^ Than, K. (2006). "Astronomers Had it Wrong: Most Stars are Single". Space.com. Archived from the original on 21 December 2010. Retrieved 1 August 2007.
  28. ^ Lada, C. J. (2006). "Stellar multiplicity and the initial mass function: Most stars are single". Astrophysical Journal Letters. 640 (1): L63–L66. arXiv:astro-ph/0601375. Bibcode:2006ApJ...640L..63L. doi:10.1086/503158. S2CID 8400400.
  29. ^ Robles, José A.; Lineweaver, Charles H.; Grether, Daniel; Flynn, Chris; Egan, Chas A.; Pracy, Michael B.; Holmberg, Johan; Gardner, Esko (September 2008). "A Comprehensive Comparison of the Sun to Other Stars: Searching for Self-Selection Effects". The Astrophysical Journal. 684 (1): 691–706. arXiv:0805.2962. Bibcode:2008ApJ...684..691R. doi:10.1086/589985. hdl:1885/34434. Retrieved 24 May 2024.
  30. ^ a b Zeilik, M. A.; Gregory, S. A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 322. ISBN 978-0-03-006228-5.
  31. ^ Connelly, James N.; Bizzarro, Martin; Krot, Alexander N.; Nordlund, Åke; Wielandt, Daniel; Ivanova, Marina A. (2 November 2012). "The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk". Science. 338 (6107): 651–655. Bibcode:2012Sci...338..651C. doi:10.1126/science.1226919. PMID 23118187. S2CID 21965292.
  32. ^ Falk, S. W.; Lattmer, J. M.; Margolis, S. H. (1977). "Are supernovae sources of presolar grains?". Nature. 270 (5639): 700–701. Bibcode:1977Natur.270..700F. doi:10.1038/270700a0. S2CID 4240932.
  33. ^ Burton, W. B. (1986). "Stellar parameters". Space Science Reviews. 43 (3–4): 244–250. doi:10.1007/BF00190626. S2CID 189796439.
  34. ^ Bessell, M. S.; Castelli, F.; Plez, B. (1998). "Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O–M stars". Astronomy and Astrophysics. 333: 231–250. Bibcode:1998A&A...333..231B.
  35. ^ Hoffleit, D.; et al. (1991). "HR 2491". Bright Star Catalogue (5th Revised ed.). CDS. Bibcode:1991bsc..book.....H.
  36. ^ "Equinoxes, Solstices, Perihelion, and Aphelion, 2000–2020". US Naval Observatory. 31 January 2008. Archived from the original on 13 October 2007. Retrieved 17 July 2009.
  37. ^ Cain, Fraser (15 April 2013). "How long does it take sunlight to reach the Earth?". phys.org. Archived from the original on 2 March 2022. Retrieved 2 March 2022.
  38. ^ "The Sun's Energy: An Essential Part of the Earth System". Center for Science Education. Retrieved 24 May 2024.
  39. ^ "The Sun's Influence on Climate". Princeton University Press. 23 June 2015. Retrieved 24 May 2024.
  40. ^ Beer, J.; McCracken, K.; von Steiger, R. (2012). Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments. Springer Science+Business Media. p. 41. ISBN 978-3-642-14651-0.
  41. ^ Phillips, K. J. H. (1995). Guide to the Sun. Cambridge University Press. p. 73. ISBN 978-0-521-39788-9.
  42. ^ Godier, S.; Rozelot, J.-P. (2000). "The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface" (PDF). Astronomy and Astrophysics. 355: 365–374. Bibcode:2000A&A...355..365G. Archived from the original (PDF) on 10 May 2011. Retrieved 22 February 2006.
  43. ^ Phillips, Tony (2 October 2008). "How Round is the Sun?". NASA Science. Archived from the original on 29 March 2019. Retrieved 7 March 2011.
  44. ^ Phillips, Tony (6 February 2011). "First Ever STEREO Images of the Entire Sun". NASA. Archived from the original on 8 March 2011. Retrieved 7 March 2011.
  45. ^ Jones, G. (16 August 2012). "Sun is the most perfect sphere ever observed in nature". The Guardian. Archived from the original on 3 March 2014. Retrieved 19 August 2013.
  46. ^ Schutz, B. F. (2003). Gravity from the ground up. Cambridge University Press. pp. 98–99. ISBN 978-0-521-45506-0.
  47. ^ Phillips, K. J. H. (1995). Guide to the Sun. Cambridge University Press. pp. 78–79. ISBN 978-0-521-39788-9.
  48. ^ "The Anticlockwise Solar System". Australian Space Academy. Archived from the original on 7 August 2020. Retrieved 2 July 2020.
  49. ^ Guinan, Edward F.; Engle, Scott G. (June 2009). The Sun in time: age, rotation, and magnetic activity of the Sun and solar-type stars and effects on hosted planets. The Ages of Stars, Proceedings of the International Astronomical Union, IAU Symposium. Vol. 258. pp. 395–408. arXiv:0903.4148. Bibcode:2009IAUS..258..395G. doi:10.1017/S1743921309032050.
  50. ^ Pantolmos, George; Matt, Sean P. (November 2017). "Magnetic Braking of Sun-like and Low-mass Stars: Dependence on Coronal Temperature". The Astrophysical Journal. 849 (2). id. 83. arXiv:1710.01340. Bibcode:2017ApJ...849...83P. doi:10.3847/1538-4357/aa9061.
  51. ^ Fossat, E.; Boumier, P.; Corbard, T.; Provost, J.; Salabert, D.; Schmider, F. X.; Gabriel, A. H.; Grec, G.; Renaud, C.; Robillot, J. M.; Roca-Cortés, T.; Turck-Chièze, S.; Ulrich, R. K.; Lazrek, M. (August 2017). "Asymptotic g modes: Evidence for a rapid rotation of the solar core". Astronomy & Astrophysics. 604. id. A40. arXiv:1708.00259. Bibcode:2017A&A...604A..40F. doi:10.1051/0004-6361/201730460.
  52. ^ Darling, Susannah (1 August 2017). "ESA, NASA's SOHO Reveals Rapidly Rotating Solar Core". NASA. Retrieved 31 May 2024.
  53. ^ a b Lodders, Katharina (10 July 2003). "Solar System Abundances and Condensation Temperatures of the Elements" (PDF). The Astrophysical Journal. 591 (2): 1220–1247. Bibcode:2003ApJ...591.1220L. CiteSeerX 10.1.1.666.9351. doi:10.1086/375492. S2CID 42498829. Archived from the original (PDF) on 7 November 2015. Retrieved 1 September 2015.
    Lodders, K. (2003). "Abundances and Condensation Temperatures of the Elements" (PDF). Meteoritics & Planetary Science. 38 (suppl): 5272. Bibcode:2003M&PSA..38.5272L. Archived (PDF) from the original on 13 May 2011. Retrieved 3 August 2008.
