stringtranslate.com

Parasitism

A fish parasite, the isopod Cymothoa exigua, replacing the tongue of a Lithognathus

Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life.[1] The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one".[2] Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.

There are six major parasitic strategies of exploitation of animal hosts, namely parasitic castration, directly transmitted parasitism (by contact), trophically-transmitted parasitism (by being eaten), vector-transmitted parasitism, parasitoidism, and micropredation. One major axis of classification concerns invasiveness: an endoparasite lives inside the host's body; an ectoparasite lives outside, on the host's surface.

Like predation, parasitism is a type of consumer–resource interaction,[3] but unlike predators, parasites, with the exception of parasitoids, are typically much smaller than their hosts, do not kill them, and often live in or on their hosts for an extended period. Parasites of animals are highly specialised, and reproduce at a faster rate than their hosts. Classic examples include interactions between vertebrate hosts and tapeworms, flukes, the malaria-causing Plasmodium species, and fleas.

Паразиты снижают приспособленность хозяина посредством общей или специализированной патологии , от паразитарной кастрации до модификации поведения хозяина. Паразиты повышают собственную приспособленность, эксплуатируя хозяев для получения ресурсов, необходимых для их выживания, в частности, питаясь ими и используя промежуточных (вторичных) хозяев для содействия их передаче от одного окончательного (первичного) хозяина к другому. Хотя паразитизм часто недвусмыслен, он является частью спектра взаимодействий между видами , переходя через паразитоидизм в хищничество, через эволюцию в мутуализм , а у некоторых грибов переходя в сапрофитию .

Люди знали о паразитах, таких как круглые черви и ленточные черви , со времен Древнего Египта , Греции и Рима . В ранние современные времена Антони ван Левенгук наблюдал Giardia lamblia в свой микроскоп в 1681 году, в то время как Франческо Реди описал внутренних и внешних паразитов, включая овечью двуустку и клещей . Современная паразитология развилась в 19 веке. В человеческой культуре паразитизм имеет негативные коннотации. Они были использованы в сатирическом эффекте в поэме Джонатана Свифта 1733 года «О поэзии: Рапсодия», где поэты сравнивались с гиперпаразитарными «вредителями». В художественной литературе готический роман ужасов Брэма Стокера 1897 года «Дракула» и его многочисленные более поздние адаптации изображали кровососущего паразита. Фильм Ридли Скотта 1979 года «Чужой» был одним из многих произведений научной фантастики , в которых фигурировал паразитический инопланетный вид. [4]

Этимология

Впервые использованное в английском языке в 1539 году, слово parasite происходит от средневекового французского parasite , от латинизированной формы parasitus , от древнегреческого παράσιτος [5] (parasitos)  «тот, кто ест за столом другого», в свою очередь от παρά [6] (para)  «рядом, около» и σῖτος (sitos)  «пшеница, еда». [7] Родственный термин parasitism появляется в английском языке с 1611 года. [8]

Эволюционные стратегии

Основные понятия

Head (scolex) of tapeworm Taenia solium, an intestinal parasite, has hooks and suckers to attach to its host

Parasitism is a kind of symbiosis, a close and persistent long-term biological interaction between a parasite and its host. Unlike saprotrophs, parasites feed on living hosts, though some parasitic fungi, for instance, may continue to feed on hosts they have killed. Unlike commensalism and mutualism, the parasitic relationship harms the host, either feeding on it or, as in the case of intestinal parasites, consuming some of its food. Because parasites interact with other species, they can readily act as vectors of pathogens, causing disease.[9][10][11] Predation is by definition not a symbiosis, as the interaction is brief, but the entomologist E. O. Wilson has characterised parasites as "predators that eat prey in units of less than one".[2]

Within that scope are many possible strategies. Taxonomists classify parasites in a variety of overlapping schemes, based on their interactions with their hosts and on their life cycles, which are sometimes very complex. An obligate parasite depends completely on the host to complete its life cycle, while a facultative parasite does not. Parasite life cycles involving only one host are called "direct"; those with a definitive host (where the parasite reproduces sexually) and at least one intermediate host are called "indirect".[12][13] An endoparasite lives inside the host's body; an ectoparasite lives outside, on the host's surface.[14] Mesoparasites—like some copepods, for example—enter an opening in the host's body and remain partly embedded there.[15] Some parasites can be generalists, feeding on a wide range of hosts, but many parasites, and the majority of protozoans and helminths that parasitise animals, are specialists and extremely host-specific.[14] An early basic, functional division of parasites distinguished microparasites and macroparasites. These each had a mathematical model assigned in order to analyse the population movements of the host–parasite groupings.[16] The microorganisms and viruses that can reproduce and complete their life cycle within the host are known as microparasites. Macroparasites are the multicellular organisms that reproduce and complete their life cycle outside of the host or on the host's body.[16][17]

Much of the thinking on types of parasitism has focused on terrestrial animal parasites of animals, such as helminths. Those in other environments and with other hosts often have analogous strategies. For example, the snubnosed eel is probably a facultative endoparasite (i.e., it is semiparasitic) that opportunistically burrows into and eats sick and dying fish.[18] Plant-eating insects such as scale insects, aphids, and caterpillars closely resemble ectoparasites, attacking much larger plants; they serve as vectors of bacteria, fungi and viruses which cause plant diseases. As female scale insects cannot move, they are obligate parasites, permanently attached to their hosts.[16]

The sensory inputs that a parasite employs to identify and approach a potential host are known as "host cues". Such cues can include, for example, vibration,[19] exhaled carbon dioxide, skin odours, visual and heat signatures, and moisture.[20] Parasitic plants can use, for example, light, host physiochemistry, and volatiles to recognize potential hosts.[21]

Major strategies

There are six major parasitic strategies, namely parasitic castration; directly transmitted parasitism; trophically-transmitted parasitism; vector-transmitted parasitism; parasitoidism; and micropredation. These apply to parasites whose hosts are plants as well as animals.[16][22] These strategies represent adaptive peaks; intermediate strategies are possible, but organisms in many different groups have consistently converged on these six, which are evolutionarily stable.[22]

A perspective on the evolutionary options can be gained by considering four key questions: the effect on the fitness of a parasite's hosts; the number of hosts they have per life stage; whether the host is prevented from reproducing; and whether the effect depends on intensity (number of parasites per host). From this analysis, the major evolutionary strategies of parasitism emerge, alongside predation.[23]

Parasitic castrators

The parasitic castrator Sacculina carcini (highlighted) attached to its crab host

Parasitic castrators partly or completely destroy their host's ability to reproduce, diverting the energy that would have gone into reproduction into host and parasite growth, sometimes causing gigantism in the host. The host's other systems remain intact, allowing it to survive and to sustain the parasite.[22][24] Parasitic crustaceans such as those in the specialised barnacle genus Sacculina specifically cause damage to the gonads of their many species[25] of host crabs. In the case of Sacculina, the testes of over two-thirds of their crab hosts degenerate sufficiently for these male crabs to develop female secondary sex characteristics such as broader abdomens, smaller claws and egg-grasping appendages. Various species of helminth castrate their hosts (such as insects and snails). This may happen directly, whether mechanically by feeding on their gonads, or by secreting a chemical that destroys reproductive cells; or indirectly, whether by secreting a hormone or by diverting nutrients. For example, the trematode Zoogonus lasius, whose sporocysts lack mouths, castrates the intertidal marine snail Tritia obsoleta chemically, developing in its gonad and killing its reproductive cells.[24][26]

Directly transmitted

Human head-lice are directly transmitted obligate ectoparasites

Directly transmitted parasites, not requiring a vector to reach their hosts, include such parasites of terrestrial vertebrates as lice and mites; marine parasites such as copepods and cyamid amphipods; monogeneans; and many species of nematodes, fungi, protozoans, bacteria, and viruses. Whether endoparasites or ectoparasites, each has a single host-species. Within that species, most individuals are free or almost free of parasites, while a minority carry a large number of parasites; this is known as an aggregated distribution.[22]

Trophically transmitted

Clonorchis sinensis, the Chinese liver fluke, is trophically transmitted

Трофически передаваемые паразиты передаются через поедание хозяином. К ним относятся трематоды (все, кроме шистосом ), цестоды , скребни , пентастомиды , многие круглые черви и многие простейшие, такие как токсоплазма . [22] У них сложные жизненные циклы, включающие хозяев двух или более видов. На ювенильных стадиях они заражают и часто инцистируют промежуточного хозяина. Когда промежуточное животное-хозяин съедается хищником, окончательным хозяином, паразит переживает процесс пищеварения и созревает во взрослую особь; некоторые живут как кишечные паразиты . Многие трофически передаваемые паразиты изменяют поведение своих промежуточных хозяев, увеличивая их шансы быть съеденными хищником. Как и в случае с напрямую передаваемыми паразитами, распределение трофически передаваемых паразитов среди особей хозяина является агрегированным. [22] Коинфекция несколькими паразитами является обычным явлением. [27] Аутоинфекция , при которой (в виде исключения) весь жизненный цикл паразита происходит в одном первичном хозяине, иногда может происходить у гельминтов, таких как Strongyloides stercoralis . [28]

Передаваемый вектором

Переносящийся простейший эндопаразит Trypanosoma среди эритроцитов человека

Паразиты , передающиеся через переносчиков, полагаются на третью сторону, промежуточного хозяина, где паразит не размножается половым путем, [14] чтобы переносить их от одного окончательного хозяина к другому. [22] Эти паразиты представляют собой микроорганизмы, а именно простейшие , бактерии или вирусы , часто внутриклеточные патогены (возбудители болезней). [22] Их переносчиками в основном являются гематофагические членистоногие, такие как блохи, вши, клещи и комары. [22] [29] Например, олений клещ Ixodes scapularis выступает в качестве переносчика таких заболеваний, как болезнь Лайма , бабезиоз и анаплазмоз . [30] Простейшие эндопаразиты, такие как малярийные паразиты рода Plasmodium и паразиты сонной болезни рода Trypanosoma , имеют инфекционные стадии в крови хозяина, которые переносятся к новым хозяевам через укусы насекомых. [31]

Паразитоиды

Parasitoids are insects which sooner or later kill their hosts, placing their relationship close to predation.[32] Most parasitoids are parasitoid wasps or other hymenopterans; others include dipterans such as phorid flies. They can be divided into two groups, idiobionts and koinobionts, differing in their treatment of their hosts.[33]

Idiobiont parasitoids sting their often-large prey on capture, either killing them outright or paralysing them immediately. The immobilised prey is then carried to a nest, sometimes alongside other prey if it is not large enough to support a parasitoid throughout its development. An egg is laid on top of the prey and the nest is then sealed. The parasitoid develops rapidly through its larval and pupal stages, feeding on the provisions left for it.[33]

Koinobiont parasitoids, which include flies as well as wasps, lay their eggs inside young hosts, usually larvae. These are allowed to go on growing, so the host and parasitoid develop together for an extended period, ending when the parasitoids emerge as adults, leaving the prey dead, eaten from inside. Some koinobionts regulate their host's development, for example preventing it from pupating or making it moult whenever the parasitoid is ready to moult. They may do this by producing hormones that mimic the host's moulting hormones (ecdysteroids), or by regulating the host's endocrine system.[33]

Micropredators

Mosquitoes are micropredators, and important vectors of disease

Микрохищник нападает на более чем одного хозяина, по крайней мере, на небольшую величину снижая приспособленность каждого хозяина, и контактирует с любым одним хозяином только периодически. Такое поведение делает микрохищников подходящими переносчиками, поскольку они могут передавать более мелких паразитов от одного хозяина к другому. [22] [34] [23] Большинство микрохищников являются гематофагами , питающимися кровью. К ним относятся кольчатые черви, такие как пиявки , ракообразные, такие как бранхиуры и изоподы гнатииды , различные двукрылые, такие как комары и мухи цеце , другие членистоногие, такие как блохи и клещи, позвоночные, такие как миноги , и млекопитающие, такие как летучие мыши-вампиры . [22]

Стратегии передачи

Жизненный цикл Entamoeba histolytica , анаэробного паразитического простейшего, передающегося фекально-оральным путем

Паразиты используют различные методы заражения животных-хозяев, включая физический контакт, фекально-оральный путь , свободноживущие инфекционные стадии и векторы, подходящие для их различных хозяев, жизненных циклов и экологических контекстов. [35] Примеры, иллюстрирующие некоторые из многих возможных комбинаций, приведены в таблице.

