stringtranslate.com

Умножение

Четыре мешка по три шарика в каждом дают двенадцать шариков (4 × 3 = 12).
Умножение также можно рассматривать как масштабирование . Здесь 2 умножается на 3 с использованием масштабирования, в результате чего получается 6.
Анимация на умножение 2×3=6
4 × 5 = 20. Большой прямоугольник состоит из 20 квадратов, каждый размером 1 на 1 единицу.
Площадь полотна 4,5м×2,5м = 11,25м2 ; 41/2× 21/2= 111/4

Умножение (часто обозначается крестиком × , оператором-точкой в ​​средней строке , сопоставлением или, на компьютерах , звездочкой * ) — одна из четырёх элементарных математических операций арифметики , остальные — сложение . вычитание и деление . Результат операции умножения называется произведением .

Умножение целых чисел можно рассматривать как многократное сложение ; то есть умножение двух чисел эквивалентно добавлению такого количества копий одного из них, множимого , как количество другого, множителя ; оба числа можно назвать факторами .

Например, число 4, умноженное на 3, которое часто пишется и произносится как «3×4», можно вычислить, сложив 3 копии числа 4 вместе:

Здесь 3 ( множитель ) и 4 ( множимое ) — множители , а 12 — произведение .

Одним из основных свойств умножения является свойство коммутативности , которое в данном случае гласит, что добавление 3 копий 4 дает тот же результат, что и добавление 4 копий 3:

Таким образом, обозначение множителя и множимого не влияет на результат умножения. [1]

Систематические обобщения этого базового определения определяют умножение целых чисел (включая отрицательные), рациональных чисел (дробей) и действительных чисел.

Умножение также можно представить как подсчет объектов, расположенных в прямоугольнике (для целых чисел), или как нахождение площади прямоугольника , стороны которого имеют заданную длину . Площадь прямоугольника не зависит от того, какая сторона измеряется первой — следствие свойства коммутативности.

Произведение двух измерений (или физических величин ) — это новый тип измерения, обычно с производной единицей . Например, умножение длин (в метрах или футах) двух сторон прямоугольника дает его площадь (в квадратных метрах или квадратных футах). Такой продукт является предметом размерного анализа .

Обратная операция умножения – деление . Например, поскольку 4, умноженное на 3, равно 12, 12, разделенное на 3, равно 4. Действительно, умножение на 3 с последующим делением на 3 дает исходное число. Деление числа, отличного от 0, само по себе равно 1.

Некоторые математические концепции расширяют фундаментальную идею умножения. Произведение последовательности, векторное умножение , комплексные числа и матрицы — все это примеры, где это можно увидеть. Эти более сложные конструкции имеют тенденцию влиять на основные свойства по-своему, например, становятся некоммутативными в матрицах и некоторых формах векторного умножения или изменении знака комплексных чисел.

Обозначения

В арифметике умножение часто записывается с использованием знака умножения (либо × , либо ) между членами (то есть в инфиксной записи ). [2] Например,

(«дважды три равно шести»)

Существуют и другие математические обозначения умножения:

или
Нотация средней точки или оператор точки , закодированная в Юникоде как U+22C5DOT OPERATOR , теперь является стандартной в США и других странах, где точка используется в качестве десятичной точки . Когда символ оператора точки недоступен,  используется точка (·). В других странах, где в качестве десятичного знака используется запятая , для умножения используется точка или средняя точка. [ нужна цитата ]
Исторически сложилось так, что в Соединенном Королевстве и Ирландии средняя точка иногда использовалась для десятичной дроби, чтобы она не исчезла в линейке, а точка/точка использовалась для умножения. Однако, поскольку в 1968 году Министерство технологий постановило использовать точку в качестве десятичной точки [4] и стандарт Международной системы единиц (СИ) с тех пор получил широкое распространение, такое использование теперь встречается только в более традиционных журналах, таких как как «Ланцет» . [5]