  54. ^ Hansen, C. J.; Kawaler, S. A.; Trimble, V. (2004). Stellar Interiors: Physical Principles, Structure, and Evolution (2nd ed.). Springer. pp. 19–20. ISBN 978-0-387-20089-7.
  55. ^ Hansen, C. J.; Kawaler, S. A.; Trimble, V. (2004). Stellar Interiors: Physical Principles, Structure, and Evolution (2nd ed.). Springer. pp. 77–78. ISBN 978-0-387-20089-7.
  56. ^ Hansen, C. J.; Kawaler, S. A.; Trimble, V. (2004). Stellar Interiors: Physical Principles, Structure, and Evolution (2nd ed.). Springer. § 9.2.3. ISBN 978-0-387-20089-7.
  57. ^ Iben, Icko Jnr. (November 1965). "Stellar Evolution. II. The Evolution of a 3 M Star from the Main Sequence Through Core Helium Burning". Astrophysical Journal. 142: 1447. Bibcode:1965ApJ...142.1447I. doi:10.1086/148429.
  58. ^ Aller, L. H. (1968). "The chemical composition of the Sun and the solar system". Proceedings of the Astronomical Society of Australia. 1 (4): 133. Bibcode:1968PASA....1..133A. doi:10.1017/S1323358000011048. S2CID 119759834.
  59. ^ Basu, S.; Antia, H. M. (2008). "Helioseismology and Solar Abundances". Physics Reports. 457 (5–6): 217–283. arXiv:0711.4590. Bibcode:2008PhR...457..217B. doi:10.1016/j.physrep.2007.12.002. S2CID 119302796.
  60. ^ a b García, R.; et al. (2007). "Tracking solar gravity modes: the dynamics of the solar core". Science. 316 (5831): 1591–1593. Bibcode:2007Sci...316.1591G. doi:10.1126/science.1140598. PMID 17478682. S2CID 35285705.
  61. ^ Basu, Sarbani; Chaplin, William J.; Elsworth, Yvonne; New, Roger; Serenelli, Aldo M. (2009). "Fresh insights on the structure of the solar core". The Astrophysical Journal. 699 (2): 1403–1417. arXiv:0905.0651. Bibcode:2009ApJ...699.1403B. doi:10.1088/0004-637X/699/2/1403. S2CID 11044272.
  62. ^ a b c d e f g "NASA/Marshall Solar Physics". Marshall Space Flight Center. 18 January 2007. Archived from the original on 29 March 2019. Retrieved 11 July 2009.
  63. ^ Broggini, C. (2003). Physics in Collision, Proceedings of the XXIII International Conference: Nuclear Processes at Solar Energy. XXIII Physics in Collisions Conference. Zeuthen, Germany. p. 21. arXiv:astro-ph/0308537. Bibcode:2003phco.conf...21B. Archived from the original on 21 April 2017. Retrieved 12 August 2013.
  64. ^ Goupil, M. J.; Lebreton, Y.; Marques, J. P.; Samadi, R.; Baudin, F. (2011). "Open issues in probing interiors of solar-like oscillating main sequence stars 1. From the Sun to nearly suns". Journal of Physics: Conference Series. 271 (1): 012031. arXiv:1102.0247. Bibcode:2011JPhCS.271a2031G. doi:10.1088/1742-6596/271/1/012031. S2CID 4776237.
  65. ^ The Borexino Collaboration (2020). "Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun". Nature. 587 (?): 577–582. arXiv:2006.15115. Bibcode:2020Natur.587..577B. doi:10.1038/s41586-020-2934-0. PMID 33239797. S2CID 227174644. Archived from the original on 27 November 2020. Retrieved 26 November 2020.
  66. ^ a b c Phillips, K. J. H. (1995). Guide to the Sun. Cambridge University Press. pp. 47–53. ISBN 978-0-521-39788-9.
  67. ^ Zirker, J. B. (2002). Journey from the Center of the Sun. Princeton University Press. pp. 15–34. ISBN 978-0-691-05781-1.
  68. ^ Shu, F. H. (1982). The Physical Universe: An Introduction to Astronomy. University Science Books. p. 102. ISBN 978-0-935702-05-7.
  69. ^ "Ask Us: Sun". Cosmicopia. NASA. 2012. Archived from the original on 3 September 2018. Retrieved 13 July 2017.
  70. ^ Cohen, H. (9 November 1998). "Table of temperatures, power densities, luminosities by radius in the Sun". Contemporary Physics Education Project. Archived from the original on 29 November 2001. Retrieved 30 August 2011.
  71. ^ "Lazy Sun is less energetic than compost". Australian Broadcasting Corporation. 17 April 2012. Archived from the original on 6 March 2014. Retrieved 25 February 2014.
  72. ^ Haubold, H. J.; Mathai, A. M. (1994). "Solar Nuclear Energy Generation & The Chlorine Solar Neutrino Experiment". AIP Conference Proceedings. 320 (1994): 102–116. arXiv:astro-ph/9405040. Bibcode:1995AIPC..320..102H. CiteSeerX 10.1.1.254.6033. doi:10.1063/1.47009. S2CID 14622069.
  73. ^ Myers, S. T. (18 February 1999). "Lecture 11 – Stellar Structure I: Hydrostatic Equilibrium". Introduction to Astrophysics II. Archived from the original on 12 May 2011. Retrieved 15 July 2009.
  74. ^ a b c d e "Sun". World Book at NASA. NASA. Archived from the original on 10 May 2013. Retrieved 10 October 2012.
  75. ^ Tobias, S. M. (2005). "The solar tachocline: Formation, stability and its role in the solar dynamo". In Soward, A. M.; et al. (eds.). Fluid Dynamics and Dynamos in Astrophysics and Geophysics. CRC Press. pp. 193–235. ISBN 978-0-8493-3355-2. Archived from the original on 29 October 2020. Retrieved 22 August 2020.
  76. ^ Mullan, D. J (2000). "Solar Physics: From the Deep Interior to the Hot Corona". In Page, D.; Hirsch, J.G. (eds.). From the Sun to the Great Attractor. Springer. p. 22. ISBN 978-3-540-41064-5. Archived from the original on 17 April 2021. Retrieved 22 August 2020.
  77. ^ a b c d e f g Abhyankar, K. D. (1977). "A Survey of the Solar Atmospheric Models". Bulletin of the Astronomical Society of India. 5: 40–44. Bibcode:1977BASI....5...40A. Archived from the original on 12 May 2020. Retrieved 12 July 2009.
  78. ^ Gibson, Edward G. (1973). The Quiet Sun (NASA SP-303). NASA. ASIN B0006C7RS0.
  79. ^ Shu, F. H. (1991). The Physics of Astrophysics. Vol. 1. University Science Books. ISBN 978-0-935702-64-4.
