stringtranslate.com

3D моделирование

В 3D-компьютерной графике 3D-моделирование — это процесс разработки математического координатного представления поверхности объекта (неодушевленного или живого) в трех измерениях с помощью специального программного обеспечения путем манипулирования краями, вершинами и многоугольниками в моделируемом трехмерном пространстве . [1] [2] [3]

Трехмерные (3D) модели представляют собой физическое тело с использованием набора точек в трехмерном пространстве, соединенных различными геометрическими объектами, такими как треугольники, линии, изогнутые поверхности и т. д. [4] Являясь набором данных ( точек и другой информации). 3D-модели могут создаваться вручную, алгоритмически ( процедурное моделирование ) или путем сканирования . [5] [6] Их поверхности могут быть дополнительно определены с помощью текстурного отображения .

Контур

Продукт называется 3D-моделью, а того, кто работает с 3D-моделями, можно назвать 3D-художником или 3D-моделером.

3D-модель также может отображаться в виде двухмерного изображения с помощью процесса, называемого 3D-рендерингом , или использоваться при компьютерном моделировании физических явлений.

3D-модели могут создаваться автоматически или вручную. Процесс ручного моделирования для подготовки геометрических данных для компьютерной 3D-графики аналогичен пластическим искусствам, таким как скульптура . 3D-модель можно физически создать с помощью устройств 3D-печати , которые формируют 2D-слои модели из трехмерного материала, по одному слою за раз. Без 3D-модели 3D-печать невозможна.

Программное обеспечение для 3D-моделирования — это класс программного обеспечения для компьютерной 3D-графики , используемого для создания 3D-моделей. Отдельные программы этого класса называются приложениями моделирования. [7]

История

Трехмерная модель спектрографа [ 8]
Вращающаяся 3D-модель видеоигры
3D-модели селфи создаются на основе 2D-фотографий, сделанных в 3D-фотобудке Fantasitron в Мадуродаме .

3D-модели сейчас широко используются в  3D-графике  и  САПР , но их история предшествует широкому использованию 3D-графики на  персональных компьютерах . [9]

В прошлом во многих  компьютерных играх в качестве спрайтов  использовались предварительно обработанные изображения 3D-моделей,   прежде чем компьютеры могли визуализировать их в режиме реального времени. Затем дизайнер может увидеть модель в различных направлениях и видах, это может помочь дизайнеру увидеть, создан ли объект так, как задумано, по сравнению с его первоначальным видением. Такой взгляд на дизайн может помочь дизайнеру или компании определить изменения или улучшения, необходимые для продукта. [10]

Представление

Современный рендеринг культовой модели чайника из штата Юта , разработанной Мартином Ньюэллом (1975). Чайник «Юта» — одна из наиболее распространенных моделей, используемых в обучении 3D-графике.

Практически все 3D-модели можно разделить на две категории:

Моделирование твердых тел и оболочек позволяет создавать функционально идентичные объекты. Различия между ними заключаются в основном в различиях в способах их создания и редактирования, а также в традициях использования в различных областях и различиях в типах приближений между моделью и реальностью.

Модели оболочек должны быть многообразными (не иметь отверстий и трещин в оболочке), чтобы иметь смысл как реальный объект. В модели куба с оболочкой нижняя и верхняя поверхность куба должны иметь одинаковую толщину, без отверстий и трещин в первом и последнем напечатанном слое. Полигональные сетки (и, в меньшей степени, поверхности подразделения ) на сегодняшний день являются наиболее распространенным представлением. Наборы уровней являются полезным представлением для деформирования поверхностей, которые претерпевают множество топологических изменений, таких как жидкости .

Процесс преобразования представлений объектов, таких как координата средней точки сферы и точки на ее окружности , в многоугольное представление сферы, называется тесселяцией . Этот шаг используется при рендеринге на основе полигонов, где объекты разбиваются на абстрактные представления (« примитивы »), такие как сферы, конусы и т. д., на так называемые сетки , которые представляют собой сети взаимосвязанных треугольников. Сетки из треугольников (вместо, например, квадратов ) популярны, поскольку их легко растрировать (поверхность, описываемая каждым треугольником, плоская, поэтому проекция всегда выпуклая); . [11] Полигональные представления используются не во всех методах рендеринга, и в этих случаях шаг тесселяции не включается при переходе от абстрактного представления к визуализируемой сцене.

Процесс

Изучение различных типов методов 3D-моделирования [12]

3D-фэнтезийная рыба, состоящая из органических поверхностей, созданная с помощью LAI4D.