Вариации

Среди многочисленных вариаций паразитических стратегий можно выделить гиперпаразитизм, [37] социальный паразитизм, [38] выводковый паразитизм, [39] клептопаразитизм, [40] половой паразитизм, [41] и адельфопаразитизм. [42]

Гиперпаразитизм

Гиперпаразиты питаются другим паразитом, как показано на примере простейших, живущих в гельминтных паразитах, [37] или факультативных или облигатных паразитоидах, хозяевами которых являются либо обычные паразиты, либо паразитоиды. [22] [33] Уровни паразитизма за пределами вторичного также встречаются, особенно среди факультативных паразитоидов. В системах галлов дуба может быть до пяти уровней паразитизма. [43]

Гиперпаразиты могут контролировать популяции своих хозяев и используются для этой цели в сельском хозяйстве и в некоторой степени в медицине . Контролирующие эффекты можно увидеть в том, как вирус CHV1 помогает контролировать ущерб, который каштановая гниль , Cryphonectria parasitica , наносит американским каштанам , и в том, как бактериофаги могут ограничивать бактериальные инфекции. Вероятно, хотя и мало исследовано, что большинство патогенных микропаразитов имеют гиперпаразитов, которые могут оказаться широко полезными как в сельском хозяйстве, так и в медицине. [44]

Социальный паразитизм

Социальные паразиты используют в своих интересах межвидовые взаимодействия между членами эусоциальных животных, такими как муравьи , термиты и шмели . Примерами служат большая голубая бабочка Phengaris arion , личинки которой используют мимикрию муравьев для паразитирования на определенных муравьях, [38] Bombus bohemicus , шмель, который вторгается в ульи других пчел и берет на себя воспроизводство, пока их детеныши выращиваются рабочими-хозяевами, и Melipona scutellaris , эусоциальная пчела, чьи неплодные королевы избегают рабочих-убийц и вторгаются в другую колонию без королевы. [45] Крайний пример межвидового социального паразитизма обнаружен у муравья Tetramorium inquilinum , облигатного паразита, который живет исключительно на спинах других муравьев Tetramorium . [46] Механизм эволюции социального паразитизма был впервые предложен Карло Эмери в 1909 году. [47] Теперь известный как « правило Эмери », он гласит, что социальные паразиты, как правило, тесно связаны со своими хозяевами, часто принадлежа к одному и тому же роду. [48] [49] [50]

Внутривидовой социальный паразитизм происходит при паразитическом вскармливании, когда некоторые детеныши берут молоко у неродственных самок. У клиновидных капуцинов самки с более высоким рангом иногда берут молоко у самок с более низким рангом без какой-либо взаимности. [51]

Паразитизм выводка

In brood parasitism, the hosts act as parents as they raise the young as their own. Brood parasites include birds in different families such as cowbirds, whydahs, cuckoos, and black-headed ducks. These do not build nests of their own, but leave their eggs in nests of other species. The eggs of some brood parasites mimic those of their hosts, while some cowbird eggs have tough shells, making them hard for the hosts to kill by piercing, both mechanisms implying selection by the hosts against parasitic eggs.[39][52][53] The adult female European cuckoo further mimics a predator, the European sparrowhawk, giving her time to lay her eggs in the host's nest unobserved.[54]

Kleptoparasitism

In kleptoparasitism (from Greek κλέπτης (kleptēs), "thief"), parasites steal food gathered by the host. The parasitism is often on close relatives, whether within the same species or between species in the same genus or family. For instance, the many lineages of cuckoo bees lay their eggs in the nest cells of other bees in the same family.[40] Kleptoparasitism is uncommon generally but conspicuous in birds; some such as skuas are specialised in pirating food from other seabirds, relentlessly chasing them down until they disgorge their catch.[55]

Sexual parasitism

A unique approach is seen in some species of anglerfish, such as Ceratias holboelli, where the males are reduced to tiny sexual parasites, wholly dependent on females of their own species for survival, permanently attached below the female's body, and unable to fend for themselves. The female nourishes the male and protects him from predators, while the male gives nothing back except the sperm that the female needs to produce the next generation.[41]

Adelphoparasitism

Adelphoparasitism, (from Greek ἀδελφός (adelphós), brother[56]), also known as sibling-parasitism, occurs where the host species is closely related to the parasite, often in the same family or genus.[42] In the citrus blackfly parasitoid, Encarsia perplexa, unmated females may lay haploid eggs in the fully developed larvae of their own species, producing male offspring,[57] while the marine worm Bonellia viridis has a similar reproductive strategy, although the larvae are planktonic.[58]

Illustrations

Examples of the major variant strategies are illustrated.

Taxonomic range

Parasitism has an extremely wide taxonomic range, including animals, plants, fungi, protozoans, bacteria, and viruses.[59]

Animals

Parasitism is widespread in the animal kingdom,[63] and has evolved independently from free-living forms hundreds of times.[22] Many types of helminth including flukes and cestodes have complete life cycles involving two or more hosts. By far the largest group is the parasitoid wasps in the Hymenoptera.[22] The phyla and classes with the largest numbers of parasitic species are listed in the table. Numbers are conservative minimum estimates. The columns for Endo- and Ecto-parasitism refer to the definitive host, as documented in the Vertebrate and Invertebrate columns.[60]

Plants

Cuscuta (a dodder), a stem holoparasite, on an acacia tree

A hemiparasite or partial parasite such as mistletoe derives some of its nutrients from another living plant, whereas a holoparasite such as dodder derives all of its nutrients from another plant.[64] Parasitic plants make up about one per cent of angiosperms and are in almost every biome in the world.[65][66][67] All these plants have modified roots, haustoria, which penetrate the host plants, connecting them to the conductive system—either the xylem, the phloem, or both. This provides them with the ability to extract water and nutrients from the host. A parasitic plant is classified depending on where it latches onto the host, either the stem or the root, and the amount of nutrients it requires. Since holoparasites have no chlorophyll and therefore cannot make food for themselves by photosynthesis, they are always obligate parasites, deriving all their food from their hosts.[66] Some parasitic plants can locate their host plants by detecting chemicals in the air or soil given off by host shoots or roots, respectively. About 4,500 species of parasitic plant in approximately 20 families of flowering plants are known.[68][66]

Species within the Orobanchaceae (broomrapes) are among the most economically destructive of all plants. Species of Striga (witchweeds) are estimated to cost billions of dollars a year in crop yield loss, infesting over 50 million hectares of cultivated land within Sub-Saharan Africa alone. Striga infects both grasses and grains, including corn, rice, and sorghum, which are among the world's most important food crops. Orobanche also threatens a wide range of other important crops, including peas, chickpeas, tomatoes, carrots, and varieties of cabbage. Yield loss from Orobanche can be total; despite extensive research, no method of control has been entirely successful.[69]

Many plants and fungi exchange carbon and nutrients in mutualistic mycorrhizal relationships. Some 400 species of myco-heterotrophic plants, mostly in the tropics, however effectively cheat by taking carbon from a fungus rather than exchanging it for minerals. They have much reduced roots, as they do not need to absorb water from the soil; their stems are slender with few vascular bundles, and their leaves are reduced to small scales, as they do not photosynthesize. Their seeds are very small and numerous, so they appear to rely on being infected by a suitable fungus soon after germinating.[70]

The honey fungus, Armillaria mellea, is a parasite of trees, and a saprophyte feeding on the trees it has killed.

Fungi

Parasitic fungi derive some or all of their nutritional requirements from plants, other fungi, or animals.

Plant pathogenic fungi are classified into three categories depending on their mode of nutrition: biotrophs, hemibiotrophs and necrotrophs. Biotrophic fungi derive nutrients from living plant cells, and during the course of infection they colonise their plant host in such a way as to keep it alive for a maximally long time.[71] One well-known example of a biotrophic pathogen is Ustilago maydis, causative agent of the corn smut disease. Necrotrophic pathogens on the other hand, kill host cells and feed saprophytically, an example being the root-colonising honey fungi in the genus Armillaria.[72] Hemibiotrophic pathogens begin their colonising their hosts as biotrophs, and subsequently killing off host cells and feeding as necrotrophs, a phenomenon termed the biotrophy-necrotrophy switch.[73]

Pathogenic fungi are well-known causative agents of diseases on animals as well as humans. Fungal infections (mycosis) are estimated to kill 1.6 million people each year.[74] One example of a potent fungal animal pathogen are Microsporidia - obligate intracellular parasitic fungi that largely affect insects, but may also affect vertebrates including humans, causing the intestinal infection microsporidiosis.[75]

Borrelia burgdorferi, the bacterium that causes Lyme disease, is transmitted by Ixodes ticks.

Protozoa

Protozoa such as Plasmodium, Trypanosoma, and Entamoeba[76] are endoparasitic. They cause serious diseases in vertebrates including humans—in these examples, malaria, sleeping sickness, and amoebic dysentery—and have complex life cycles.[31]

Bacteria

Many bacteria are parasitic, though they are more generally thought of as pathogens causing disease.[77] Parasitic bacteria are extremely diverse, and infect their hosts by a variety of routes. To give a few examples, Bacillus anthracis, the cause of anthrax, is spread by contact with infected domestic animals; its spores, which can survive for years outside the body, can enter a host through an abrasion or may be inhaled. Borrelia, the cause of Lyme disease and relapsing fever, is transmitted by vectors, ticks of the genus Ixodes, from the diseases' reservoirs in animals such as deer. Campylobacter jejuni, a cause of gastroenteritis, is spread by the fecal–oral route from animals, or by eating insufficiently cooked poultry, or by contaminated water. Haemophilus influenzae, an agent of bacterial meningitis and respiratory tract infections such as influenza and bronchitis, is transmitted by droplet contact. Treponema pallidum, the cause of syphilis, is spread by sexual activity.[78]

Enterobacteria phage T4 is a bacteriophage virus. It infects its host, Escherichia coli, by injecting its DNA through its tail, which attaches to the bacterium's surface.