  80. ^ Rast, M.; Nordlund, Å.; Stein, R.; Toomre, J. (1993). "Ionization Effects in Three-Dimensional Solar Granulation Simulations". The Astrophysical Journal Letters. 408 (1): L53–L56. Bibcode:1993ApJ...408L..53R. doi:10.1086/186829.
  81. ^ Solanki, S. K.; Livingston, W.; Ayres, T. (1994). "New Light on the Heart of Darkness of the Solar Chromosphere". Science. 263 (5143): 64–66. Bibcode:1994Sci...263...64S. doi:10.1126/science.263.5143.64. PMID 17748350. S2CID 27696504.
  82. ^ De Pontieu, B.; et al. (2007). "Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind". Science. 318 (5856): 1574–1577. Bibcode:2007Sci...318.1574D. doi:10.1126/science.1151747. PMID 18063784. S2CID 33655095.
  83. ^ a b c Hansteen, V. H.; Leer, E.; Holzer, T. E. (1997). "The role of helium in the outer solar atmosphere". The Astrophysical Journal. 482 (1): 498–509. Bibcode:1997ApJ...482..498H. doi:10.1086/304111.
  84. ^ a b c d e f g Erdèlyi, R.; Ballai, I. (2007). "Heating of the solar and stellar coronae: a review". Astron. Nachr. 328 (8): 726–733. Bibcode:2007AN....328..726E. doi:10.1002/asna.200710803.
  85. ^ a b c d e Dwivedi, B. N. (2006). "Our ultraviolet Sun" (PDF). Current Science. 91 (5): 587–595. Archived (PDF) from the original on 25 October 2020. Retrieved 22 March 2015.
  86. ^ a b c d e f Russell, C. T. (2001). "Solar wind and interplanetary magnetic filed: A tutorial" (PDF). In Song, Paul; Singer, Howard J.; Siscoe, George L. (eds.). Space Weather (Geophysical Monograph). American Geophysical Union. pp. 73–88. ISBN 978-0-87590-984-4. Archived (PDF) from the original on 1 October 2018. Retrieved 11 July 2009.
  87. ^ Emslie, A. G; Miller, J. A. (2003). "Particle Acceleration". In Dwivedi, B. N. (ed.). Dynamic Sun. Cambridge University Press. p. 275. ISBN 978-0-521-81057-9.
  88. ^ "A Star with two North Poles". Science @ NASA. NASA. 22 April 2003. Archived from the original on 18 July 2009.
  89. ^ Riley, P.; Linker, J. A.; Mikić, Z. (2002). "Modeling the heliospheric current sheet: Solar cycle variations". Journal of Geophysical Research. 107 (A7): SSH 8–1. Bibcode:2002JGRA..107.1136R. doi:10.1029/2001JA000299. CiteID 1136.
  90. ^ "The Distortion of the Heliosphere: Our Interstellar Magnetic Compass" (Press release). European Space Agency. 2005. Archived from the original on 4 June 2012. Retrieved 22 March 2006.
  91. ^ Landau, Elizabeth (29 October 2015). "Voyager 1 Helps Solve Interstellar Medium Mystery" (Press release). Jet Propulsion Laboratory. Archived from the original on 3 August 2023.
  92. ^ "Interstellar Mission". Jet Propulsion Laboratory. Archived from the original on 14 September 2017. Retrieved 14 May 2021.
  93. ^ Dunbar, Brian (2 March 2015). "Components of the Heliosphere". NASA. Archived from the original on 8 August 2021. Retrieved 20 March 2021.
  94. ^ a b Hatfield, Miles (13 December 2021). "NASA Enters the Solar Atmosphere for the First Time". NASA. Archived from the original on 27 December 2021. Retrieved 30 July 2022.Public Domain This article incorporates text from this source, which is in the public domain.
  95. ^ "GMS: Animation: NASA's Parker Solar Probe Enters Solar Atmosphere". svs.gsfc.nasa.gov. 14 December 2021. Archived from the original on 4 October 2022. Retrieved 30 July 2022.
  96. ^ "What Color is the Sun?". Universe Today. Archived from the original on 25 May 2016. Retrieved 23 May 2016.
  97. ^ "What Color is the Sun?". Stanford Solar Center. Archived from the original on 30 October 2017. Retrieved 23 May 2016.
  98. ^ Wilk, S. R. (2009). "The Yellow Sun Paradox". Optics & Photonics News: 12–13. Archived from the original on 18 June 2012.
  99. ^ "Construction of a Composite Total Solar Irradiance (TSI) Time Series from 1978 to present". pmodwrc. 24 May 2006. Archived from the original on 1 August 2011. Retrieved 5 October 2005.
  100. ^ El-Sharkawi, Mohamed A. (2005). Electric energy. CRC Press. pp. 87–88. ISBN 978-0-8493-3078-0.
  101. ^ Fu, Qiang (2003). "Radiation (Solar)". In Curry, Judith A.; Pyle, John A. (eds.). Radiation (SOLAR) (PDF). Encyclopedia of Atmospheric Sciences. Elsevier. pp. 1859–1863. doi:10.1016/B0-12-227090-8/00334-1. ISBN 978-0-12-227090-1. Archived from the original (PDF) on 1 November 2012. Retrieved 29 December 2012.
  102. ^ "Reference Solar Spectral Irradiance: Air Mass 1.5". NREL. Archived from the original on 12 May 2019. Retrieved 12 November 2009.
  103. ^ Phillips, K. J. H. (1995). Guide to the Sun. Cambridge University Press. pp. 14–15, 34–38. ISBN 978-0-521-39788-9.
  104. ^ Barsh, G. S. (2003). "What Controls Variation in Human Skin Color?". PLOS Biology. 1 (1): e7. doi:10.1371/journal.pbio.0000027. PMC 212702. PMID 14551921.
  105. ^ "Ancient sunlight". Technology Through Time. NASA. 2007. Archived from the original on 15 May 2009. Retrieved 24 June 2009.
  106. ^ Stix, M. (2003). "On the time scale of energy transport in the sun". Solar Physics. 212 (1): 3–6. Bibcode:2003SoPh..212....3S. doi:10.1023/A:1022952621810. S2CID 118656812.
  107. ^ Schlattl, H. (2001). "Three-flavor oscillation solutions for the solar neutrino problem". Physical Review D. 64 (1): 013009. arXiv:hep-ph/0102063. Bibcode:2001PhRvD..64a3009S. doi:10.1103/PhysRevD.64.013009. S2CID 117848623.
  108. ^ Charbonneau, P. (2014). "Solar Dynamo Theory". Annual Review of Astronomy and Astrophysics. 52: 251–290. Bibcode:2014ARA&A..52..251C. doi:10.1146/annurev-astro-081913-040012. S2CID 17829477.