Этап моделирования заключается в формировании отдельных объектов, которые в дальнейшем используются в сцене. Существует ряд методов моделирования, в том числе:

Моделирование может выполняться с помощью специальной программы (например, программного обеспечения для 3D-моделирования Adobe Substance, Blender , Cinema 4D , LightWave , Maya , Modo , 3ds Max ) или компонента приложения (Shaper, Lofter в 3ds Max) или описания сцены. язык (как в POV-Ray ). В некоторых случаях между этими фазами нет строгого различия; в таких случаях моделирование — это всего лишь часть процесса создания сцены (так обстоит дело, например, с Caligari trueSpace и Realsoft 3D ).

3D-модели также можно создавать с использованием техники фотограмметрии с помощью специальных программ, таких как RealityCapture , Metashape и 3DF Zephyr . Очистку и дальнейшую обработку можно выполнить с помощью таких приложений, как MeshLab , GigaMesh Software Framework , netfabb или MeshMixer. Фотограмметрия создает модели с использованием алгоритмов для интерпретации формы и текстуры реальных объектов и окружающей среды на основе фотографий, сделанных с разных точек зрения.

Сложные материалы, такие как струящийся песок, облака и брызги жидкости, моделируются с помощью систем частиц и представляют собой массу трехмерных координат , которым назначены точки , многоугольники , текстурные пятна или спрайты .

Программное обеспечение для 3D-моделирования

Существует множество программ 3D-моделирования, которые можно использовать в машиностроении, дизайне интерьеров, кино и других отраслях. Каждое программное обеспечение для 3D-моделирования имеет определенные возможности и может использоваться для удовлетворения потребностей отрасли.

G-код

Многие программы включают опции экспорта для формирования g-кода , применимого к оборудованию аддитивного или субтрактивного производства. G-код (числовое программное управление) работает с автоматизированными технологиями для формирования реальной версии 3D-моделей. Этот код представляет собой определенный набор инструкций для выполнения этапов производства продукта. [13]

Человеческие модели

Первое широко доступное коммерческое применение виртуальных моделей человека появилось в 1998 году на веб-сайте Lands' End . Виртуальные модели людей были созданы компанией My Virtual Mode Inc. и позволили пользователям создать собственную модель и примерить 3D-одежду. Существует несколько современных программ, которые позволяют создавать виртуальные модели людей ( например, Poser ).

3D одежда

Динамичная 3D модель одежды, созданная в Marvelous Designer.

Разработка программного обеспечения для моделирования одежды , такого как Marvelous Designer, CLO3D и Optitex, позволила художникам и модельерам моделировать динамическую 3D-одежду на компьютере. [14] Динамическая 3D-одежда используется для виртуальных каталогов модной одежды, а также для одевания 3D-персонажей для видеоигр, 3D-анимационных фильмов, для цифровых двойников в кино [15] , а также для изготовления одежды для аватаров в виртуальных мирах, таких как SecondLife . .

Сравнение с 2D-методами

3D- фотореалистичные эффекты часто достигаются без каркасного моделирования и иногда неотличимы в окончательном виде. Некоторые программы для графической графики включают фильтры, которые можно применять к векторной 2D-графике или растровой 2D-графике на прозрачных слоях.

Преимущества каркасного 3D-моделирования перед исключительно 2D-методами включают в себя:

Недостатки по сравнению с 2D-фотореалистичной визуализацией могут включать необходимость обучения программному обеспечению и трудности с достижением определенных фотореалистичных эффектов. Некоторых фотореалистичных эффектов можно добиться с помощью специальных фильтров рендеринга, включенных в программное обеспечение для 3D-моделирования. Чтобы получить лучшее из обоих миров, некоторые художники используют комбинацию 3D-моделирования с последующим редактированием 2D-изображений, визуализированных на компьютере, из 3D-модели.

Рынок 3D моделей

Существует большой рынок 3D-моделей (а также связанного с 3D контента, такого как текстуры, скрипты и т. д.) – как для отдельных моделей, так и для больших коллекций. Несколько онлайн-рынков 3D-контента позволяют отдельным художникам продавать созданный ими контент, включая TurboSquid , MyMiniFactory , Sketchfab , CGTrader и Cults . Часто цель художников — получить дополнительную ценность от активов, которые они ранее создали для проектов. Поступая таким образом, художники могут зарабатывать больше денег на своем старом контенте, а компании могут экономить деньги, покупая готовые модели вместо того, чтобы платить сотруднику за создание модели с нуля. Эти торговые площадки обычно делят продажу между собой и художником, создавшим актив. Художники получают от 40% до 95% продаж в зависимости от торговой площадки. В большинстве случаев художник сохраняет право собственности на 3D-модель, в то время как клиент покупает только право на использование и представление модели. Некоторые художники продают свою продукцию напрямую в собственных магазинах, предлагая свою продукцию по более низкой цене, не прибегая к помощи посредников.