Viruses

Viruses are obligate intracellular parasites, characterised by extremely limited biological function, to the point where, while they are evidently able to infect all other organisms from bacteria and archaea to animals, plants and fungi, it is unclear whether they can themselves be described as living. They can be either RNA or DNA viruses consisting of a single or double strand of genetic material (RNA or DNA, respectively), covered in a protein coat and sometimes a lipid envelope. They thus lack all the usual machinery of the cell such as enzymes, relying entirely on the host cell's ability to replicate DNA and synthesise proteins. Most viruses are bacteriophages, infecting bacteria.[79][80][81][82]

Evolutionary ecology

Restoration of a Tyrannosaurus with holes possibly caused by a Trichomonas-like parasite

Parasitism is a major aspect of evolutionary ecology; for example, almost all free-living animals are host to at least one species of parasite. Vertebrates, the best-studied group, are hosts to between 75,000 and 300,000 species of helminths and an uncounted number of parasitic microorganisms. On average, a mammal species hosts four species of nematode, two of trematodes, and two of cestodes.[83] Humans have 342 species of helminth parasites, and 70 species of protozoan parasites.[84] Some three-quarters of the links in food webs include a parasite, important in regulating host numbers. Perhaps 40 per cent of described species are parasitic.[83]

Fossil record

Parasitism is hard to demonstrate from the fossil record, but holes in the mandibles of several specimens of Tyrannosaurus may have been caused by Trichomonas-like parasites.[85] Saurophthirus, the Early Cretaceous flea, parasitized pterosaurs.[86][87] Eggs that belonged to nematode worms and probably protozoan cysts were found in the Late Triassic coprolite of phytosaur. This rare find in Thailand reveals more about the ecology of prehistoric parasites.[88]

Coevolution

As hosts and parasites evolve together, their relationships often change. When a parasite is in a sole relationship with a host, selection drives the relationship to become more benign, even mutualistic, as the parasite can reproduce for longer if its host lives longer.[89] But where parasites are competing, selection favours the parasite that reproduces fastest, leading to increased virulence. There are thus varied possibilities in host–parasite coevolution.[90]

Evolutionary epidemiology analyses how parasites spread and evolve, whereas Darwinian medicine applies similar evolutionary thinking to non-parasitic diseases like cancer and autoimmune conditions.[91]

Coevolution favouring mutualism

Wolbachia bacteria within an insect cell

Long-term coevolution sometimes leads to a relatively stable relationship tending to commensalism or mutualism, as, all else being equal, it is in the evolutionary interest of the parasite that its host thrives. A parasite may evolve to become less harmful for its host or a host may evolve to cope with the unavoidable presence of a parasite—to the point that the parasite's absence causes the host harm. For example, although animals parasitised by worms are often clearly harmed, such infections may also reduce the prevalence and effects of autoimmune disorders in animal hosts, including humans.[89] In a more extreme example, some nematode worms cannot reproduce, or even survive, without infection by Wolbachia bacteria.[92]

Lynn Margulis and others have argued, following Peter Kropotkin's 1902 Mutual Aid: A Factor of Evolution, that natural selection drives relationships from parasitism to mutualism when resources are limited. This process may have been involved in the symbiogenesis which formed the eukaryotes from an intracellular relationship between archaea and bacteria, though the sequence of events remains largely undefined.[93][94]

Competition favouring virulence

Competition between parasites can be expected to favour faster reproducing and therefore more virulent parasites, by natural selection.[90][95]

Biologists long suspected cospeciation of flamingos and ducks with their parasitic lice, which were similar in the two families. Cospeciation did occur, but it led to flamingos and grebes, with a later host switch of flamingo lice to ducks.

Among competing parasitic insect-killing bacteria of the genera Photorhabdus and Xenorhabdus, virulence depended on the relative potency of the antimicrobial toxins (bacteriocins) produced by the two strains involved. When only one bacterium could kill the other, the other strain was excluded by the competition. But when caterpillars were infected with bacteria both of which had toxins able to kill the other strain, neither strain was excluded, and their virulence was less than when the insect was infected by a single strain.[90]

Cospeciation

A parasite sometimes undergoes cospeciation with its host, resulting in the pattern described in Fahrenholz's rule, that the phylogenies of the host and parasite come to mirror each other.[96]

An example is between the simian foamy virus (SFV) and its primate hosts. The phylogenies of SFV polymerase and the mitochondrial cytochrome c oxidase subunit II from African and Asian primates were found to be closely congruent in branching order and divergence times, implying that the simian foamy viruses cospeciated with Old World primates for at least 30 million years.[97]

The presumption of a shared evolutionary history between parasites and hosts can help elucidate how host taxa are related. For instance, there has been a dispute about whether flamingos are more closely related to storks or ducks. The fact that flamingos share parasites with ducks and geese was initially taken as evidence that these groups were more closely related to each other than either is to storks. However, evolutionary events such as the duplication, or the extinction of parasite species (without similar events on the host phylogeny) often erode similarities between host and parasite phylogenies. In the case of flamingos, they have similar lice to those of grebes. Flamingos and grebes do have a common ancestor, implying cospeciation of birds and lice in these groups. Flamingo lice then switched hosts to ducks, creating the situation which had confused biologists.[98]

Простейшее Toxoplasma gondii облегчает передачу, вызывая изменения в поведении у крыс посредством инфицирования нейронов в их центральной нервной системе .

Паразиты заражают симпатрических хозяев (находящихся в пределах их географической области) более эффективно, как было показано на примере дигенетических трематод , заражающих озерных улиток. [99] Это соответствует гипотезе Красной Королевы , которая гласит, что взаимодействие между видами приводит к постоянному естественному отбору для коадаптации. Паразиты отслеживают фенотипы местных хозяев, поэтому паразиты менее заразны для аллопатрических хозяев, которые находятся в других географических регионах. [99]

Изменение поведения хоста


Некоторые паразиты изменяют поведение хозяина , чтобы увеличить свою передачу между хозяевами, часто в отношении хищника и добычи ( паразит усиливает трофическую передачу ). Например, в прибрежном солончаке Калифорнии трематода Euhaplorchis californiensis снижает способность своего хозяина -киллифа избегать хищников. [100] Этот паразит созревает в белых цаплях , которые с большей вероятностью питаются инфицированными киллифами, чем незараженной рыбой. Другим примером является простейшее Toxoplasma gondii , паразит, который созревает в кошках , но может переноситься многими другими млекопитающими . Неинфицированные крысы избегают запахов кошек, но крысы, инфицированные T. gondii , привлекаются этим запахом, что может увеличить передачу хозяевам-кошкам. [101] Малярийный паразит изменяет запах кожи своих хозяев-людей, увеличивая их привлекательность для комаров и, следовательно, повышая вероятность передачи паразита. [36] Паук Cyclosa argenteoalba часто имеет прикрепленных к ним личинок паразитоидных ос, которые изменяют их поведение при строительстве паутины. Вместо того, чтобы производить свои обычные липкие спиралевидные паутины, они создавали упрощенные паутины, когда паразиты были прикреплены. Это измененное поведение длилось дольше и было тем заметнее, чем дольше паразиты оставались на пауках. [102]

Утрата признаков: клоп Cimex lectularius не летает, как и многие эктопаразиты.

Потеря черты

Паразиты могут эксплуатировать своих хозяев для выполнения ряда функций, которые им в противном случае пришлось бы выполнять самим. Паразиты, которые теряют эти функции, затем получают селективное преимущество, поскольку они могут перенаправлять ресурсы на воспроизводство. Многие эктопаразиты насекомых, включая клопов , клопов-летучих мышей , вшей и блох, утратили способность летать , полагаясь вместо этого на своих хозяев для транспортировки. [103] Потеря признаков в целом широко распространена среди паразитов. [104] Ярким примером является миксоспоридий Henneguya zschokkei , эктопаразит рыб и единственное животное, которое, как известно, утратило способность к аэробному дыханию: в его клетках отсутствуют митохондрии . [105]

Защиты хозяина

Хозяева выработали множество защитных мер против своих паразитов, включая физические барьеры, такие как кожа позвоночных [106] , иммунная система млекопитающих [107] , насекомые, активно удаляющие паразитов [108] , и защитные химические вещества в растениях [109] .

Эволюционный биолог У. Д. Гамильтон предположил, что половое размножение могло развиться, чтобы помочь победить множественных паразитов, обеспечивая генетическую рекомбинацию , перетасовку генов для создания различных комбинаций. Гамильтон показал с помощью математического моделирования, что половое размножение будет эволюционно стабильным в различных ситуациях, и что предсказания теории соответствуют фактической экологии полового размножения. [110] [111] Однако может существовать компромисс между иммунокомпетентностью и размножением вторичных половых признаков самцов позвоночных хозяев , таких как оперение павлинов и гривы львов . Это происходит потому, что мужской гормон тестостерон стимулирует рост вторичных половых признаков, благоприятствуя таким самцам в половом отборе , ценой снижения их иммунной защиты. [112]

Позвоночные

Сухая кожа позвоночных, таких как короткорогая ящерица, препятствует проникновению многих паразитов.

The physical barrier of the tough and often dry and waterproof skin of reptiles, birds and mammals keeps invading microorganisms from entering the body. Human skin also secretes sebum, which is toxic to most microorganisms.[106] On the other hand, larger parasites such as trematodes detect chemicals produced by the skin to locate their hosts when they enter the water. Vertebrate saliva and tears contain lysozyme, an enzyme that breaks down the cell walls of invading bacteria.[106] Should the organism pass the mouth, the stomach with its hydrochloric acid, toxic to most microorganisms, is the next line of defence.[106] Some intestinal parasites have a thick, tough outer coating which is digested slowly or not at all, allowing the parasite to pass through the stomach alive, at which point they enter the intestine and begin the next stage of their life. Once inside the body, parasites must overcome the immune system's serum proteins and pattern recognition receptors, intracellular and cellular, that trigger the adaptive immune system's lymphocytes such as T cells and antibody-producing B cells. These have receptors that recognise parasites.[107]

Insects

Leaf spot on oak. The spread of the parasitic fungus is limited by defensive chemicals produced by the tree, resulting in circular patches of damaged tissue.