  109. ^ Zirker, J. B. (2002). Journey from the Center of the Sun. Princeton University Press. pp. 119–120. ISBN 978-0-691-05781-1.
  110. ^ Lang, Kenneth R. (2008). The Sun from Space. Springer-Verlag. p. 75. ISBN 978-3-540-76952-1.
  111. ^ "The Largest Sunspot in Ten Years". Goddard Space Flight Center. 30 March 2001. Archived from the original on 23 August 2007. Retrieved 10 July 2009.
  112. ^ Hale, G. E.; Ellerman, F.; Nicholson, S. B.; Joy, A. H. (1919). "The Magnetic Polarity of Sun-Spots". The Astrophysical Journal. 49: 153. Bibcode:1919ApJ....49..153H. doi:10.1086/142452.
  113. ^ "NASA Satellites Capture Start of New Solar Cycle". PhysOrg. 4 January 2008. Archived from the original on 6 April 2008. Retrieved 10 July 2009.
  114. ^ "Sun flips magnetic field". CNN. 16 February 2001. Archived from the original on 21 January 2015. Retrieved 11 July 2009.
  115. ^ Phillips, T. (15 February 2001). "The Sun Does a Flip". NASA. Archived from the original on 12 May 2009. Retrieved 11 July 2009.
  116. ^ Zirker, J. B. (2002). Journey from the Center of the Sun. Princeton University Press. pp. 120–127. ISBN 978-0-691-05781-1.
  117. ^ Nandy, Dibyendu; Martens, Petrus C. H.; Obridko, Vladimir; Dash, Soumyaranjan; Georgieva, Katya (5 July 2021). "Solar evolution and extrema: current state of understanding of long-term solar variability and its planetary impacts". Progress in Earth and Planetary Science. 8 (1): 40. Bibcode:2021PEPS....8...40N. doi:10.1186/s40645-021-00430-x. ISSN 2197-4284.
  118. ^ Willson, R. C.; Hudson, H. S. (1991). "The Sun's luminosity over a complete solar cycle". Nature. 351 (6321): 42–44. Bibcode:1991Natur.351...42W. doi:10.1038/351042a0. S2CID 4273483.
  119. ^ Eddy, John A. (June 1976). "The Maunder Minimum". Science. 192 (4245): 1189–1202. Bibcode:1976Sci...192.1189E. doi:10.1126/science.192.4245.1189. JSTOR 1742583. PMID 17771739. S2CID 33896851.
  120. ^ Lean, J.; Skumanich, A.; White, O. (1992). "Estimating the Sun's radiative output during the Maunder Minimum". Geophysical Research Letters. 19 (15): 1591–1594. Bibcode:1992GeoRL..19.1591L. doi:10.1029/92GL01578. Archived from the original on 11 May 2020. Retrieved 16 December 2019.
  121. ^ Mackay, R. M.; Khalil, M. A. K (2000). "Greenhouse gases and global warming". In Singh, S. N. (ed.). Trace Gas Emissions and Plants. Springer. pp. 1–28. ISBN 978-0-7923-6545-7. Archived from the original on 17 April 2021. Retrieved 3 November 2020.
  122. ^ Zirker, Jack B. (2002). Journey from the Center of the Sun. Princeton University Press. pp. 7–8. ISBN 978-0-691-05781-1.
  123. ^ Amelin, Y.; Krot, A.; Hutcheon, I.; Ulyanov, A. (2002). "Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions". Science. 297 (5587): 1678–1683. Bibcode:2002Sci...297.1678A. doi:10.1126/science.1073950. PMID 12215641. S2CID 24923770.
  124. ^ Baker, J.; Bizzarro, M.; Wittig, N.; Connelly, J.; Haack, H. (2005). "Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites". Nature. 436 (7054): 1127–1131. Bibcode:2005Natur.436.1127B. doi:10.1038/nature03882. PMID 16121173. S2CID 4304613.
  125. ^ Williams, J. (2010). "The astrophysical environment of the solar birthplace". Contemporary Physics. 51 (5): 381–396. arXiv:1008.2973. Bibcode:2010ConPh..51..381W. CiteSeerX 10.1.1.740.2876. doi:10.1080/00107511003764725. S2CID 118354201.
  126. ^ Glozman, Igor (2022). "Formation of the Solar System". Highline College. Des Moines, WA. Archived from the original on 26 March 2023. Retrieved 16 January 2022.
  127. ^ D'Angelo, G.; Lubow, S. H. (2010). "Three-dimensional Disk-Planet Torques in a Locally Isothermal Disk". The Astrophysical Journal. 724 (1): 730–747. arXiv:1009.4148. Bibcode:2010ApJ...724..730D. doi:10.1088/0004-637X/724/1/730. S2CID 119204765.
  128. ^ Lubow, S. H.; Ida, S. (2011). "Planet Migration". In S. Seager. (ed.). Exoplanets. University of Arizona Press, Tucson, AZ. pp. 347–371. arXiv:1004.4137. Bibcode:2010exop.book..347L.
  129. ^ Jones, Andrew Zimmerman (30 May 2019). "How Stars Make All of the Elements". ThoughtCo. Archived from the original on 11 July 2023. Retrieved 16 January 2023.
  130. ^ "Astronomers Find Sun's Sibling 'HD 162826'". Nature World News. 9 May 2014. Archived from the original on 3 March 2016. Retrieved 16 January 2022.
  131. ^ Williams, Matt (21 November 2018). "Astronomers Find One of the Sun's Sibling Stars. Born From the Same Solar Nebula Billions of Years Ago". Universe Today. Archived from the original on 26 March 2023. Retrieved 7 October 2022.
  132. ^ Goldsmith, D.; Owen, T. (2001). The search for life in the universe. University Science Books. p. 96. ISBN 978-1-891389-16-0. Archived from the original on 30 October 2020. Retrieved 22 August 2020.
  133. ^ News Staff (12 August 2022). "ESA's Gaia Mission Sheds New Light on Past and Future of Our Sun". Sci.News: Breaking Science News. Archived from the original on 4 April 2023. Retrieved 15 August 2022.
  134. ^ a b c Carroll, Bradley W.; Ostlie, Dal A (2017). An introduction to modern astrophysics (Second ed.). Cambridge, United Kingdom: Cambridge University Press. pp. 350, 447, 448, 457. ISBN 978-1-108-42216-1.
  135. ^ Kollipara, Puneet (22 January 2014). "Earth Won't Die as Soon as Thought". Science. Archived from the original on 12 November 2020. Retrieved 24 May 2015.
  136. ^ Snyder-Beattie, Andrew E.; Bonsall, Michael B. (30 March 2022). "Catastrophe risk can accelerate unlikely evolutionary transitions". Proceedings of the Royal Society B. 289 (1971). doi:10.1098/rspb.2021.2711. PMC 8965398. PMID 35350860.