Отрасль архитектуры, проектирования и строительства (AEC) является крупнейшим рынком 3D-моделирования, оценочная стоимость которого к 2028 году составит 12,13 миллиарда долларов. [16] Это связано с растущим внедрением 3D-моделирования в отрасли AEC, что помогает повысить точность проектирования, уменьшить количество ошибок и упущений, а также облегчить сотрудничество между участниками проекта. [17] [18]

За последние несколько лет появилось множество торговых площадок, специализирующихся на моделях 3D-рендеринга и печати. Некоторые торговые площадки 3D-печати представляют собой комбинацию сайтов для обмена моделями со встроенными возможностями электронной связи или без них. Некоторые из этих платформ также предлагают услуги 3D-печати по запросу, программное обеспечение для рендеринга моделей и динамического просмотра предметов.

3D-печать

Термин 3D-печать или трехмерная печать представляет собой форму технологии аддитивного производства, при которой трехмерный объект создается из материала последовательных слоев. [19] Объекты можно создавать без необходимости использования сложных дорогостоящих форм или сборки из нескольких деталей. 3D-печать позволяет создавать прототипы и тестировать идеи без необходимости проходить производственный процесс. [19] [20]

3D-модели можно приобрести на онлайн-рынках и распечатать отдельными лицами или компаниями с помощью имеющихся в продаже 3D-принтеров, что позволяет производить в домашних условиях такие объекты, как запасные части и даже медицинское оборудование. [21] [22]

Использование

Этапы судебно-медицинской реконструкции лица мумии , выполненные в Blender бразильским 3D-дизайнером Сисеро Мораесом.

Сегодня 3D-моделирование используется в различных отраслях, таких как кино, анимация и игры, дизайн интерьера и архитектура . [23] Они также используются в медицинской промышленности для создания интерактивных изображений анатомии. [24]

Медицинская промышленность использует подробные модели органов; они могут быть созданы с помощью нескольких фрагментов двумерного изображения, полученных при МРТ или КТ . Киноиндустрия использует их в качестве персонажей и объектов для анимационных и реальных фильмов . Индустрия видеоигр использует их в качестве ресурсов для компьютерных и видеоигр .

Научный сектор использует их в качестве высокодетализированных моделей химических соединений. [25]

Архитектурная индустрия использует их для демонстрации предлагаемых зданий и ландшафтов вместо традиционных физических архитектурных моделей . Кроме того, использование уровня детализации (LOD) в 3D-моделях становится все более важным в отрасли AEC. Уровень детализации — это мера уровня детализации и точности 3D-модели. Уровни уровня детализации варьируются от 100 до 500, при этом уровень детализации 100 представляет собой концептуальную модель, показывающую основные массы и расположение объектов, а уровень детализации 500 представляет собой чрезвычайно подробную модель, включающую информацию о каждом аспекте здания, включая инженерные системы и внутреннюю отделку. . Используя LOD, архитекторы , инженеры и генеральный подрядчик могут более эффективно сообщать о проектных замыслах и принимать более обоснованные решения на протяжении всего процесса строительства. [26] [27]

Археологическое сообщество сейчас создает 3D-модели культурного наследия для исследования и визуализации. [28] [29]

Инженерное сообщество использует их для разработки новых устройств, транспортных средств и конструкций, а также для множества других целей.

В последние десятилетия сообщество наук о Земле начало строить трехмерные геологические модели в качестве стандартной практики.

3D-модели также могут быть основой для физических устройств, создаваемых с помощью 3D-принтеров или станков с ЧПУ .

С точки зрения разработки видеоигр 3D-моделирование — это один из этапов более длительного процесса разработки. Проще говоря, источником геометрии формы объекта может быть:

  1. Дизайнер, инженер-технолог или художник, использующий систему 3D-CAD.
  2. Существующий объект, реконструированный или скопированный с помощью дигитайзера или сканера трехмерной формы.
  3. Математические данные, хранящиеся в памяти на основе числового описания или расчета объекта. [19]

Большое количество 3D-программ также используется для создания цифрового представления механических моделей или деталей до их фактического производства. В таких областях используется программное обеспечение, связанное с CAD и CAM , и с его помощью вы можете не только конструировать детали, но и собирать их, а также наблюдать за их функциональностью.