Insects often adapt their nests to reduce parasitism. For example, one of the key reasons why the wasp Polistes canadensis nests across multiple combs, rather than building a single comb like much of the rest of its genus, is to avoid infestation by tineid moths. The tineid moth lays its eggs within the wasps' nests and then these eggs hatch into larvae that can burrow from cell to cell and prey on wasp pupae. Adult wasps attempt to remove and kill moth eggs and larvae by chewing down the edges of cells, coating the cells with an oral secretion that gives the nest a dark brownish appearance.[108]

Plants

Растения реагируют на атаку паразита серией химических защит, таких как полифенолоксидаза , под контролем сигнальных путей жасмоновой кислоты, нечувствительной (JA) и салициловой кислоты (SA). [109] [113] Различные биохимические пути активируются различными атаками, и эти два пути могут взаимодействовать положительно или отрицательно. В целом, растения могут инициировать либо специфический, либо неспецифический ответ. [114] [113] Специфические ответы включают распознавание паразита клеточными рецепторами растения, что приводит к сильному, но локализованному ответу: защитные химикаты вырабатываются вокруг области, где был обнаружен паразит, блокируя его распространение и избегая напрасной траты защитного производства там, где это не нужно. [114] Неспецифические защитные ответы являются системными, что означает, что ответы не ограничиваются областью растения, а распространяются по всему растению, что делает их затратными с точки зрения энергии. Они эффективны против широкого спектра паразитов. [114] При повреждении, например, гусеницами чешуекрылых , листья растений, включая кукурузу и хлопок, выделяют повышенное количество летучих химических веществ, таких как терпены , которые сигнализируют о том, что они подвергаются нападению; одним из эффектов этого является привлечение паразитоидных ос, которые, в свою очередь, нападают на гусениц. [115]

Биология и охрана природы

Экология и паразитология

Спасение калифорнийского кондора от вымирания было успешным, хотя и очень дорогим проектом, однако его эктопаразит , вошь Colpocephalum californici , вымер.

Parasitism and parasite evolution were until the twenty-first century studied by parasitologists, in a science dominated by medicine, rather than by ecologists or evolutionary biologists. Even though parasite-host interactions were plainly ecological and important in evolution, the history of parasitology caused what the evolutionary ecologist Robert Poulin called a "takeover of parasitism by parasitologists", leading ecologists to ignore the area. This was in his opinion "unfortunate", as parasites are "omnipresent agents of natural selection" and significant forces in evolution and ecology.[116] In his view, the long-standing split between the sciences limited the exchange of ideas, with separate conferences and separate journals. The technical languages of ecology and parasitology sometimes involved different meanings for the same words. There were philosophical differences, too: Poulin notes that, influenced by medicine, "many parasitologists accepted that evolution led to a decrease in parasite virulence, whereas modern evolutionary theory would have predicted a greater range of outcomes".[116]

Their complex relationships make parasites difficult to place in food webs: a trematode with multiple hosts for its various life cycle stages would occupy many positions in a food web simultaneously, and would set up loops of energy flow, confusing the analysis. Further, since nearly every animal has (multiple) parasites, parasites would occupy the top levels of every food web.[84]

Parasites can play a role in the proliferation of non-native species. For example, invasive green crabs are minimally affected by native trematodes on the Eastern Atlantic coast. This helps them outcompete native crabs such as the Atlantic Rock and Jonah crabs.[117]

Ecological parasitology can be important to attempts at control, like during the campaign for eradicating the Guinea worm. Even though the parasite was eradicated in all but four countries, the worm began using frogs as an intermediary host before infecting dogs, making control more difficult than it would have been if the relationships had been better understood.[118]

Rationale for conservation

Although parasites are widely considered to be harmful, the eradication of all parasites would not be beneficial. Parasites account for at least half of life's diversity; they perform important ecological roles; and without parasites, organisms might tend to asexual reproduction, diminishing the diversity of traits brought about by sexual reproduction.[119] Parasites provide an opportunity for the transfer of genetic material between species, facilitating evolutionary change.[120] Many parasites require multiple hosts of different species to complete their life cycles and rely on predator-prey or other stable ecological interactions to get from one host to another. The presence of parasites thus indicates that an ecosystem is healthy.[121]

An ectoparasite, the California condor louse, Colpocephalum californici, became a well-known conservation issue. A major and very costly captive breeding program was run in the United States to rescue the California condor. It was host to a louse, which lived only on it. Any lice found were "deliberately killed" during the program, to keep the condors in the best possible health. The result was that one species, the condor, was saved and returned to the wild, while another species, the parasite, became extinct.[122]

Although parasites are often omitted in depictions of food webs, they usually occupy the top position. Parasites can function like keystone species, reducing the dominance of superior competitors and allowing competing species to co-exist.[84][123][124]

Parasites are distributed very unevenly among their hosts, most hosts having no parasites, and a few hosts harbouring most of the parasite population. This distribution makes sampling difficult and requires careful use of statistics.

Quantitative ecology

A single parasite species usually has an aggregated distribution across host animals, which means that most hosts carry few parasites, while a few hosts carry the vast majority of parasite individuals. This poses considerable problems for students of parasite ecology, as it renders parametric statistics as commonly used by biologists invalid. Log-transformation of data before the application of parametric test, or the use of non-parametric statistics is recommended by several authors, but this can give rise to further problems, so quantitative parasitology is based on more advanced biostatistical methods.[125]

History

Ancient

Human parasites including roundworms, the Guinea worm, threadworms and tapeworms are mentioned in Egyptian papyrus records from 3000 BC onwards; the Ebers Papyrus describes hookworm. In ancient Greece, parasites including the bladder worm are described in the Hippocratic Corpus, while the comic playwright Aristophanes called tapeworms "hailstones". The Roman physicians Celsus and Galen documented the roundworms Ascaris lumbricoides and Enterobius vermicularis.[126]

Medieval

A plate from Francesco Redi's Osservazioni intorno agli animali viventi che si trovano negli animali viventi (Observations on living animals found inside living animals), 1684

In his Canon of Medicine, completed in 1025, the Persian physician Avicenna recorded human and animal parasites including roundworms, threadworms, the Guinea worm and tapeworms.[126]

In his 1397 book Traité de l'état, science et pratique de l'art de la Bergerie (Account of the state, science and practice of the art of shepherding), Jehan de Brie [fr] wrote the first description of a trematode endoparasite, the sheep liver fluke Fasciola hepatica.[127][128]

Early modern

In the early modern period, Francesco Redi's 1668 book Esperienze Intorno alla Generazione degl'Insetti (Experiences of the Generation of Insects), explicitly described ecto- and endoparasites, illustrating ticks, the larvae of nasal flies of deer, and sheep liver fluke.[129] Redi noted that parasites develop from eggs, contradicting the theory of spontaneous generation.[130] In his 1684 book Osservazioni intorno agli animali viventi che si trovano negli animali viventi (Observations on Living Animals found in Living Animals), Redi described and illustrated over 100 parasites including the large roundworm in humans that causes ascariasis.[129] Redi was the first to name the cysts of Echinococcus granulosus seen in dogs and sheep as parasitic; a century later, in 1760, Peter Simon Pallas correctly suggested that these were the larvae of tapeworms.[126]

In 1681, Antonie van Leeuwenhoek observed and illustrated the protozoan parasite Giardia lamblia, and linked it to "his own loose stools". This was the first protozoan parasite of humans to be seen under a microscope.[126] A few years later, in 1687, the Italian biologists Giovanni Cosimo Bonomo and Diacinto Cestoni described scabies as caused by the parasitic mite Sarcoptes scabiei, marking it as the first disease of humans with a known microscopic causative agent.[131]

Ronald Ross won the 1902 Nobel Prize for showing that the malaria parasite is transmitted by mosquitoes. This 1897 notebook page records his first observations of the parasite in mosquitoes.

Parasitology

Modern parasitology developed in the 19th century with accurate observations and experiments by many researchers and clinicians;[127] the term was first used in 1870.[132] In 1828, James Annersley described amoebiasis, protozoal infections of the intestines and the liver, though the pathogen, Entamoeba histolytica, was not discovered until 1873 by Friedrich Lösch. James Paget discovered the intestinal nematode Trichinella spiralis in humans in 1835. James McConnell described the human liver fluke, Clonorchis sinensis, in 1875.[126] Algernon Thomas and Rudolf Leuckart independently made the first discovery of the life cycle of a trematode, the sheep liver fluke, by experiment in 1881–1883.[127] In 1877 Patrick Manson discovered the life cycle of the filarial worms that cause elephantiasis transmitted by mosquitoes. Manson further predicted that the malaria parasite, Plasmodium, had a mosquito vector, and persuaded Ronald Ross to investigate. Ross confirmed that the prediction was correct in 1897–1898. At the same time, Giovanni Battista Grassi and others described the malaria parasite's life cycle stages in Anopheles mosquitoes. Ross was controversially awarded the 1902 Nobel prize for his work, while Grassi was not.[126] In 1903, David Bruce identified the protozoan parasite and the tsetse fly vector of African trypanosomiasis.[133]

Vaccine

Given the importance of malaria, with some 220 million people infected annually, many attempts have been made to interrupt its transmission. Various methods of malaria prophylaxis have been tried including the use of antimalarial drugs to kill off the parasites in the blood, the eradication of its mosquito vectors with organochlorine and other insecticides, and the development of a malaria vaccine. All of these have proven problematic, with drug resistance, insecticide resistance among mosquitoes, and repeated failure of vaccines as the parasite mutates.[134] The first and as of 2015 the only licensed vaccine for any parasitic disease of humans is RTS,S for Plasmodium falciparum malaria.[135]

Biological control

Encarsia formosa, widely used in greenhouse horticulture, was one of the first biological control agents developed.[136]

Several groups of parasites, including microbial pathogens and parasitoidal wasps have been used as biological control agents in agriculture and horticulture.[137][138]

Resistance

Poulin observes that the widespread prophylactic use of anthelmintic drugs in domestic sheep and cattle constitutes a worldwide uncontrolled experiment in the life-history evolution of their parasites. The outcomes depend on whether the drugs decrease the chance of a helminth larva reaching adulthood. If so, natural selection can be expected to favour the production of eggs at an earlier age. If on the other hand the drugs mainly affects adult parasitic worms, selection could cause delayed maturity and increased virulence. Such changes appear to be underway: the nematode Teladorsagia circumcincta is changing its adult size and reproductive rate in response to drugs.[139]

Cultural significance

"An Old Parasite in a New Form": an 1881 Punch cartoon by Edward Linley Sambourne compares a crinoletta bustle to a parasitic insect's exoskeleton

Classical times

In the classical era, the concept of the parasite was not strictly pejorative: the parasitus was an accepted role in Roman society, in which a person could live off the hospitality of others, in return for "flattery, simple services, and a willingness to endure humiliation".[140][141]

Society

Parasitism has a derogatory sense in popular usage. According to the immunologist John Playfair,[142]

In everyday speech, the term 'parasite' is loaded with derogatory meaning. A parasite is a sponger, a lazy profiteer, a drain on society.[142]

The satirical cleric Jonathan Swift alludes to hyperparasitism in his 1733 poem "On Poetry: A Rhapsody", comparing poets to "vermin" who "teaze and pinch their foes":[143]

The vermin only teaze and pinch
Their foes superior by an inch.
So nat'ralists observe, a flea
Hath smaller fleas that on him prey;