В компьютерном программировании звездочка (например, )5*2 по-прежнему является наиболее распространенным обозначением. Это связано с тем, что большинство компьютеров исторически были ограничены небольшими наборами символов (такими как ASCII и EBCDIC ), в которых отсутствовал знак умножения (например, или ×), в то время как звездочка появлялась на каждой клавиатуре. [ необходима цитация ] Это использование возникло в языке программирования FORTRAN . [9]

Числа, которые нужно умножить, обычно называются «множителями» (как при факторизации ). Число, которое нужно умножить, называется «множимым», а число, на которое оно умножается, — «множителем». Обычно множитель ставится первым, а множимое — вторым; [1] однако иногда первым фактором является множимое, а вторым - множитель. [10] Кроме того, поскольку результат умножения не зависит от порядка множителей, различие между «множимым» и «множителем» полезно только на самом элементарном уровне и в некоторых алгоритмах умножения , таких как длинное умножение . Поэтому в некоторых источниках термин «множимое» рассматривается как синоним слова «множитель». [11] В алгебре число, которое является множителем переменной или выражения (например, 3 в ), называется коэффициентом .

Результат умножения называется произведением . Когда один множитель является целым числом, произведение кратно другому или произведению остальных. Таким образом, кратно , как и . Произведение целых чисел кратно каждому множителю; например, 15 является произведением 3 и 5 и кратно 3 и кратно 5.

Определения

Произведение двух чисел или умножение двух чисел можно определить для общих особых случаев: целых чисел, натуральных чисел, дробей, действительных чисел, комплексных чисел и кватернионов.

Произведение двух натуральных чисел

3 на 4 — 12.

Размещение нескольких камней в прямоугольном узоре с рядами и столбцами дает

камни.

Произведение двух целых чисел

Целое число может быть нулем, положительным или отрицательным числом. Произведение нуля и другого целого числа всегда равно нулю. Произведение двух ненулевых целых чисел определяется произведением их положительных сумм в сочетании со знаком, полученным по следующему правилу:

(Это правило является следствием распределительности умножения по сравнению с сложением и не является дополнительным правилом .)

В словах:

Продукт двух фракций

Две дроби можно умножить, перемножив их числители и знаменатели:

Произведение двух действительных чисел

Существует несколько эквивалентных способов формального определения действительных чисел; см. Построение действительных чисел . Определение умножения является частью всех этих определений.

Фундаментальным аспектом этих определений является то, что каждое действительное число может быть аппроксимировано с любой точностью рациональными числами . Стандартный способ выразить это состоит в том, что каждое действительное число является наименьшей верхней границей множества рациональных чисел. В частности, каждое положительное действительное число является наименьшей верхней границей усечения его бесконечного десятичного представления ; например, это наименьшая верхняя граница

Фундаментальным свойством действительных чисел является то, что рациональные приближения совместимы с арифметическими операциями и, в частности, с умножением. Это означает, что если a и b - положительные действительные числа такие, что и тогда В частности, произведение двух положительных действительных чисел является наименьшей верхней границей почленного произведения последовательностей их десятичных представлений.

Поскольку изменение знаков преобразует наименьшие верхние границы в максимальные нижние, самый простой способ справиться с умножением одного или двух отрицательных чисел — использовать правило знаков, описанное выше в § Произведение двух целых чисел. Часто предпочитают построение действительных чисел с помощью последовательностей Коши , чтобы избежать рассмотрения четырех возможных конфигураций знаков.

Произведение двух комплексных чисел

Два комплексных числа можно умножить на основании закона распределения и того факта , что следующим образом:

Комплексное число в полярных координатах

Геометрический смысл комплексного умножения можно понять, переписав комплексные числа в полярных координатах :

Более того,

из чего получается

Геометрический смысл состоит в том, что величины умножаются, а аргументы складываются.