3D-моделирование также используется в области промышленного дизайна , где продукты моделируются в 3D [30] перед представлением их клиентам. В медиа- и event-индустрии 3D-моделирование используется при проектировании сцен и декораций . [31]

Перевод словаря X3D в OWL 2 можно использовать для предоставления семантических описаний 3D -моделей, что подходит для индексации и поиска 3D-моделей по таким характеристикам, как геометрия, размеры, материал, текстура, диффузное отражение, спектры пропускания, прозрачность, отражательная способность, опалесценция, глазури, лаки и эмали (в отличие, например, от неструктурированных текстовых описаний или виртуальных музеев и выставок в формате 2,5D с использованием Google Street View в Google Arts & Culture ). [32] Представление 3D-моделей в формате RDF можно использовать в рассуждениях , что позволяет использовать интеллектуальные 3D-приложения, которые, например, могут автоматически сравнивать две 3D-модели по объему. [33]

Тестирование твердотельной 3D-модели

Твердотельные 3D-модели можно тестировать разными способами в зависимости от необходимости, используя моделирование, проектирование механизмов и анализ. Если двигатель спроектирован и собран правильно (это можно сделать по-разному в зависимости от того, какая программа 3D-моделирования используется), с помощью инструмента механизма пользователь должен иметь возможность определить, правильно ли собран двигатель или машина по тому, как он работает. Разные конструкции необходимо будет тестировать по-разному. Например; насосу для бассейна потребуется моделирование воды, проходящей через насос, чтобы увидеть, как вода течет через насос. Эти тесты проверяют, правильно ли разработан продукт или его необходимо изменить, чтобы он соответствовал требованиям.