And these have smaller fleas to bite 'em.
And so proceeds ad infinitum.
Thus every poet, in his kind,
Is bit by him that comes behind:

A 2022 study examined the naming of some 3000 parasite species discovered in the previous two decades. Of those named after scientists, over 80% were named for men, whereas about a third of authors of papers on parasites were women. The study found that the percentage of parasite species named for relatives or friends of the author has risen sharply in the same period.[144]

Fiction

Fictional parasitism: oil painting Parasites by Katrin Alvarez, 2011

In Bram Stoker's 1897 Gothic horror novel Dracula, and its many film adaptations, the eponymous Count Dracula is a blood-drinking parasite (a vampire). The critic Laura Otis argues that as a "thief, seducer, creator, and mimic, Dracula is the ultimate parasite. The whole point of vampirism is sucking other people's blood—living at other people's expense."[145]

Disgusting and terrifying parasitic alien species are widespread in science fiction,[146][147] as for instance in Ridley Scott's 1979 film Alien.[148][149] In one scene, a Xenomorph bursts out of the chest of a dead man, with blood squirting out under high pressure assisted by explosive squibs. Animal organs were used to reinforce the shock effect. The scene was filmed in a single take, and the startled reaction of the actors was genuine.[4][150]

See also

Notes

  1. ^ Трофически передаваемые паразиты передаются своему окончательному хозяину, хищнику, когда их промежуточный хозяин съедается. Эти паразиты часто изменяют поведение своих промежуточных хозяев, заставляя их вести себя таким образом, что они, скорее всего, будут съедены, например, забираясь на заметную точку: это позволяет паразитам передаваться ценой жизни промежуточного хозяина.
  2. ^ Волк — социальный хищник, охотящийся стаями; пума — одиночный хищник, охотящийся в одиночку. Ни одна из стратегий традиционно не считается паразитической. [23]