Произведение двух кватернионов

Произведение двух кватернионов можно найти в статье о кватернионах . Обратите внимание, что в данном случае и в целом различны.

Вычисление

«Образованная обезьяна» — оловянная игрушка 1918 года, использовавшаяся в качестве «калькулятора» умножения. Например: установите ноги обезьяны на 4 и 9 и возьмите в руки продукт — 36.

Многие распространенные методы умножения чисел с использованием карандаша и бумаги требуют таблицы умножения заученных или проверенных произведений небольших чисел (обычно любых двух чисел от 0 до 9). Однако один из методов — алгоритм крестьянского умножения — этого не делает. Пример ниже иллюстрирует «длинное умножение» («стандартный алгоритм», «школьное умножение»):

 23958233× 5830——————————————— 00000000 (= 23 958 233 × 0) 71874699 (= 23 958 233 × 30) 191665864 (= 23 958 233 × 800)+ 119791165 (= 23 958 233 × 5 000)——————————————— 139676498390 (= 139 676 498 390)

В некоторых странах, таких как Германия , вышеуказанное умножение изображается аналогичным образом, но исходное произведение остается горизонтальным, а вычисления начинаются с первой цифры множителя: [12]

23958233 · 5830——————————————— 119791165 191665864 71874699 00000000——————————————— 139676498390

Умножать числа вручную более чем на пару десятичных знаков утомительно и подвержено ошибкам. Десятичные логарифмы были придуманы для упрощения таких вычислений, поскольку сложение логарифмов эквивалентно умножению. Логарифмическая линейка позволяла быстро умножать числа примерно с точностью до трех знаков. Начиная с начала 20-го века механические калькуляторы , такие как Marchant , автоматизировали умножение чисел длиной до 10 цифр. Современные электронные компьютеры и калькуляторы значительно сократили необходимость умножения вручную.

Исторические алгоритмы

Методы умножения были задокументированы в трудах древнеегипетской , греческой, индийской , китайской и китайской цивилизаций .

Кость Ишанго , датируемая примерно 18 000–20 000 гг. до н. э., может намекать на знания о размножении в эпоху верхнего палеолита в Центральной Африке , но это предположение. [13] [ нужна проверка ]

Египтяне

Египетский метод умножения целых чисел и дробей, описанный в Математическом папирусе Ринда , заключался в последовательном сложении и удвоении. Например, чтобы найти произведение 13 и 21, нужно было удвоить 21 три раза, получив 2 × 21 = 42 , 4 × 21 = 2 × 42 = 84 , 8 × 21 = 2 × 84 = 168 . Полный продукт затем можно найти, добавив соответствующие члены, найденные в последовательности удвоения: [14]

13×21 = (1+4+8)×21 = (1×21) + (4×21) + (8×21) = 21 + 84 + 168 = 273.

вавилоняне

Вавилоняне использовали шестидесятеричную позиционную систему счисления , аналогичную современной десятичной системе . Таким образом, вавилонское умножение было очень похоже на современное десятичное умножение. Из-за относительной трудности запоминания различных произведений размера 60×60 вавилонские математики использовали таблицу умножения . Эти таблицы состояли из списка первых двадцати кратных некоторого главного числа n : n , 2 n , ..., 20 n ; за которыми следуют числа, кратные 10 n : 30 n , 40 n и 50 n . Тогда, чтобы вычислить любое шестидесятеричное произведение, скажем, 53 n , нужно всего лишь сложить 50 n и 3 n, вычисленные по таблице. [ нужна цитата ]

Китайский

38 × 76 = 2888

В математическом тексте Чжоуби Суаньцзин , датированном до 300 г. до н. э., и в « Девяти главах математического искусства » вычисления умножения были записаны словами, хотя ранние китайские математики использовали исчисление Рода , включающее сложение, вычитание, умножение и деление. К концу периода Воюющих царств китайцы уже использовали десятичную таблицу умножения . [15]

Современные методы

Произведение чисел 45 и 256. Обратите внимание, что порядок цифр в числе 45 в левом столбце обратный. Шаг переноса умножения можно выполнить на заключительном этапе расчета (выделено жирным шрифтом), вернув конечное произведение 45×256 = 11520 . Это вариант решетчатого умножения .