  137. ^ Redd, Nola Taylor. "Red Giant Stars: Facts, Definition & the Future of the Sun". space.com. Archived from the original on 9 February 2016. Retrieved 20 February 2016.
  138. ^ a b c d e f g h Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x. S2CID 10073988.
  139. ^ Boothroyd, Arnold I.; Sackmann, I.-Juliana (1 January 1999) [19 December 1995]. "The CNO Isotopes: Deep Circulation in Red Giants and First and Second Dredge-up". The Astrophysical Journal. 510 (1). The American Astronomical Society (AAS), The Institute of Physics (IOP): 232–250. arXiv:astro-ph/9512121. Bibcode:1999ApJ...510..232B. doi:10.1086/306546. S2CID 561413.
  140. ^ Taylor, David. "The End Of The Sun". Northwestern University. Archived from the original on 22 May 2019. Retrieved 24 May 2015.
  141. ^ Vassiliadis, E.; Wood, P. R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  142. ^ Sackmann, I.-J.; Boothroyd, A. I.; Kraemer, K. E. (1993). "Our Sun. III. Present and Future". The Astrophysical Journal. 418: 457–468. Bibcode:1993ApJ...418..457S. doi:10.1086/173407.
  143. ^ Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M. (2018). "The mysterious age invariance of the planetary nebula luminosity function bright cut-off". Nature Astronomy. 2 (7): 580–584. arXiv:1805.02643. Bibcode:2018NatAs...2..580G. doi:10.1038/s41550-018-0453-9.
  144. ^ Bloecker, T. (1995). "Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution". Astronomy and Astrophysics. 297: 727. Bibcode:1995A&A...297..727B.
  145. ^ Bloecker, T. (1995). "Stellar evolution of low- and intermediate-mass stars. II. Post-AGB evolution". Astronomy and Astrophysics. 299: 755. Bibcode:1995A&A...299..755B.
  146. ^ Christensen-Dalsgaard, Jørgen (2021). "Solar structure and evolution". Living Reviews in Solar Physics. 18 (2): 2. arXiv:2007.06488. Bibcode:2021LRSP...18....2C. doi:10.1007/s41116-020-00028-3.
  147. ^ Johnson-Groh, Mara (25 August 2020). "The end of the universe may be marked by 'black dwarf supernova' explosions". Live Science. Archived from the original on 2 June 2023. Retrieved 24 November 2023.
  148. ^ Lewis, John, ed. (2004). Physics and Chemistry of the Solar System (2 ed.). Elsevier. p. 265. ISBN 9780080470122.
  149. ^ Jose, Paul D. (April 1965). "Sun's Motion and Sunspots" (PDF). The Astronomical Journal. 70 (3): 193–200. Bibcode:1965AJ.....70..193J. doi:10.1086/109714. Archived (PDF) from the original on 22 March 2020. Retrieved 22 March 2020.
  150. ^ Swaczyna, Paweł; Schwadron, Nathan A.; Möbius, Eberhard; Bzowski, Maciej; Frisch, Priscilla C.; Linsky, Jeffrey L.; McComas, David J.; Rahmanifard, Fatemeh; Redfield, Seth; Winslow, Réka M.; Wood, Brian E.; Zank, Gary P. (1 October 2022). "Mixing Interstellar Clouds Surrounding the Sun". The Astrophysical Journal Letters. 937 (2): L32:1–2. arXiv:2209.09927. Bibcode:2022ApJ...937L..32S. doi:10.3847/2041-8213/ac9120. ISSN 2041-8205.
  151. ^ Linsky, Jeffrey L.; Redfield, Seth; Tilipman, Dennis (November 2019). "The Interface between the Outer Heliosphere and the Inner Local ISM: Morphology of the Local Interstellar Cloud, Its Hydrogen Hole, Strömgren Shells, and 60Fe Accretion". The Astrophysical Journal. 886 (1): 19. arXiv:1910.01243. Bibcode:2019ApJ...886...41L. doi:10.3847/1538-4357/ab498a. S2CID 203642080. 41.
  152. ^ Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; et al. (2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri". Nature. 536 (7617): 437–440. arXiv:1609.03449. Bibcode:2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. S2CID 4451513.
  153. ^ a b Linsky, Jeffrey L.; Redfield, Seth; Tilipman, Dennis (20 November 2019). "The Interface between the Outer Heliosphere and the Inner Local ISM: Morphology of the Local Interstellar Cloud, Its Hydrogen Hole, Strömgren Shells, and 60 Fe Accretion*". The Astrophysical Journal. 886 (1): 41. arXiv:1910.01243. Bibcode:2019ApJ...886...41L. doi:10.3847/1538-4357/ab498a. ISSN 0004-637X. S2CID 203642080.
  154. ^ Zucker, Catherine; Goodman, Alyssa A.; Alves, João; et al. (January 2022). "Star formation near the Sun is driven by expansion of the Local Bubble". Nature. 601 (7893): 334–337. arXiv:2201.05124. Bibcode:2022Natur.601..334Z. doi:10.1038/s41586-021-04286-5. ISSN 1476-4687. PMID 35022612. S2CID 245906333.
  155. ^ Alves, João; Zucker, Catherine; Goodman, Alyssa A.; Speagle, Joshua S.; Meingast, Stefan; Robitaille, Thomas; Finkbeiner, Douglas P.; Schlafly, Edward F.; Green, Gregory M. (23 January 2020). "A Galactic-scale gas wave in the Solar Neighborhood". Nature. 578 (7794): 237–239. arXiv:2001.08748v1. Bibcode:2020Natur.578..237A. doi:10.1038/s41586-019-1874-z. PMID 31910431. S2CID 210086520.
  156. ^ McKee, Christopher F.; Parravano, Antonio; Hollenbach, David J. (November 2015). "Stars, Gas, and Dark Matter in the Solar Neighborhood". The Astrophysical Journal. 814 (1): 24. arXiv:1509.05334. Bibcode:2015ApJ...814...13M. doi:10.1088/0004-637X/814/1/13. S2CID 54224451. 13.
  157. ^ Alves, João; Zucker, Catherine; Goodman, Alyssa A.; et al. (2020). "A Galactic-scale gas wave in the solar neighborhood". Nature. 578 (7794): 237–239. arXiv:2001.08748. Bibcode:2020Natur.578..237A. doi:10.1038/s41586-019-1874-z. PMID 31910431. S2CID 210086520.
  158. ^ Mamajek, Eric E.; Barenfeld, Scott A.; Ivanov, Valentin D.; Kniazev, Alexei Y.; Väisänen, Petri; Beletsky, Yuri; Boffin, Henri M. J. (February 2015). "The Closest Known Flyby of a Star to the Solar System". The Astrophysical Journal Letters. 800 (1): 4. arXiv:1502.04655. Bibcode:2015ApJ...800L..17M. doi:10.1088/2041-8205/800/1/L17. S2CID 40618530. L17.