Ссылки

  1. Пулен 2007, стр. 4–5.
  2. ^ ab Wilson, Edward O. (2014). Смысл человеческого существования . WW Norton & Company. стр. 112. ISBN 978-0-87140-480-0. Паразиты, если говорить кратко, это хищники, которые едят добычу группами менее одного экземпляра. Терпимые паразиты — это те, которые эволюционировали, чтобы обеспечить собственное выживание и воспроизводство, но в то же время с минимальными страданиями и затратами для хозяина.
  3. ^ Getz, WM (2011). «Сети преобразования биомассы обеспечивают унифицированный подход к моделированию потребительских ресурсов». Ecology Letters . 14 (2): 113–124. Bibcode :2011EcolL..14..113G. doi :10.1111/j.1461-0248.2010.01566.x. PMC 3032891 . PMID  21199247. 
  4. ^ ab "Создание сцены с грудоломом в фильме "Чужой"". The Guardian . 13 октября 2009 г. Архивировано из оригинала 30 апреля 2010 г. Получено 29 мая 2010 г.
  5. ^ παράσιτος, Лидделл, Генри Джордж; Скотт, Роберт, Греко-английский лексикон , в Perseus Digital Library
  6. ^ παρά, Генри Джордж Лидделл, Роберт Скотт, Греко-английский лексикон , в Perseus Digital Library
  7. ^ σῖτος, Лидделл, Генри Джордж; Скотт, Роберт, Греко-английский лексикон , в Perseus Digital Library
  8. ^ σιτισμός, Лидделл, Генри Джордж; Скотт, Роберт, Греко-английский лексикон , в Perseus Digital Library
  9. ^ Обзор паразитологии. Австралийское общество паразитологии и Австралийский исследовательский совет/Национальный совет по здравоохранению и медицинским исследованиям) Исследовательская сеть по паразитологии. Июль 2010 г. ISBN 978-1-86499-991-4. Паразитизм — это форма симбиоза, тесная связь между двумя разными видами. Между хозяином и паразитом существует биохимическое взаимодействие; то есть они узнают друг друга, в конечном счете на молекулярном уровне, и ткани хозяина стимулируются к определенной реакции. Это объясняет, почему паразитизм может привести к болезни, но не всегда.
  10. ^ Suzuki, Sayaki U.; Sasaki, Akira (2019). "Ecological and Evolutionary Stabilities of Biotrophism, Necrotrophism, and Saprotrophism" (PDF). The American Naturalist. 194 (1): 90–103. doi:10.1086/703485. ISSN 0003-0147. PMID 31251653. S2CID 133349792. Archived (PDF) from the original on 6 March 2020.
  11. ^ Rozsa, L.; Garay, J. (2023). "Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization". Parasitology. 150 (9): 761–768. doi:10.1017/S0031182023000598. PMC 10478066. PMID 37458178.
  12. ^ "A Classification of Animal-Parasitic Nematodes". plpnemweb.ucdavis.edu. Archived from the original on 6 October 2017. Retrieved 25 February 2016.
  13. ^ Garcia, L. S. (1999). "Classification of Human Parasites, Vectors, and Similar Organisms". Clinical Infectious Diseases. 29 (4): 734–746. doi:10.1086/520425. PMID 10589879.
  14. ^ a b c Overview of Parasitology. Australian Society of Parasitology and Australian Research Council/National Health and Medical Research Council) Research Network for Parasitology. July 2010. ISBN 978-1-86499-991-4.
  15. ^ Vecchione, Anna; Aznar, Francisco Javier (2008). "The mesoparasitic copepod Pennella balaenopterae and its significance as a visible indicator of health status in dolphins (Delphinidae): a review" (PDF). Journal of Marine Animals and Their Ecology. 7 (1): 4–11. Archived from the original (PDF) on 10 April 2018. Retrieved 11 April 2018.
  16. ^ a b c d Poulin, Robert (2011). Rollinson, D.; Hay, S. I. (eds.). "The Many Roads to Parasitism: A Tale of Convergence". Advances in Parasitology. 74. Academic Press: 27–28. doi:10.1016/B978-0-12-385897-9.00001-X. ISBN 978-0-12-385897-9. PMID 21295676.
  17. ^ "Parasitism | The Encyclopedia of Ecology and Environmental Management". Blackwell Science. Retrieved 8 April 2018.
  18. ^ Caira, J. N.; Benz, G. W.; Borucinska, J.; Kohler, N. E. (1997). "Pugnose eels, Simenchelys parasiticus (Synaphobranchidae) from the heart of a shortfin mako, Isurus oxyrinchus (Lamnidae)". Environmental Biology of Fishes. 49 (1): 139–144. Bibcode:1997EnvBF..49..139C. doi:10.1023/a:1007398609346. S2CID 37865366.
  19. ^ Lawrence, P. O. (1981). "Host vibration—a cue to host location by the parasite, Biosteres longicaudatus". Oecologia. 48 (2): 249–251. Bibcode:1981Oecol..48..249L. doi:10.1007/BF00347971. PMID 28309807. S2CID 6182657.
  20. ^ Cardé, R. T. (2015). "Multi-cue integration: how female mosquitoes locate a human host". Current Biology. 25 (18): R793–R795. Bibcode:2015CBio...25.R793C. doi:10.1016/j.cub.2015.07.057. PMID 26394099. Значок открытого доступа
  21. ^ Randle, C. P.; Cannon, B. C.; Faust, A. L.; et al. (2018). "Host Cues Mediate Growth and Establishment of Oak Mistletoe (Phoradendron leucarpum, Viscaceae), an Aerial Parasitic Plant". Castanea. 83 (2): 249–262. doi:10.2179/18-173. S2CID 92178009.
  22. ^ a b c d e f g h i j k l m n o Poulin, Robert; Randhawa, Haseeb S. (February 2015). "Evolution of parasitism along convergent lines: from ecology to genomics". Parasitology. 142 (Suppl 1): S6–S15. doi:10.1017/S0031182013001674. PMC 4413784. PMID 24229807. Значок открытого доступа
  23. ^ a b c d Lafferty, K. D.; Kuris, A. M. (2002). "Trophic strategies, animal diversity and body size" (PDF). Trends in Ecology and Evolution. 17 (11): 507–513. doi:10.1016/s0169-5347(02)02615-0. Archived from the original (PDF) on 3 October 2019.
  24. ^ a b Poulin 2007, p. 111.
  25. ^ Elumalai, V.; Viswanathan, C.; Pravinkumar, M.; Raffi, S. M. (2013). "Infestation of parasitic barnacle Sacculina spp. in commercial marine crabs". Journal of Parasitic Diseases. 38 (3): 337–339. doi:10.1007/s12639-013-0247-z. PMC 4087306. PMID 25035598.
  26. ^ Cheng, Thomas C. (2012). General Parasitology. Elsevier Science. pp. 13–15. ISBN 978-0-323-14010-2.
  27. ^ Cox, F. E. (2001). "Concomitant infections, parasites and immune responses" (PDF). Parasitology. 122. Supplement: S23–38. doi:10.1017/s003118200001698x. PMID 11442193. S2CID 150432. Archived (PDF) from the original on 2 December 2017.
  28. ^ "Helminth Parasites". Australian Society of Parasitology. Retrieved 9 October 2017.
  29. ^ "Pathogenic Parasitic Infections". PEOI. Retrieved 18 July 2013.
  30. ^ Steere, A. C. (July 2001). "Lyme disease". New England Journal of Medicine. 345 (2): 115–125. doi:10.1056/NEJM200107123450207. PMID 11450660.
  31. ^ a b Pollitt, Laura C.; MacGregor, Paula; Matthews, Keith; Reece, Sarah E. (2011). "Malaria and trypanosome transmission: different parasites, same rules?". Trends in Parasitology. 27 (5): 197–203. doi:10.1016/j.pt.2011.01.004. PMC 3087881. PMID 21345732.
  32. ^ Stevens, Alison N. P. (2010). "Predation, Herbivory, and Parasitism". Nature Education Knowledge. 3 (10): 36. Retrieved 12 February 2018. Predation, herbivory, and parasitism exist along a continuum of severity in terms of the extent to which they negatively affect an organism's fitness. ... In most situations, parasites do not kill their hosts. An exception, however, occurs with parasitoids, which blur the line between parasitism and predation.
  33. ^ a b c d Gullan, P. J.; Cranston, P. S. (2010). The Insects: An Outline of Entomology (4th ed.). Wiley. pp. 308, 365–367, 375, 440–441. ISBN 978-1-118-84615-5.
  34. ^ Wilson, Anthony J.; et al. (March 2017). "What is a vector?". Philosophical Transactions of the Royal Society B: Biological Sciences. 372 (1719): 20160085. doi:10.1098/rstb.2016.0085. PMC 5352812. PMID 28289253.
  35. ^ a b Godfrey, Stephanie S. (December 2013). "Networks and the ecology of parasite transmission: A framework for wildlife parasitology". Wildlife. 2: 235–245. doi:10.1016/j.ijppaw.2013.09.001. PMC 3862525. PMID 24533342.
  36. ^ a b de Boer, Jetske G.; Robinson, Ailie; Powers, Stephen J.; Burgers, Saskia L. G. E.; Caulfield, John C.; Birkett, Michael A.; Smallegange, Renate C.; van Genderen, Perry J. J.; Bousema, Teun; Sauerwein, Robert W.; Pickett, John A.; Takken, Willem; Logan, James G. (August 2017). "Odours of Plasmodium falciparum-infected participants influence mosquito–host interactions". Scientific Reports. 7 (1): 9283. Bibcode:2017NatSR...7.9283D. doi:10.1038/s41598-017-08978-9. PMC 5570919. PMID 28839251.
  37. ^ a b Dissanaike, A. S. (1957). "On Protozoa hyperparasitic in Helminth, with some observations on Nosema helminthorum Moniez, 1887". Journal of Helminthology. 31 (1–2): 47–64. doi:10.1017/s0022149x00033290. PMID 13429025. S2CID 35487084.
  38. ^ a b Thomas, J. A.; Schönrogge, K.; Bonelli, S.; Barbero, F.; Balletto, E. (2010). "Corruption of ant acoustical signals by mimetic social parasites: Maculinea butterflies achieve elevated status in host societies by mimicking the acoustics of queen ants". Commun Integr Biol. 3 (2): 169–171. doi:10.4161/cib.3.2.10603. PMC 2889977. PMID 20585513.
  39. ^ a b Payne, R. B. (1997). "Avian brood parasitism". In Clayton, D. H.; Moore, J. (eds.). Host–parasite evolution: General principles and avian models. Oxford University Press. pp. 338–369. ISBN 978-0-19-854892-8.
  40. ^ a b Slater, Peter J. B.; Rosenblatt, Jay S.; Snowdon, Charles T.; Roper, Timothy J.; Brockmann, H. Jane; Naguib, Marc (30 January 2005). Advances in the Study of Behavior. Academic Press. p. 365. ISBN 978-0-08-049015-1.
  41. ^ a b Pietsch, Theodore W. (25 August 2005). "Dimorphism, parasitism, and sex revisited: modes of reproduction among deep-sea ceratioid anglerfishes (Teleostei: Lophiiformes)". Ichthyological Research. 52 (3): 207–236. Bibcode:2005IchtR..52..207P. doi:10.1007/s10228-005-0286-2. S2CID 24768783.
  42. ^ a b Rochat, Jacques; Gutierrez, Andrew Paul (May 2001). "Weather-mediated regulation of olive scale by two parasitoids". Journal of Animal Ecology. 70 (3): 476–490. Bibcode:2001JAnEc..70..476R. doi:10.1046/j.1365-2656.2001.00505.x. S2CID 73607283.
  43. ^ Аскью, Р. Р. (1961). «О биологии обитателей дубовых галлов семейства Cynipidae (Hymenoptera) в Британии». Труды Общества британской энтомологии . 14 : 237–268.
  44. ^ Parratt, Steven R.; Laine, Anna-Liisa (январь 2016 г.). «Роль гиперпаразитизма в экологии и эволюции микробных патогенов». Журнал ISME . 10 (8): 1815–1822. Bibcode : 2016ISMEJ..10.1815P. doi : 10.1038/ismej.2015.247. PMC 5029149. PMID  26784356 . 
  45. ^ Ван Ойстейен, Аннетт; Араужо Алвес, Дениз; Калиари Оливейра, Рикардо; Лима ду Насименту, Даниэла; Сантос ду Насименту, Фабиу; Биллен, Йохан; Венселерс, Том (сентябрь 2013 г.). «Коварные королевы пчел Melipona избирательно обнаруживают и проникают в семьи без маток». Поведение животных . 86 (3): 603–609. CiteSeerX 10.1.1.309.6081 . дои : 10.1016/j.anbehav.2013.07.001. S2CID  12921696. 
  46. ^ "Социальные паразиты в колонии муравьев". Antkeepers . Получено 4 апреля 2016 г.
  47. ^ Эмери, Карло (1909). «Über den Ursprung der dulotischen, parasitischen un myrmekophilen Ameisen». Biologischen Centralblatt . 29 : 352–362.
  48. ^ Deslippe, Richard (2010). "Социальный паразитизм у муравьев". Nature Education Knowledge . Получено 29 октября 2010 г.
  49. ^ Эмери, К. (1909). «Über den Ursprung der dulotischen, parasitischen und myrmekophilen Ameisen». Biologisches Centralblatt . 29 : 352–362.