Современный метод умножения, основанный на индуистско-арабской системе счисления, был впервые описан Брахмагуптой . Брахмагупта дал правила сложения, вычитания, умножения и деления. Генри Берчард Файн , в то время профессор математики в Принстонском университете , написал следующее:

Индейцы являются изобретателями не только самой позиционной десятичной системы, но и большинства процессов, связанных с элементарным счетом с ее помощью. Сложение и вычитание они производили совершенно так же, как и теперь; умножение они производили разными способами, в том числе и наш, но деление делали с трудом. [16]

Эти алгоритмы десятичной арифметики с разрядными значениями были представлены в арабских странах Аль-Хорезми в начале 9 века и популяризированы в западном мире Фибоначчи в 13 веке. [17]

Сетчатый метод

Метод умножения сетки , или метод коробки, используется в начальных школах Англии и Уэльса, а также в некоторых регионах [ каких? ] США, чтобы помочь научить понимать, как работает многозначное умножение. Примером умножения 34 на 13 может служить размещение чисел в сетке следующим образом:

а затем добавьте записи.

Компьютерные алгоритмы

Классический метод умножения двух n -значных чисел требует n двузначных умножений. Были разработаны алгоритмы умножения , которые значительно сокращают время вычислений при умножении больших чисел. Методы, основанные на дискретном преобразовании Фурье , снижают вычислительную сложность до O ( n log n log log n ) . В 2016 году коэффициент log log n был заменен функцией, которая растет гораздо медленнее, хотя и не является постоянной. [18] В марте 2019 года Дэвид Харви и Йорис ван дер Хувен представили статью, в которой представлен алгоритм целочисленного умножения со сложностью [19]. Предполагается, что алгоритм, также основанный на быстром преобразовании Фурье, является асимптотически оптимальным. [20] Алгоритм практически бесполезен, поскольку он становится быстрее только при умножении чрезвычайно больших чисел (имеющих более 2 1729 12 бит). [21]

Продукты измерений

Осмысленно складывать или вычитать можно только количества одного типа, а вот количества разных типов можно без проблем умножать или делить. Например, четыре мешка по три шарика в каждом можно рассматривать как: [1]

[4 мешка] × [3 шарика в мешке] = 12 шариков.

Когда два измерения умножаются вместе, продукт имеет тип, зависящий от типа измерений. Общая теория дается анализом размерностей . Этот анализ обычно применяется в физике, но он также имеет приложения в финансах и других прикладных областях.

Типичным примером в физике является тот факт, что умножение скорости на время дает расстояние . Например:

50 километров в час × 3 часа = 150 километров.

В этом случае часовые единицы сокращаются, в результате чего в произведении остаются только километры.

Другие примеры умножения с использованием единиц включают:

2,5 метра × 4,5 метра = 11,25 квадратных метра.
11 метров/секунд × 9 секунд = 99 метров.
4,5 жителей на дом × 20 домов = 90 жителей

Продукт последовательности

Обозначение заглавной буквы Пи

Произведение последовательности факторов можно записать с помощью символа произведения , который происходит от заглавной буквы Π (пи) греческого алфавита (во многом аналогично тому, как символ суммирования происходит от греческой буквы Σ (сигма)). [22] [23] Смысл этих обозначений определяется формулой

что приводит к

В таких обозначениях переменная i представляет собой изменяющееся целое число , называемое индексом умножения, которое начинается от нижнего значения 1 , указанного в нижнем индексе, до верхнего значения 4, заданного верхним индексом. Продукт получается путем умножения всех коэффициентов, полученных путем замены индекса умножения на целое число между нижним и верхним значениями (включая границы) в выражении, которое следует за оператором произведения.