  159. ^ Raymond, Sean N.; et al. (January 2024). "Future trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au". Monthly Notices of the Royal Astronomical Society. 527 (3): 6126–6138. arXiv:2311.12171. Bibcode:2024MNRAS.527.6126R. doi:10.1093/mnras/stad3604.
  160. ^ "StarChild Question of the Month – Does the Sun move around the Milky Way?". NASA. February 2000. Archived from the original on 30 October 2023.
  161. ^ Siegel, Ethan (30 August 2018). "Our Motion Through Space Isn't A Vortex, But Something Far More Interesting". Forbes. Archived from the original on 25 November 2023. Retrieved 25 November 2023.
  162. ^ Currin, Grant (30 August 2020). "How long is a galactic year?". Live Science. Archived from the original on 25 November 2023. Retrieved 25 November 2023.
  163. ^ Raymo, Chet (1990). Three Hundred and Sixty Five Starry Nights: An Introduction to Astronomy for Every Night of the Year. Touchstone. ISBN 9780671766061.
  164. ^ B. Fuchs; et al. (2006). "The search for the origin of the Local Bubble redivivus". MNRAS. 373 (3): 993–1003. arXiv:astro-ph/0609227. Bibcode:2006MNRAS.373..993F. doi:10.1111/j.1365-2966.2006.11044.x. S2CID 15460224.
  165. ^ Bobylev, Vadim V. (2010). "Searching for Stars Closely Encountering with the Solar System". Astronomy Letters. 36 (3): 220–226. arXiv:1003.2160. Bibcode:2010AstL...36..220B. doi:10.1134/S1063773710030060. S2CID 118374161.
  166. ^ Moore, Patrick; Rees, Robin (2014). Patrick Moore's Data Book of Astronomy. Cambridge: Cambridge University Press. ISBN 978-1-139-49522-6.
  167. ^ Leong, S. (2002). "Period of the Sun's Orbit around the Galaxy (Cosmic Year)". The Physics Factbook. Archived from the original on 22 August 2011. Retrieved 10 May 2007.
  168. ^ Croswell, Ken (2008). "Milky Way keeps tight grip on its neighbor". New Scientist. 199 (2669): 8. doi:10.1016/S0262-4079(08)62026-6. Archived from the original on 11 May 2020. Retrieved 15 September 2017.
  169. ^ Garlick, M.A. (2002). The Story of the Solar System. Cambridge University Press. p. 46. ISBN 978-0-521-80336-6.
  170. ^ Table 3 of Kogut, A.; et al. (1993). "Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps". Astrophysical Journal. 419 (1993): 1. arXiv:astro-ph/9312056. Bibcode:1993ApJ...419....1K. doi:10.1086/173453.
  171. ^ Hawthorn, Hannah (2022). The Magick of Birthdays. New York: Penguin. p. 103. ISBN 978-0-593-53854-8.
  172. ^ Singh, Madanjeet (1993). The Sun. New York: ABRAMS. p. 305. ISBN 978-0-8109-3838-0.
  173. ^ Leverington, David (2003). Babylon to Voyager and beyond: a history of planetary astronomy. Cambridge University Press. pp. 6–7. ISBN 978-0-521-80840-8.
  174. ^ Sider, D. (1973). "Anaxagoras on the Size of the Sun". Classical Philology. 68 (2): 128–129. doi:10.1086/365951. JSTOR 269068. S2CID 161940013.
  175. ^ Goldstein, B. R. (1967). "The Arabic Version of Ptolemy's Planetary Hypotheses". Transactions of the American Philosophical Society. 57 (4): 9–12. doi:10.2307/1006040. JSTOR 1006040.
  176. ^ Stahl, William Harris (1945). "The Greek Heliocentric Theory and Its Abandonment". Transactions and Proceedings of the American Philological Association. 76: 321–332. doi:10.2307/283344. ISSN 0065-9711. JSTOR 283344.
  177. ^ Toomer, G. J. (7 March 2016). "Seleucus (5), of Seleuceia, astronomer". Oxford Research Encyclopedia of Classics. Oxford University Press. doi:10.1093/acrefore/9780199381135.013.5799. ISBN 978-0-19-938113-5. Retrieved 27 May 2024.
  178. ^ Fraknoi, Andrew; Morrison, David; Wolff, Sidney (9 March 2022). "2.4 The Birth of Modern Astronomy". Astronomy 2e. OpenStax. Retrieved 27 May 2024.
  179. ^ Ead, Hamed A. (1998). Averroes As A Physician. University of Cairo. Retrieved 27 May 2024.
  180. ^ "Galileo Galilei (1564–1642)". BBC. Archived from the original on 29 September 2018. Retrieved 22 March 2006.
  181. ^ Singer, C. (1959). A short History of scientific ideas to 1900. Oxford University Press. p. 151.
  182. ^ Ronan, C. (1983). "The Arabian Science". The Cambridge Illustrated History of the World's Science. Cambridge University Press. pp. 201–244. at pp. 213–214.
  183. ^ Goldstein, Bernard R. (March 1972). "Theory and Observation in Medieval Astronomy". Isis. 63 (1): 39–47 [44]. Bibcode:1972Isis...63...39G. doi:10.1086/350839. S2CID 120700705.
  184. ^ Chapman, Allan (April 2005). Kurtz, D. W. (ed.). Jeremiah Horrocks, William Crabtree, and the Lancashire observations of the transit of Venus of 1639. Transits of Venus: New Views of the Solar System and Galaxy, Proceedings of IAU Colloquium #196, held 7–11 June 2004 in Preston, U.K. Proceedings of the International Astronomical Union. Vol. 2004. Cambridge: Cambridge University Press. pp. 3–26. Bibcode:2005tvnv.conf....3C. doi:10.1017/S1743921305001225.
  185. ^ Teets, Donald (December 2003). "Transits of Venus and the Astronomical Unit" (PDF). Mathematics Magazine. 76 (5): 335–348. doi:10.1080/0025570X.2003.11953207. JSTOR 3654879. S2CID 54867823. Archived (PDF) from the original on 3 February 2022. Retrieved 3 April 2022.
  186. ^ "Sir Isaac Newton (1643–1727)". BBC Teach. BBC. Archived from the original on 10 March 2015. Retrieved 22 March 2006.
  187. ^ "Herschel Discovers Infrared Light". Cool Cosmos. Archived from the original on 25 February 2012. Retrieved 22 March 2006.
  188. ^ Wolfschmidt, Gudrun (1998). "Instruments for observing the Corona". In Warner, Deborah Jean; Bud, Robert (eds.). Instruments of Science, An Historical Encyclopedia. Science Museum, London, and National Museum of American History, Smithsonian Institution. pp. 147–148. ISBN 9780815315612.