  50. ^ Бурк, Эндрю Ф. Г.; Фрэнкс, Найджел Р. (июль 1991 г.). «Альтернативные адаптации, симпатрическое видообразование и эволюция паразитических инквилиновых муравьев». Биологический журнал Линнеевского общества . 43 (3): 157–178. doi :10.1111/j.1095-8312.1991.tb00591.x. ISSN  0024-4066.
  51. ^ О'Брайен, Тимоти Г. (1988). «Паразитическое поведение ухода за детьми у обезьяны-капуцина ( Cebus olivaceus )». Американский журнал приматологии . 16 (4): 341–344. doi :10.1002/ajp.1350160406. PMID  32079372. S2CID  86176932.
  52. ^ Ротштейн, СИ (1990). «Модельная система для коэволюции: паразитизм птичьего выводка». Annual Review of Ecology and Systematics . 21 : 481–508. doi :10.1146/annurev.ecolsys.21.1.481.
  53. ^ De Marsico, MC; Gloag, R.; Ursino, CA; Reboreda, JC (март 2013 г.). «Новый метод отторжения яиц паразитов выводка снижает интенсивность паразитизма у хозяина-коровьей птицы». Biology Letters . 9 (3): 20130076. doi :10.1098/rsbl.2013.0076. PMC 3645041 . PMID  23485877. 
  54. ^ Welbergen, J.; Davies, NB (2011). «Паразит в волчьей шкуре: мимикрия ястреба снижает нападение хозяев на кукушек». Behavioral Ecology . 22 (3): 574–579. doi : 10.1093/beheco/arr008 .
  55. ^ Фернесс, Р. В. (1978). «Клептопаразитизм больших поморников ( Catharacta skua Brünn.) и арктических поморников ( Stercorarius parasiticus L.) в колонии морских птиц Шетландских островов». Animal Behaviour . 26 : 1167–1177. doi : 10.1016/0003-3472(78)90107-0. S2CID  53155057.
  56. ^ Maggenti, Armand R.; Maggenti, Mary Ann; Gardner, Scott Lyell (2005). Онлайн-словарь зоологии беспозвоночных (PDF) . Университет Небраски. стр. 22. Архивировано из оригинала (PDF) 18 апреля 2018 г.
  57. ^ "Featured Creatures. Encarsia perplexa". Университет Флориды . Получено 6 января 2018 г.
  58. ^ Berec, Ludek; Schembri, Patrick J.; Boukal, David S. (2005). «Определение пола у Bonellia viridis (Echiura: Bonelliidae): динамика популяции и эволюция» (PDF) . Oikos . 108 (3): 473–484. Bibcode :2005Oikos.108..473B. doi :10.1111/j.0030-1299.2005.13350.x. Архивировано (PDF) из оригинала 3 октября 2019 г.
  59. ^ Роллинсон, Д.; Хей, СИ (2011). Достижения в паразитологии . Оксфорд: Elsevier Science. С. 4–7. ISBN 978-0-12-385897-9.
  60. ^ ab Poulin 2007, стр. 6.
  61. ^ Полашек, Эндрю; Вильхемсен, Ларс (2023). «Биоразнообразие перепончатокрылых паразитоидов». Current Opinion in Insect Science . 56 : 101026. Bibcode : 2023COIS...5601026P. doi : 10.1016/j.cois.2023.101026 . PMID  36966863. S2CID  257756440.
  62. ^ Форбс, Эндрю А.; Бэгли, Робин К.; Бир, Марк А.; и др. (12 июля 2018 г.). «Количественная оценка не поддающегося количественной оценке: почему перепончатокрылые, а не жесткокрылые, являются наиболее видовым отрядом животных». BMC Ecology . 18 (1): 21. Bibcode :2018BMCE...18...21F. doi : 10.1186/s12898-018-0176-x . ISSN  1472-6785. PMC 6042248 . PMID  30001194. 
  63. ^ Моранд, Серж; Краснов, Борис Р.; Литтлвуд, Д. Тимоти Дж. (2015). Разнообразие и диверсификация паразитов. Cambridge University Press. стр. 44. ISBN 978-1-107-03765-6.
  64. ^ Rastogi, VB (1997). Современная биология. Pitambar Publishing. стр. 115. ISBN 978-81-209-0496-5.
  65. ^ Кокла, Анна; Мельник, Чарльз В. (1 октября 2018 г.). «Развитие вора: формирование гаусторий у паразитических растений». Developmental Biology . 442 (1): 53–59. doi :10.1016/j.ydbio.2018.06.013. ISSN  0012-1606. PMID  29935146. S2CID  49394142.
  66. ^ abc Heide-Jørgensen, Henning S. (2008). Паразитические цветковые растения . Brill. ISBN 978-90-04-16750-6.
  67. ^ Никрент, Дэниел Л. (2002). "Паразитные растения мира" (PDF) . Архивировано (PDF) из оригинала 6 марта 2016 года . Получено 10 апреля 2018 года .которая появилась на испанском языке как Глава 2, стр. 7–27 в: JA López-Sáez, P. Catalán и L. Sáez [ред.], Parasitic Plants of the Pierean Peninsula and Balearic Islands .
  68. ^ Никрент, DL; Массельман, LJ (2004). «Введение в паразитические цветковые растения». Инструктор по здоровью растений . doi :10.1094/PHI-I-2004-0330-01.
  69. ^ Вествуд, Джеймс Х.; Йодер, Джон И.; Тимко, Майкл П.; деПамфилис, Клод В. (2010). «Эволюция паразитизма у растений». Тенденции в науке о растениях . 15 (4): 227–235. doi :10.1016/j.tplants.2010.01.004. PMID  20153240.
  70. ^ Leake, JR (1994). «Биология микогетеротрофных («сапрофитных») растений». New Phytologist . 127 (2): 171–216. doi :10.1111/j.1469-8137.1994.tb04272.x. PMID  33874520. S2CID  85142620.
  71. ^ Фэй, Ван; Лю, Йе (11 августа 2022 г.). «Биотрофные грибковые патогены: критический обзор». Прикладная биохимия и биотехнология . 195 (1): 1–16. doi :10.1007/s12010-022-04087-0. ISSN  0273-2289. PMID  35951248. S2CID  251474576.
  72. ^ "Что такое опёнок?". Королевское садоводческое общество . Получено 12 октября 2017 г.
  73. ^ Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha (8 декабря 2017 г.). «Переключение биотрофии-некротрофии у патогена вызывает дифференциальную реакцию у устойчивого и восприимчивого кунжута, включающую множественные сигнальные пути на разных фазах». Scientific Reports . 7 (1): 17251. Bibcode :2017NatSR...717251C. doi :10.1038/s41598-017-17248-7. ISSN  2045-2322. PMC 5722813 . PMID  29222513. 
  74. ^ «Перестаньте пренебрегать грибами». Nature Microbiology . 2 (8): 17120. 25 июля 2017. doi : 10.1038/nmicrobiol.2017.120 . PMID  28741610.
  75. ^ Didier, ES; Stovall, ME; Green, LC; Brindley, PJ; Sestak, K.; Didier, PJ (9 декабря 2004 г.). «Эпидемиология микроспоридиоза: источники и пути передачи». Ветеринарная паразитология . 126 (1–2): 145–166. doi :10.1016/j.vetpar.2004.09.006. PMID  15567583.
  76. ^ Esch, KJ; Petersen, CA (январь 2013 г.). «Передача и эпидемиология зоонозных протозойных заболеваний домашних животных». Clinical Microbiology Reviews . 26 (1): 58–85. doi :10.1128/CMR.00067-12. PMC 3553666. PMID  23297259 . 
  77. ^ МакФолл-Нгай, Маргарет (январь 2007 г.). «Адаптивный иммунитет: забота о сообществе». Nature . 445 (7124): 153. Bibcode :2007Natur.445..153M. doi : 10.1038/445153a . PMID  17215830. S2CID  9273396.
  78. ^ Фишер, Брюс; Харви, Ричард П.; Чамп, Памела К. (2007). Иллюстрированные обзоры Липпинкотта: Микробиология (серия иллюстрированных обзоров Липпинкотта) . Липпинкотт Уильямс и Уилкинс. стр. 332–353. ISBN 978-0-7817-8215-9.
  79. ^ Кунин, EV; Сенкевич, TG; Доля, VV (2006). "Древний мир вирусов и эволюция клеток". Biology Direct . 1 : 29. doi : 10.1186/1745-6150-1-29 . PMC 1594570. PMID 16984643  . 
  80. ^ Breitbart, M. ; Rohwer, F. (2005). «Здесь вирус, там вирус, везде один и тот же вирус?». Trends in Microbiology . 13 (6): 278–284. doi :10.1016/j.tim.2005.04.003. PMID  15936660.
  81. ^ Лоуренс, CM; Менон, S.; Эйлерс, BJ; и др. (2009). «Структурные и функциональные исследования архейных вирусов». Журнал биологической химии . 284 (19): 12599–603. doi : 10.1074/jbc.R800078200 . PMC 2675988. PMID  19158076 . 
  82. ^ Эдвардс, РА; Ровер, Ф. (2005). «Вирусная метагеномика» (PDF) . Nature Reviews Microbiology . 3 (6): 504–510. doi :10.1038/nrmicro1163. PMID  15886693. S2CID  8059643. Архивировано (PDF) из оригинала 3 октября 2019 г.
  83. ^ ab Dobson, A.; Lafferty, KD; Kuris, AM; Hechinger, RF; Jetz, W. (2008). «Посвящение Линнею: сколько паразитов? Сколько хозяев?». Труды Национальной академии наук . 105 (Приложение 1): 11482–11489. Bibcode : 2008PNAS..10511482D. doi : 10.1073/pnas.0803232105 . PMC 2556407. PMID  18695218 . 
  84. ^ abc Sukhdeo, Michael VK (2012). «Где находятся паразиты в пищевых сетях?». Parasites & Vectors . 5 (1): 239. doi : 10.1186/1756-3305-5-239 . PMC 3523981. PMID  23092160 . 
  85. ^ Вольф, Эван Д.С.; Солсбери, Стивен В.; Хорнер, Джон Р.; Варричио, Дэвид Дж. (2009). «Распространенная птичья инфекция поразила динозавров-тиранов». PLOS ONE . 4 (9): e7288. Bibcode : 2009PLoSO...4.7288W. doi : 10.1371/journal.pone.0007288 . PMC 2748709. PMID 19789646  . 
  86. ^ Пономаренко, А.Г. (1976) Новое насекомое из мела Забайкалья, возможный паразит птерозавров. Палеонтологический журнал 10(3):339-343 (англ.) / Палеонтологический журнал 1976(3):102-106 (рус.)
  87. ^ Чжан, Яньцзе; Ши, Чункунь; Расницын, Александр; Жэнь, Дун; Гао, Тайпин (2020). «Новая блоха из раннего мела Китая». Acta Palaeontologica Polonica . 65 . doi : 10.4202/app.00680.2019 .
  88. ^ Танит Нонсрирах, Серж Моран, Алексис Рибас, Сита Маниткун, Комсорн Лаупрасерт, Жюльен Клод (9 августа 2023 г.). «Первое обнаружение яиц паразитов в копролите позвоночных позднего триаса в Таиланде». PLOS ONE . 18 (8): e0287891. Bibcode : 2023PLoSO..1887891N. doi : 10.1371/journal.pone.0287891 . PMC 10411797. PMID 37556448  . {{cite journal}}: CS1 maint: несколько имен: список авторов ( ссылка )
  89. ^ ab Rook, GA (2007). «Гипотеза гигиены и растущая распространенность хронических воспалительных заболеваний». Труды Королевского общества тропической медицины и гигиены . 101 (11): 1072–1074. doi :10.1016/j.trstmh.2007.05.014. PMID  17619029.
  90. ^ abc Massey, RC ; Buckling, A.; ffrench-Constant, R. (2004). «Интерференционная конкуренция и вирулентность паразитов». Труды Королевского общества B: Биологические науки . 271 (1541): 785–788. doi :10.1098/rspb.2004.2676. PMC 1691666 . PMID  15255095. 
  91. ^ Эвальд, Пол В. (1994). Эволюция инфекционных заболеваний . Oxford University Press. стр. 8. ISBN 978-0-19-534519-3.
  92. ^ Werren, John H. (февраль 2003 г.). «Вторжение гендерных манипуляторов: манипулируя полом и репродукцией у своих хозяев, многие паразиты повышают свои собственные шансы на выживание и могут формировать эволюцию самого пола». Natural History . 112 (1): 58. OCLC  1759475. Архивировано из оригинала 8 июля 2012 г. Получено 15 ноября 2008 г.
  93. ^ Маргулис, Линн ; Саган, Дорион ; Элдридж, Найлс (1995). Что такое жизнь?. Саймон и Шустер. ISBN 978-0-684-81087-4.
  94. ^ Саркар, Сахотра; Плутински, Аня (2008). Спутник философии биологии. John Wiley & Sons. стр. 358. ISBN 978-0-470-69584-5.
  95. ^ Риго, Т.; Перро-Минно, М.-Ж.; Браун, М.Дж.Ф. (2010). «Паразитные и хозяинные скопления: принятие реальности улучшит наши знания о передаче паразитов и вирулентности». Труды Королевского общества B: Биологические науки . 277 (1701): 3693–3702. doi :10.1098/rspb.2010.1163. PMC 2992712. PMID  20667874 . 
  96. ^ Page, Roderic DM (27 января 2006 г.). "Cospeciation". Энциклопедия наук о жизни . John Wiley. doi :10.1038/npg.els.0004124. ISBN 978-0-470-01617-6.
  97. ^ Свитцер, Уильям М.; Салеми, Марко; Шанмугам, Ведапури; и др. (2005). «Древнее совместное видообразование обезьяньих пенистых вирусов и приматов». Nature . 434 (7031): 376–380. Bibcode :2005Natur.434..376S. doi :10.1038/nature03341. PMID  15772660. S2CID  4326578.
  98. ^ Джонсон, К. П.; Кеннеди, М.; Маккракен, К. Г. (2006). «Переосмысление происхождения вшей-фламинго: совместное видообразование или смена хозяина?». Biology Letters . 2 (2): 275–278. doi :10.1098/rsbl.2005.0427. PMC 1618896. PMID 17148381  . 