В более общем смысле обозначение определяется как

где m и n — целые числа или выражения, которые оцениваются как целые числа. В случае, когда m = n , значение произведения такое же, как и у одного фактора x m ; если m > n , продукт является пустым продуктом , значение которого равно 1 — независимо от выражения для факторов.

Свойства обозначения заглавной буквы «пи»

По определению,

Если все факторы идентичны, произведение n факторов эквивалентно возведению в степень :

Ассоциативность и коммутативность умножения предполагают

и

если a — неотрицательное целое число или если все — положительные действительные числа , и

если все они являются неотрицательными целыми числами или если x — положительное действительное число.

Бесконечные продукты

Можно также рассматривать произведения бесконечного числа членов; они называются бесконечными произведениями . В условном смысле это заключается в замене n выше на символ бесконечности ∞. Продукт такой бесконечной последовательности определяется как предел произведения первых n членов, поскольку n неограниченно растет. То есть,

Аналогичным образом можно заменить m на отрицательную бесконечность и определить:

при условии, что оба предела существуют. [ нужна цитата ]

Возведение в степень

Когда умножение повторяется, результирующая операция известна как возведение в степень . Например, произведение трех делителей на два (2×2×2) — это «два, возведенные в третью степень», и обозначается 2 3 , двойкой с верхним индексом три. В этом примере число два — это основание , а три — показатель степени . [24] В общем, показатель степени (или верхний индекс) указывает, сколько раз основание появляется в выражении, чтобы выражение

указывает, что n копий основания a необходимо перемножить. Это обозначение можно использовать всякий раз, когда известно, что умножение является степенным ассоциативным .

Характеристики

Умножение чисел 0–10. Метки строк = множимое. Ось X = множитель. Ось Y = продукт.
Распространение этой закономерности на другие квадранты объясняет, почему отрицательное число, умноженное на отрицательное число, дает положительное число.
Обратите также внимание на то, как умножение на ноль приводит к уменьшению размерности, как и умножение на сингулярную матрицу , где определитель равен 0. В этом процессе информация теряется и не может быть восстановлена.

Для действительных и комплексных чисел, к которым относятся, например, натуральные числа , целые числа и дроби , умножение имеет определенные свойства:

Коммутативное свойство
Порядок умножения двух чисел не имеет значения:
[25] [26]
Ассоциативное свойство
Выражения, включающие только умножение или сложение, инвариантны относительно порядка операций :
[25] [26]
Распределительное свойство
Справедливо в отношении умножения над сложением. Это тождество имеет первостепенное значение для упрощения алгебраических выражений:
[25] [26]
Элемент идентификации
Мультипликативное тождество равно 1; все, что умножено на 1, является самим собой. Эта особенность 1 известна как свойство идентичности :
[25] [26]
Свойство 0
Любое число, умноженное на 0, равно 0. Это известно как свойство нуля умножения:
[25]
Отрицание
-1 раз любое число равно аддитивному обратному этому числу.
где
–1 раз –1 равно 1.
Обратный элемент
Каждое число x , кроме 0 , имеет мультипликативное обратное , такое, что . [27]
Сохранение заказа
Умножение на положительное число сохраняет порядок :
Для a > 0 , если b > c , то ab > ac .
Умножение на отрицательное число меняет порядок:
Для a <0 , если b > c , то ab < ac .
Комплексные числа не имеют порядка, совместимого как со сложением, так и с умножением. [28]

Другие математические системы, включающие операцию умножения, могут не обладать всеми этими свойствами. Например, умножение, как правило, не является коммутативным для матриц и кватернионов . [25]

Аксиомы

В книге «Принципы арифметики, новый метод экспозита» Джузеппе Пеано предложил аксиомы арифметики, основанные на его аксиомах для натуральных чисел. Арифметика Пеано имеет две аксиомы умножения:

Здесь S ( y ) представляет преемника y ; т. е. натуральное число, следующее за y . Различные свойства, такие как ассоциативность, могут быть доказаны на основе этих и других аксиом арифметики Пеано, включая индукцию . Например, S (0), обозначаемый 1, является мультипликативным тождеством, поскольку

Аксиомы целых чисел обычно определяют их как классы эквивалентности упорядоченных пар натуральных чисел. Модель основана на рассмотрении ( x , y ) как эквивалента xy , когда x и y рассматриваются как целые числа. Таким образом, и (0,1), и (1,2) эквивалентны −1. Определенная таким образом аксиома умножения целых чисел такова:

Тогда правило −1 × −1 = 1 можно вывести из

Умножение аналогичным образом распространяется на рациональные числа , а затем и на действительные числа . [ нужна цитата ]

Умножение с теорией множеств

Произведение неотрицательных целых чисел можно определить с помощью теории множеств с использованием кардинальных чисел или аксиом Пеано . Ниже показано, как распространить это на умножение произвольных целых чисел, а затем на произвольные рациональные числа. Произведение действительных чисел определяется как произведение рациональных чисел; см. построение действительных чисел . [29]

Умножение в теории групп

Существует множество множеств, которые при операции умножения удовлетворяют аксиомам, определяющим структуру группы . Этими аксиомами являются замыкание, ассоциативность, включение единичного и обратного элементов.

Простой пример — набор ненулевых рациональных чисел . Здесь имеется тождество 1, в отличие от групп при сложении, где тождество обычно равно 0. Обратите внимание, что из рациональных чисел ноль необходимо исключить, потому что при умножении он не имеет обратного: не существует рационального числа, которое можно было бы умножить. на ноль, чтобы получить 1. В этом примере используется абелева группа , но это не всегда так.

Чтобы убедиться в этом, рассмотрим набор обратимых квадратных матриц заданной размерности над заданным полем . Здесь легко проверить замыкание, ассоциативность и включение единицы ( тождественной матрицы ) и обратных значений. Однако умножение матриц не является коммутативным, что показывает, что эта группа неабелева.

Еще один факт, на который стоит обратить внимание, заключается в том, что целые числа при умножении не образуют группу, даже если исключить ноль. В этом легко убедиться по отсутствию обратного для всех элементов, кроме 1 и −1.

Умножение в теории групп обычно обозначается либо точкой, либо сопоставлением (пропуск символа операции между элементами). Таким образом , умножение элемента a на элемент b можно обозначить как b или ab . При обращении к группе посредством указания набора и операции используется точка. Например, наш первый пример может быть обозначен . [30]

Умножение разных видов чисел

Числа могут считать (3 яблока), упорядочивать (третье яблоко) или измерять (высота 3,5 фута); По мере того как история математики развивалась от счета на пальцах к моделированию квантовой механики, умножение было распространено на более сложные и абстрактные типы чисел, а также на вещи, которые не являются числами (например, матрицы ) или не очень похожи на числа ( такие как кватернионы ).