  189. ^ Parnel, C. "Discovery of Helium". University of St Andrews. Archived from the original on 7 November 2015. Retrieved 22 March 2006.
  190. ^ a b Thomson, W. (1862). "On the Age of the Sun's Heat". Macmillan's Magazine. 5: 388–393. Archived from the original on 25 September 2006. Retrieved 25 August 2006.
  191. ^ Stacey, Frank D. (2000). "Kelvin's age of the Earth paradox revisited". Journal of Geophysical Research. 105 (B6): 13155–13158. Bibcode:2000JGR...10513155S. doi:10.1029/2000JB900028.
  192. ^ Lockyer, J. N. (1890). "The meteoritic hypothesis; a statement of the results of a spectroscopic inquiry into the origin of cosmical systems". London and New York. Bibcode:1890mhsr.book.....L.
  193. ^ Darden, L. (1998). "The Nature of Scientific Inquiry". Archived from the original on 17 August 2012. Retrieved 25 August 2006.
  194. ^ Hawking, S. W. (2001). The Universe in a Nutshell. Bantam Books. p. 12. ISBN 978-0-553-80202-3.
  195. ^ "Studying the stars, testing relativity: Sir Arthur Eddington". Space Science. European Space Agency. 2005. Archived from the original on 20 October 2012. Retrieved 1 August 2007.
  196. ^ Bethe, H.; Critchfield, C. (1938). "On the Formation of Deuterons by Proton Combination". Physical Review. 54 (10): 862. Bibcode:1938PhRv...54Q.862B. doi:10.1103/PhysRev.54.862.2.
  197. ^ Bethe, H. (1939). "Energy Production in Stars". Physical Review. 55 (1): 434–456. Bibcode:1939PhRv...55..434B. doi:10.1103/PhysRev.55.434. PMID 17835673. S2CID 36146598.
  198. ^ Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957). "Synthesis of the Elements in Stars" (PDF). Reviews of Modern Physics. 29 (4): 547–650. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547. Archived (PDF) from the original on 23 July 2018. Retrieved 12 April 2020.
  199. ^ Wade, M. (2008). "Pioneer 6-7-8-9-E". Encyclopedia Astronautica. Archived from the original on 22 April 2006. Retrieved 22 March 2006.
  200. ^ "Solar System Exploration: Missions: By Target: Our Solar System: Past: Pioneer 9". NASA. Archived from the original on 2 April 2012. Retrieved 30 October 2010. NASA maintained contact with Pioneer 9 until May 1983
  201. ^ a b Burlaga, L. F. (2001). "Magnetic Fields and plasmas in the inner heliosphere: Helios results". Planetary and Space Science. 49 (14–15): 1619–1627. Bibcode:2001P&SS...49.1619B. doi:10.1016/S0032-0633(01)00098-8. Archived from the original on 13 July 2020. Retrieved 25 August 2019.
  202. ^ Burkepile, C. J. (1998). "Solar Maximum Mission Overview". Archived from the original on 5 April 2006. Retrieved 22 March 2006.
  203. ^ "Result of Re-entry of the Solar X-ray Observatory "Yohkoh" (SOLAR-A) to the Earth's Atmosphere" (Press release). Japan Aerospace Exploration Agency. 13 September 2005. Archived from the original on 10 August 2013. Retrieved 22 March 2006.
  204. ^ Gough, Evan (26 February 2018). "22 Years of the Sun from SOHO". Universe Today. Retrieved 31 May 2024.
  205. ^ Atkinson, Nancy (28 March 2024). "Someone Just Found SOHO's 5,000th Comet". Universe Today. Retrieved 31 May 2024.
  206. ^ "Sungrazing Comets". LASCO (US Naval Research Laboratory). 13 March 2015. Archived from the original on 25 May 2015. Retrieved 19 March 2009.
  207. ^ JPL/CALTECH (2005). "Ulysses: Primary Mission Results". NASA. Archived from the original on 6 January 2006. Retrieved 22 March 2006.
  208. ^ Calaway, M. J.; Stansbery, Eileen K.; Keller, Lindsay P. (2009). "Genesis capturing the Sun: Solar wind irradiation at Lagrange 1". Nuclear Instruments and Methods in Physics Research B. 267 (7): 1101–1108. Bibcode:2009NIMPB.267.1101C. doi:10.1016/j.nimb.2009.01.132. Archived from the original on 11 May 2020. Retrieved 13 July 2019.
  209. ^ Alfvén, H. (1947). "Magneto-hydrodynamic waves, and the heating of the solar corona". Monthly Notices of the Royal Astronomical Society. 107 (2): 211–219. Bibcode:1947MNRAS.107..211A. doi:10.1093/mnras/107.2.211.
  210. ^ Parker, E. N. (1988). "Nanoflares and the solar X-ray corona". Astrophysical Journal. 330 (1): 474. Bibcode:1988ApJ...330..474P. doi:10.1086/166485.
  211. ^ Sturrock, P. A.; Uchida, Y. (1981). "Coronal heating by stochastic magnetic pumping". Astrophysical Journal. 246 (1): 331. Bibcode:1981ApJ...246..331S. doi:10.1086/158926. hdl:2060/19800019786.
  212. ^ Kasting, J. F.; Ackerman, T. P. (1986). "Climatic Consequences of Very High Carbon Dioxide Levels in the Earth's Early Atmosphere". Science. 234 (4782): 1383–1385. Bibcode:1986Sci...234.1383K. doi:10.1126/science.11539665. PMID 11539665. Archived from the original on 26 September 2019. Retrieved 13 July 2019.
  213. ^ Rosing, Minik T.; Bird, Dennis K.; Sleep, Norman H.; Bjerrum, Christian J. (1 April 2010). "No climate paradox under the faint early Sun". Nature. 464 (7289): 744–747. Bibcode:2010Natur.464..744R. doi:10.1038/nature08955. PMID 20360739. S2CID 205220182.
  214. ^ White, T. J.; Mainster, M. A.; Wilson, P. W.; Tips, J. H. (1971). "Chorioretinal temperature increases from solar observation". Bulletin of Mathematical Biophysics. 33 (1): 1–17. doi:10.1007/BF02476660. PMID 5551296.
  215. ^ Tso, M. O. M.; La Piana, F. G. (1975). "The Human Fovea After Sungazing". Transactions of the American Academy of Ophthalmology and Otolaryngology. 79 (6): OP788–95. PMID 1209815.
  216. ^ Hope-Ross, M. W.; Mahon, G. J.; Gardiner, T. A.; Archer, D. B. (1993). "Ultrastructural findings in solar retinopathy". Eye. 7 (4): 29–33. doi:10.1038/eye.1993.7. PMID 8325420.