  99. ^ ab Lively, CM; Dybdahl, MF (2000). «Адаптация паразита к локально распространенным генотипам хозяина» (PDF) . Nature . 405 (6787): 679–81. Bibcode :2000Natur.405..679L. doi :10.1038/35015069. PMID  10864323. S2CID  4387547. Архивировано (PDF) из оригинала 7 июня 2016 г.
  100. ^ Lafferty, KD; Morris, AK (1996). «Измененное поведение паразитированных киллифиш увеличивает восприимчивость к хищничеству со стороны окончательных хозяев-птиц» (PDF) . Ecology . 77 (5): 1390–1397. Bibcode :1996Ecol...77.1390L. doi :10.2307/2265536. JSTOR  2265536. Архивировано (PDF) из оригинала 3 марта 2019 г.
  101. ^ Бердой, М.; Вебстер, Дж. П.; Макдональд, Д. В. (2000). «Смертельное влечение у крыс, инфицированных Toxoplasma gondii». Proc. Biol. Sci . 267 (1452): 1591–4. doi :10.1098/rspb.2000.1182. PMC 1690701. PMID 11007336  . 
  102. ^ Такасука, Кейдзо (16 сентября 2019 г.). «Оценка манипулятивных эффектов личинки эктопаразитоидного паука-ихневмонида на хозяине-пауке-кругопряде (Araneidae: Cyclosa argenteoalba) путем хирургического удаления и трансплантации». Журнал арахнологии . 47 (2): 181. doi : 10.1636/joa-s-18-082. ISSN  0161-8202. S2CID  202579182.
  103. ^ Александр, Дэвид Э. (2015). На крыле: насекомые, птерозавры, птицы, летучие мыши и эволюция полета животных. Oxford University Press. стр. 119. ISBN 978-0-19-999679-7.
  104. ^ Poulin, Robert (сентябрь 1995 г.). "Эволюция черт жизненного цикла паразитов: мифы и реальность" (PDF) . Parasitology Today . 11 (9): 342–345. doi :10.1016/0169-4758(95)80187-1. PMID  15275316. Архивировано из оригинала (PDF) 16 февраля 2012 г.
  105. ^ Яхалом, Даяна; Аткинсон, Стивен Д.; Нойхоф, Моран; Чанг, Э. Салли; Филипп, Эрве; Картрайт, Полин; Бартоломью, Джерри Л.; Хашон, Доротея (19 февраля 2020 г.). «У паразита лосося (Myxozoa: Henneguya) отсутствует митохондриальный геном». Труды Национальной академии наук . 117 (10): 5358–5363. Bibcode : 2020PNAS..117.5358Y. doi : 10.1073/pnas.1909907117 . PMC 7071853. PMID  32094163 . 
  106. ^ abcd "Взаимодействие хозяина и паразита. Врожденная защита хозяина" (PDF) . Университет Колорадо. Архивировано из оригинала (PDF) 4 марта 2016 г. . Получено 7 мая 2014 г. .
  107. ^ ab Maizels, RM (2009). "Паразитная иммуномодуляция и полиморфизмы иммунной системы". J. Biol . 8 (7): 62. doi : 10.1186/jbiol166 . PMC 2736671. PMID  19664200 . 
  108. ^ ab Jeanne, Robert L. (1979). «Строительство и использование множественных гребней у Polistes canadensis в связи с биологией хищной моли». Поведенческая экология и социобиология . 4 (3): 293–310. doi :10.1007/bf00297649. S2CID  36132488.
  109. ^ ab Runyon, JB; Mescher, MC; De Moraes, CM (2010). «Защита растений от паразитических растений показывает сходство с защитой, вызываемой травоядными и патогенами». Plant Signal Behav . 5 (8): 929–31. Bibcode :2010PlSiB...5..929R. doi :10.4161/psb.5.8.11772. PMC 3115164 . PMID  20495380. 
  110. ^ Гамильтон, У. Д .; Аксельрод, Р.; Танезе, Р. (май 1990 г.). «Половое размножение как адаптация к сопротивлению паразитам (обзор)». Труды Национальной академии наук . 87 (9): 3566–3573. Bibcode : 1990PNAS...87.3566H. doi : 10.1073/pnas.87.9.3566 . PMC 53943. PMID  2185476 . 
  111. ^ Эберт, Дитер; Гамильтон, Уильям Д. (1996). «Секс против вирулентности: коэволюция паразитарных заболеваний». Тенденции в экологии и эволюции . 11 (2): 79–82. doi :10.1016/0169-5347(96)81047-0. PMID  21237766.
  112. ^ Фолстад, Ивар; Картер, Эндрю Джон (1992). «Паразиты, яркие самцы и гандикап иммунокомпетентности». The American Naturalist . 139 (3): 603–622. doi :10.1086/285346. S2CID  85266542.[ постоянная мертвая ссылка ]
  113. ^ ab Thaler, Jennifer S.; Karban, Richard; Ullman, Diane E.; Boege, Karina; Bostock, Richard M. (2002). «Перекрестные помехи между защитными путями растений жасмоната и салицилата: воздействие на несколько паразитов растений». Oecologia . 131 (2): 227–235. Bibcode :2002Oecol.131..227T. doi :10.1007/s00442-002-0885-9. PMID  28547690. S2CID  25912204.
  114. ^ abc Frank, SA (2000). "Специфическая и неспецифическая защита от паразитарного нападения" (PDF) . J. Theor. Biol . 202 (4): 283–304. Bibcode :2000JThBi.202..283F. CiteSeerX 10.1.1.212.7024 . doi :10.1006/jtbi.1999.1054. PMID  10666361. Архивировано (PDF) из оригинала 14 июня 2001 г. 
  115. ^ Паре, Пол В.; Тамлинсон, Джеймс Х. (1 октября 1999 г.). «Летучие вещества растений как защита от травоядных насекомых». Физиология растений . 121 (2): 325–332. doi :10.1104/pp.121.2.325. PMC 1539229. PMID  10517823 . 
  116. ^ ab Poulin 2007, стр. x, 1–2.
  117. ^ Blakeslee, April MH; Keogh, Carolyn L.; Fowler, Amy E.; Griffen, Blaine D.; Todd, Peter Alan (1 июня 2015 г.). «Оценка эффектов заражения трематодами на инвазивных зеленых крабов в восточной части Северной Америки». PLOS ONE . 10 (6): e0128674. Bibcode : 2015PLoSO..1028674B. doi : 10.1371/journal.pone.0128674 . PMC 4451766. PMID  26030816 .  Значок открытого доступа
  118. ^ Эберхард, МЛ (август 2016 г.). «Возможная роль рыб и лягушек как паратенических хозяев Dracunculus medinensis, Чад». Emerging Infectious Diseases . 22 (8): 1428–1430. doi :10.3201/eid2208.160043. PMC 4982183. PMID  27434418 . 
  119. ^ Холт, РД (2010). «IJEE Soapbox: Мир, свободный от паразитов и переносчиков: будет ли это рай или ад?» (PDF) . Израильский журнал экологии и эволюции . 56 (3): 239–250. doi :10.1560/IJEE.56.3-4.239. Архивировано (PDF) из оригинала 8 сентября 2015 г.
  120. ^ Комбс, Клод (2005). Искусство быть паразитом . Издательство Чикагского университета. ISBN 978-0-226-11438-5.
  121. ^ Хадсон, Питер Дж.; Добсон, Эндрю П.; Лафферти, Кевин Д. (2006). «Является ли здоровой экосистема, богатая паразитами?» (PDF) . Тенденции в экологии и эволюции . 21 (7): 381–385. doi :10.1016/j.tree.2006.04.007. PMID  16713014. Архивировано из оригинала (PDF) 10 августа 2017 г.
  122. ^ Стрингер, Эндрю Пол; Линклейтер, Уэйн (2014). «Все в меру: принципы борьбы с паразитами для сохранения дикой природы». BioScience . 64 (10): 932–937. doi : 10.1093/biosci/biu135 .
  123. ^ Лафферти, Кевин Д.; Аллесина, Стефано; Арим, Матиас; Бриггс, Шери Дж.; и др. (2008). «Паразиты в пищевых сетях: основные недостающие звенья». Ecology Letters . 11 (6): 533–546. Bibcode :2008EcolL..11..533L. doi :10.1111/j.1461-0248.2008.01174.x. PMC 2408649 . PMID  18462196. 
  124. ^ Чейз, Джонатан (2013). «Паразиты в пищевых сетях: распутывание запутанного банка». PLOS Biology . 11 (6): e1001580. doi : 10.1371/journal.pbio.1001580 . PMC 3678997. PMID 23776405  . 
  125. ^ Rózsa, L.; Reiczigel, J.; Majoros, G. (2000). «Количественная оценка паразитов в образцах хозяев» (PDF) . J. Parasitol . 86 (2): 228–32. doi :10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2. PMID  10780537. S2CID  16228008. Архивировано из оригинала (PDF) 19 июня 2018 г.
  126. ^ abcdef Cox, Francis EG (июнь 2004 г.). «История паразитарных заболеваний человека». Клиники инфекционных заболеваний Северной Америки . 18 (2): 173–174. doi :10.1016/j.idc.2004.01.001. PMID  15145374.
  127. ^ abc Cheng, Thomas C. (1973). Общая паразитология . Academic Press. стр. 120–134. ISBN 978-0-12-170750-7. XIX век можно считать временем зарождения современной паразитологии.
  128. ^ Хамфри-Смит, Ян, изд. (1993). Sept siècles de parasitologie en France [ Французская школа паразитологии ] (на французском языке). Французское общество паразитологии. стр. 26–29.
  129. ^ ab Ioli, A.; Petithory, JC; Theodorides, J. (1997). «Франческо Реди и рождение экспериментальной паразитологии». Hist Sci Med . 31 (1): 61–66. PMID  11625103.
  130. ^ Буш, АО; Фернандес, Дж. К.; Эш, Г. В.; Сид, Дж. Р. (2001). Паразитизм: разнообразие и экология паразитов животных. Cambridge University Press. стр. 4. ISBN 978-0-521-66447-9.
  131. ^ "Acarus as the cause of scabies". Университет Кальяри . Получено 11 апреля 2018 г.
  132. ^ "Паразитология". Merriam-Webster . Получено 13 апреля 2018 г.
  133. ^ Эллис, Гарольд (март 2006 г.). «Сэр Дэвид Брюс, пионер тропической медицины». British Journal of Hospital Medicine . 67 (3): 158. doi :10.12968/hmed.2006.67.3.20624. PMID  16562450.
  134. ^ «Малярия и кандидаты на вакцину против малярии». Коллегия врачей Филадельфии. 19 апреля 2017 г. Получено 11 февраля 2018 г.
  135. Уолш, Фергус (24 июля 2015 г.). «Вакцина против малярии получает «зеленый свет». BBC . Получено 25 июля 2015 г.
  136. ^ Hoddle, MS; Van Driesche, RG; Sanderson, JP (1998). «Биология и использование паразитоида белокрылки Encarsia Formosa». Annual Review of Entomology . 43 : 645–669. doi :10.1146/annurev.ento.43.1.645. PMID  15012401.
  137. ^ "Паразитоидные осы (Hymenoptera)". Университет Мэриленда. Архивировано из оригинала 27 августа 2016 года . Получено 6 июня 2016 года .
  138. ^ Поощрение инноваций в разработке биопестицидов. Архивировано 15 мая 2012 г. в Wayback Machine Европейской комиссии (2008). Доступно 9 января 2017 г.
  139. Пулен 2007, стр. 265–266.
  140. ^ Матысзак, Филипп (2017). 24 часа в Древнем Риме: день из жизни людей, которые там жили. Майкл О'Мара. стр. 252. ISBN 978-1-78243-857-1.
  141. ^ Дэймон, Синтия (1997). "5". Маска паразита: патология римского покровительства . Издательство Мичиганского университета. стр. 148. ISBN 978-0-472-10760-5Сатирик , стремящийся изобразить страдания клиента, естественно, сосредотачивается на отношениях с наибольшей зависимостью, в которых клиент получает пищу от своего покровителя, и для этого заранее сконструированная персона паразита оказалась чрезвычайно полезной.
  142. ^ ab Playfair, John (2007). Жизнь с микробами: в здоровье и болезни. Oxford University Press. стр. 19. ISBN 978-0-19-157934-9.Плейфэр сравнивает популярное употребление термина со взглядом биолога на паразитизм, который он называет (в заголовке той же страницы) «древним и уважаемым взглядом на жизнь».
  143. Свифт, Джонатан (1733). О поэзии: Рапсодия. Продается у Дж. Хаггонсона, рядом с кофейней Кента, около Serjeant's-inn, на Чансери-лейн; [и] в книжных и памфлетных магазинах.
  144. ^ Пулен, Роберт ; Макдугалл, Кэмерон; Прессвелл, Бронвен (11 мая 2022 г.). «Что в имени? Таксономические и гендерные предубеждения в этимологии новых названий видов». Труды Королевского общества B: Биологические науки . 289 (1974). doi :10.1098/rspb.2021.2708. PMC 9091844. PMID 35538778  . 
  145. ^ Отис, Лора (2001). Сетевое взаимодействие: общение с телами и машинами в девятнадцатом веке. Издательство Мичиганского университета. стр. 216. ISBN 978-0-472-11213-5.
  146. ^ "Паразитизм и симбиоз". Энциклопедия научной фантастики . 10 января 2016 г.
  147. Dove, Alistair (9 мая 2011 г.). «Это, несомненно, важный вид, с которым мы имеем дело». Deep Sea News.
  148. ^ Паппас, Стефани (29 мая 2012 г.). «5 инопланетных паразитов и их реальные аналоги». Live Science.
  149. ^ Sercel, Alex (19 мая 2017 г.). «Паразитизм в фильмах об инопланетянах». Журнал Signal to Noise.
  150. ^ Нордин, Майкл (25 апреля 2017 г.). «Эволюция „Чужого“: исследуйте каждую стадию ужасного жизненного цикла ксеноморфа. Отпразднуйте День чужого, взглянув на прошлое, настоящее и будущее самого ужасающего инопланетянина в кинематографе». IndieWire .

Источники

Дальнейшее чтение

Внешние ссылки