Целые числа
представляет собой сумму N копий M , когда N и M — положительные целые числа. Это дает количество элементов в массиве N в ширину и M в высоту. Обобщение на отрицательные числа можно выполнить с помощью
и
Те же правила знаков применимы к рациональным и действительным числам.
Рациональное число
Обобщение на дроби осуществляется путем умножения числителей и знаменателей соответственно: . Это дает площадь прямоугольника большую и широкую и равняется количеству элементов в массиве, когда рациональные числа оказываются целыми числами. [25]
Вещественные числа
Действительные числа и их произведения можно определить как последовательности рациональных чисел .
Комплексные числа
Учитывая комплексные числа и упорядоченные пары действительных чисел и , произведение равно . Это то же самое, что и для вещественных чисел , когда мнимые части и равны нулю.
Эквивалентно, обозначив как , [25]
Альтернативно, в тригонометрической форме, если , то [25]
Дальнейшие обобщения
См. раздел «Умножение в теории групп» выше и «Мультипликативная группа» , которая, например, включает умножение матриц. Очень общая и абстрактная концепция умножения — это «мультипликативно обозначенная» (вторая) бинарная операция в кольце . Примером кольца, не относящегося ни к одной из вышеперечисленных систем счисления, является кольцо многочленов (многочлены можно складывать и умножать, но многочлены не являются числами в обычном смысле).
Разделение
Часто деление , совпадает с умножением на обратное . Умножение для некоторых типов «числ» может иметь соответствующее деление без обратных чисел; в области целостности x может не иметь обратного " ", но может быть определен. В теле есть обратные значения, но они могут быть неоднозначными в некоммутативных кольцах, поскольку не обязательно должны быть такими же, как . [ нужна цитата ]