  217. ^ Schatz, H.; Mendelblatt, F. (1973). "Solar Retinopathy from Sun-Gazing Under Influence of LSD". British Journal of Ophthalmology. 57 (4): 270–273. doi:10.1136/bjo.57.4.270. PMC 1214879. PMID 4707624.
  218. ^ Ham, W. T. Jr.; Mueller, H. A.; Sliney, D. H. (1976). "Retinal sensitivity to damage from short wavelength light". Nature. 260 (5547): 153–155. Bibcode:1976Natur.260..153H. doi:10.1038/260153a0. PMID 815821. S2CID 4283242.
  219. ^ Ham, W. T. Jr.; Mueller, H. A.; Ruffolo, J. J. Jr.; Guerry, D. III (1980). "Solar Retinopathy as a function of Wavelength: its Significance for Protective Eyewear". In Williams, T. P.; Baker, B. N. (eds.). The Effects of Constant Light on Visual Processes. Plenum Press. pp. 319–346. ISBN 978-0-306-40328-6.
  220. ^ Kardos, T. (2003). Earth science. J. W. Walch. p. 87. ISBN 978-0-8251-4500-1. Archived from the original on 3 November 2020. Retrieved 22 August 2020.
  221. ^ Macdonald, Lee (2012). "Equipment for Observing the Sun". How to Observe the Sun Safely. Patrick Moore's Practical Astronomy Series. New York: Springer Science + Business Media. p. 17. doi:10.1007/978-1-4614-3825-0_2. ISBN 978-1-4614-3824-3. Never look directly at the Sun through any form of optical equipment, even for an instant. A brief glimpse of the Sun through a telescope is enough to cause permanent eye damage, or even blindness. Even looking at the Sun with the naked eye for more than a second or two is not safe. Do not assume that it is safe to look at the Sun through a filter, no matter how dark the filter appears to be.
  222. ^ Haber, Jorg; Magnor, Marcus; Seidel, Hans-Peter (2005). "Physically based Simulation of Twilight Phenomena". ACM Transactions on Graphics. 24 (4): 1353–1373. CiteSeerX 10.1.1.67.2567. doi:10.1145/1095878.1095884. S2CID 2349082.
  223. ^ Piggin, I. G. (1972). "Diurnal asymmetries in global radiation". Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B. 20 (1): 41–48. Bibcode:1972AMGBB..20...41P. doi:10.1007/BF02243313. S2CID 118819800.
  224. ^ "The Green Flash". BBC. 16 December 2008. Archived from the original on 16 December 2008. Retrieved 10 August 2008.
  225. ^ Coleman, J. A.; Davidson, George (2015). The Dictionary of Mythology: An A–Z of Themes, Legends, and Heroes. London: Arcturus Publishing Limited. p. 316. ISBN 978-1-78404-478-7.
  226. ^ Šprajc, Ivan; Nava, Pedro Francisco Sanchéz (21 March 2018). "El Sol en Chichén Itza y Dzibilchaltún. La Supuesta Importancia de los Equinoccios en Mesoamérica". Arqueología Mexicana (in Spanish). XXV (149): 26–31.
  227. ^ a b c d Black, Jeremy; Green, Anthony (1992). Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary. The British Museum Press. pp. 182–184. ISBN 978-0-7141-1705-8. Archived from the original on 20 November 2020. Retrieved 22 August 2020.
  228. ^ a b c Nemet-Nejat, Karen Rhea (1998). Daily Life in Ancient Mesopotamia. Greenwood. p. 203. ISBN 978-0-313-29497-6.
  229. ^ Teeter, Emily (2011). Religion and Ritual in Ancient Egypt. New York: Cambridge University Press. ISBN 978-0-521-84855-8.
  230. ^ Frankfort, Henri (2011). Ancient Egyptian Religion: an Interpretation. Dover Publications. ISBN 978-0-486-41138-5.
  231. ^ "Planet". Oxford Dictionaries. December 2007. Archived from the original on 2 April 2015. Retrieved 22 March 2015.
  232. ^ Goldstein, Bernard R. (1997). "Saving the phenomena : the background to Ptolemy's planetary theory". Journal for the History of Astronomy. 28 (1): 1–12. Bibcode:1997JHA....28....1G. doi:10.1177/002182869702800101. S2CID 118875902.
  233. ^ Ptolemy; Toomer, G.J. (1998). Ptolemy's Almagest. Princeton University Press. ISBN 978-0-691-00260-6.
  234. ^ Mallory, James P.; Adams, Douglas Q., eds. (1997). Encyclopedia of Indo-European Culture. London: Routledge. ISBN 978-1-884964-98-5. (EIEC). Archived from the original on 31 March 2017. Retrieved 20 October 2017.
  235. ^ a b Mallory, J. P. (1989). In Search of the Indo-Europeans: Language, Archaeology and Myth. Thames & Hudson. p. 129. ISBN 978-0-500-27616-7.
  236. ^ "Hesiod, Theogony line 371". Perseus Digital Library. 15 September 2021. Archived from the original on 15 September 2021. Retrieved 28 May 2024.
  237. ^ Burkert, Walter (1985). Greek Religion. Cambridge: Harvard University Press. p. 120. ISBN 978-0-674-36281-9.
  238. ^ Malachi 4:2
  239. ^ Bible, Book of Malachi. King James Version. Archived from the original on 20 October 2017. Retrieved 20 October 2017.
  240. ^ Spargo, Emma Jane Marie (1953). The Category of the Aesthetic in the Philosophy of Saint Bonaventure. St. Bonaventure, New York; E. Nauwelaerts, Louvain, Belgium; F. Schöningh, Paderborn, Germany: The Franciscan Institute. p. 86. Archived from the original on 17 April 2021. Retrieved 3 November 2020.
  241. ^ Chadwick, Owen (1998). A History of Christianity. St. Martin's Press. p. 22. ISBN 978-0-312-18723-1. Archived from the original on 18 May 2016. Retrieved 15 November 2015.
  242. ^ a b Townsend, Richard (1979). State and Cosmos in the Art of Tenochtitlan. Washington, DC: Dumbarton Oaks. p. 66. Retrieved 28 May 2024.
  243. ^ a b Roberts, Jeremy (2010). Japanese Mythology A To Z (2nd ed.). New York: Chelsea House Publishers. pp. 4–5. ISBN 978-1-60413-435-3.
  244. ^ Wheeler, Post (1952). The Sacred Scriptures of the Japanese. New York: Henry Schuman. pp. 393–395. ISBN 978-1-4254-8787-4.

Further reading

External links

Listen to this article (1 hour and 29 minutes)
Spoken Wikipedia icon
This audio file was created from a revision of this article dated 7 June 2021 (2021-06-07), and does not reflect subsequent edits.