Смотрите также

Рекомендации

  1. ^ abc Девлин, Кейт (январь 2011 г.). «Что такое умножение?». Математическая ассоциация Америки . Архивировано из оригинала 27 мая 2017 г. Проверено 14 мая 2017 г. При умножении у вас есть множимое (написанное вторым), умноженное на множитель (написанное первым).
  2. ^ Академия Хана (14 августа 2015 г.), Введение в умножение | Умножение и деление | Арифметика | Академия Хана, заархивировано из оригинала 24 марта 2017 г. , получено 7 марта 2017 г.
  3. ^ Академия Хана (06 сентября 2012 г.), Почему мы не используем знак умножения? | Введение в алгебру | Алгебра I | Академия Хана, заархивировано из оригинала 27 марта 2017 г. , получено 7 марта 2017 г.
  4. ^ «Победа по очкам». Природа . 218 (5137): 111. 1968. Бибкод : 1968Natur.218S.111.. doi : 10.1038/218111c0 .
  5. ^ «The Lancet – Рекомендации по форматированию рукописей в электронном виде» (PDF) . Проверено 25 апреля 2017 г.
  6. ^ Анонсируем TI Programmable 88! (PDF) . Инструменты Техаса . 1982. Архивировано (PDF) из оригинала 3 августа 2017 г. Проверено 3 августа 2017 г. Теперь подразумеваемое умножение распознается AOS , и за квадратным корнем, логарифмическими и тригонометрическими функциями могут следовать их аргументы, как при работе с карандашом и бумагой.(Примечание. TI-88 существовал только как прототип и никогда не был представлен широкой публике.)
  7. ^ Петерсон, Дэйв (14 октября 2019 г.). «Порядок операций: неявное умножение?». Алгебра / ПЕМДАС. Доктора-математики. Архивировано из оригинала 24 сентября 2023 г. Проверено 25 сентября 2023 г.
  8. ^ Петерсон, Дэйв (18 августа 2023 г.). «Неявное умножение 1: не так плохо, как вы думаете». Алгебра/Неоднозначность, PEMDAS. Доктора-математики. Архивировано из оригинала 24 сентября 2023 г. Проверено 25 сентября 2023 г.; Петерсон, Дэйв (25 августа 2023 г.). «Неявное умножение 2: существует ли стандарт?». Алгебра, Арифметика/Неоднозначность, PEMDAS. Доктора-математики. Архивировано из оригинала 24 сентября 2023 г. Проверено 25 сентября 2023 г.; Петерсон, Дэйв (01 сентября 2023 г.). «Неявное умножение 3: это невозможно доказать». Алгебра / ПЕМДАС. Доктора-математики. Архивировано из оригинала 24 сентября 2023 г. Проверено 25 сентября 2023 г.
  9. ^ Фуллер, Уильям Р. (1977). Программирование на FORTRAN: дополнение к курсам математического анализа. Университеттекст. Спрингер. п. 10. дои : 10.1007/978-1-4612-9938-7. ISBN 978-0-387-90283-8.
  10. ^ Рамон, Крютон. «Множимое и множитель». Дом математики Крютона Рамона. Архивировано из оригинала 26 октября 2015 г. Проверено 10 ноября 2015 г..
  11. ^ Литвин, Честер (2012). Предварительная стимуляция мозга посредством психокондукции. Траффорд. стр. 2–3, 5–6. ISBN 978-1-4669-0152-0– через Поиск книг Google .
  12. ^ «Умножение». mathematische-basteleien.de . Проверено 15 марта 2022 г.
  13. ^ Плетцер, Владимир (4 апреля 2012 г.). «Указывает ли кость Ишанго на знание основания 12? Интерпретация доисторического открытия, первого математического инструмента человечества». arXiv : 1204.1019 [math.HO].
  14. ^ «Крестьянское размножение». Cut-the-knot.org . Проверено 29 декабря 2021 г.
  15. ^ Цю, Джейн (7 января 2014 г.). «Таблица древних времен, спрятанная в полосках китайского бамбука». Природа . дои : 10.1038/nature.2014.14482 . S2CID  130132289. Архивировано из оригинала 22 января 2014 г. Проверено 22 января 2014 г.
  16. ^ Хорошо, Генри Б. (1907). Система счисления в алгебре - теоретическое и историческое рассмотрение (PDF) (2-е изд.). п. 90.
  17. ^ Бернхард, Адриенн. «Как современная математика возникла из утраченной исламской библиотеки». bbc.com . Проверено 22 апреля 2022 г.
  18. ^ Харви, Дэвид; ван дер Хувен, Йорис; Лесерф, Грегуар (2016). «Еще быстрее целочисленное умножение». Журнал сложности . 36 : 1–30. arXiv : 1407.3360 . doi : 10.1016/j.jco.2016.03.001. ISSN  0885-064X. S2CID  205861906.
  19. ^ Дэвид Харви, Йорис Ван дер Хувен (2019). Умножение целых чисел за время O(n log n). Архивировано 8 апреля 2019 г. на Wayback Machine.
  20. ^ Хартнетт, Кевин (11 апреля 2019 г.). «Математики открывают идеальный способ умножения». Журнал Кванта . Проверено 25 января 2020 г.
  21. ^ Кларрайх, Эрика. «Умножение достигает предела скорости». cacm.acm.org . Архивировано из оригинала 31 октября 2020 г. Проверено 25 января 2020 г.
  22. ^ Вайсштейн, Эрик В. «Продукт». mathworld.wolfram.com . Проверено 16 августа 2020 г.
  23. ^ «Суммирование и обозначение произведения». math.illinoisstate.edu . Проверено 16 августа 2020 г.
  24. ^ Вайсштейн, Эрик В. «Возведение в степень». mathworld.wolfram.com . Проверено 29 декабря 2021 г.
  25. ^ abcdefghi «Умножение - Математическая энциклопедия». энциклопедияofmath.org . Проверено 29 декабря 2021 г.
  26. ^ abcd Биггс, Норман Л. (2002). Дискретная математика . Издательство Оксфордского университета. п. 25. ISBN 978-0-19-871369-2.
  27. ^ Вайсштейн, Эрик В. «Мультипликативная инверсия». mathworld.wolfram.com . Проверено 19 апреля 2022 г.
  28. ^ Энджелл, Дэвид. «ЗАКАЗ КОМПЛЕКСНЫХ ЧИСЕЛ... НЕ*» (PDF) . web.maths.unsw.edu.au . Проверено 29 декабря 2021 г.
  29. ^ «10.2: Построение реальных чисел» . Математика LibreTexts . 11 апреля 2018 г. Проверено 23 июня 2023 г.
  30. ^ Бернс, Джеральд (1977). Введение в теорию групп с приложениями . Нью-Йорк: Академическая пресса. ISBN 9780121457501.

дальнейшее чтение

Внешние ссылки