Смотрите также

Рекомендации

  1. ^ «Что такое 3D-моделирование и для чего оно используется?». Концепт-арт Империи . 27 апреля 2018 г. Проверено 5 мая 2021 г.
  2. ^ «3D-моделирование». Программное обеспечение Siemens для цифровой промышленности . Проверено 14 июля 2021 г.
  3. ^ «Что такое 3D-моделирование? | Как 3D-моделирование используется сегодня» . Топы . 27 апреля 2020 г. Проверено 14 июля 2021 г.
  4. ^ Слик, Джастин (24 сентября 2020 г.). «Что такое 3D-моделирование?». Жизненный провод . Проверено 3 февраля 2022 г.
  5. ^ «Как 3D-сканировать с помощью телефона: вот наши лучшие советы» . Скульптео . Проверено 14 июля 2021 г.
  6. ^ «Facebook и Matterport сотрудничают в создании реалистичных виртуальных сред обучения для искусственного интеллекта» . ТехКранч . 30 июня 2021 г. Проверено 14 июля 2021 г.
  7. ^ Трединник, Росс; Андерсон, Ли; Райс, Брайан; Интерранте, Виктория (2006). «Инструмент иммерсивного архитектурного проектирования на базе планшета» (PDF) . Синтетические ландшафты: материалы 25-й ежегодной конференции Ассоциации компьютерного проектирования в архитектуре . АКАДИЯ. стр. 328–341. дои : 10.52842/conf.acadia.2006.328 .
  8. ^ «Проект ERIS начинается». Объявление ESO . Проверено 14 июня 2013 г.
  9. ^ «Будущее 3D-моделирования». ГаражФерма . 28 мая 2017 г. Проверено 15 декабря 2021 г.
  10. ^ «Что такое твердотельное моделирование? Программное обеспечение 3D CAD. Применение твердотельного моделирования». Брайтхаб Инжиниринг . 17 декабря 2008 года . Проверено 18 ноября 2017 г.
  11. Джон Радофф , Анатомия MMORPG. Архивировано 13 декабря 2009 г. в Wayback Machine , 22 августа 2008 г.
  12. ^ «Раскрытие потенциала методов 3D-моделирования для создания исключительных рендеров мебели». визмебель . а именно мебель. 9 декабря 2023 г. Проверено 9 декабря 2023 г.
  13. ^ Латиф Камран, Адам, Анбия, Юсоф Юсри, Кадир Айни, Зухра Абдул. (2021) «Обзор G-кода, STEP, STEP-NC и технологий управления с открытой архитектурой на основе встроенных систем ЧПУ». Международный журнал передового производства Технологии. https://doi.org/10.1007/s00170-021-06741-z
  14. ^ «Все о виртуальной моде и создании 3D-одежды». CGElves. Архивировано из оригинала 5 января 2016 года . Проверено 25 декабря 2015 г.
  15. ^ «3D-одежда, созданная для Хоббита с помощью Marvelous Designer» . 3DХудожник . Проверено 9 мая 2013 г.
  16. ^ «Рыночная стоимость 3D-картографии и моделирования» (пресс-релиз). Июнь 2022 г. Архивировано из оригинала 18 ноября 2022 г. Проверено 1 июня 2022 г.
  17. ^ «Обзор информационного моделирования зданий» . Архивировано из оригинала 7 декабря 2022 года . Проверено 5 марта 2012 г.
  18. ^ Морено, Кристина; Ольбина Светлана; Исса, Раджа Р. (2019). «Использование BIM в сфере архитектуры, проектирования и строительства (AEC) в проектах образовательных учреждений». Достижения гражданского строительства . 2019 : 1–19. дои : 10.1155/2019/1392684 . hdl : 10217/195794 .
  19. ^ abc Бернс, Маршалл (1993). Автоматизированное производство: повышение производительности производства. Энглвуд Клиффс, Нью-Джерси: PTR Prentice Hall. стр. 1–12, 75, 192–194. ISBN 0-13-119462-3. ОСЛК  27810960.
  20. ^ «Что такое 3D-печать? Полное руководство» . 3D-концентраторы . Проверено 18 ноября 2017 г.
  21. ^ «Игрушки для 3D-печати» . Бизнес-инсайдер . Проверено 25 января 2015 г.
  22. ^ «Новые тенденции в 3D-печати - индивидуальные медицинские устройства». Энвижнтек . Проверено 25 января 2015 г.
  23. ^ Ректор Эмили (17 сентября 2019 г.). «Что такое 3D-моделирование и дизайн? Руководство для начинающих в 3D». MarketScale . Проверено 5 мая 2021 г.
  24. ^ «3D-модели виртуальной реальности помогают добиться лучших результатов хирургических операций: инновационные технологии улучшают визуализацию анатомии пациента, показывают исследования» . ScienceDaily . Проверено 19 сентября 2019 г.
  25. ^ Педди, Джон (2013). История визуальной магии в компьютерах . Лондон: Springer-Verlag. стр. 396–400. ISBN 978-1-4471-4931-6.
  26. ^ «Уровень детализации». Архивировано из оригинала 30 декабря 2022 года . Проверено 28 июня 2022 г.
  27. ^ «Уровень детализации (LOD): понимание и использование». 5 апреля 2022 года. Архивировано из оригинала 18 июля 2022 года . Проверено 5 апреля 2022 г.
  28. ^ Маньяни, Мэтью; Дуглас, Мэтью; Шредер, Уиттакер; Ривз, Джонатан; Браун, Дэвид Р. (октябрь 2020 г.). «Грядущая цифровая революция: фотограмметрия в археологической практике». Американская древность . 85 (4): 737–760. дои : 10.1017/aaq.2020.59. ISSN  0002-7316. S2CID  225390638.
  29. ^ Вятт-Спратт, Саймон (04 ноября 2022 г.). «После революции: обзор 3D-моделирования как инструмента анализа каменных артефактов». Журнал компьютерных приложений в археологии . 5 (1): 215–237. дои : 10.5334/jcaa.103 . HDL : 2123/30230 . ISSN  2514-8362. S2CID  253353315.
  30. ^ «3D-модели для клиентов». 7CGI . Проверено 9 апреля 2023 г.
  31. ^ «3D-моделирование для бизнеса». Компьютерная графика Мебель . 5 ноября 2020 г. Проверено 5 ноября 2020 г.
  32. ^ Сикос, LF (2016). «Богатая семантика интерактивных 3D-моделей культурных артефактов». Метаданные и семантические исследования. Коммуникации в компьютерной и информатике. Том. 672. Springer International Publishing . стр. 169–180. дои : 10.1007/978-3-319-49157-8_14. ISBN 978-3-319-49156-1.
  33. ^ Ю, Д.; Хантер, Дж. (2014). «Идентификаторы фрагментов X3D — расширение модели открытых аннотаций для поддержки семантической аннотации трехмерных объектов культурного наследия через Интернет». Международный журнал наследия в цифровую эпоху . 3 (3): 579–596. дои : 10.1260/2047-4970.3.3.579.

Внешние ссылки

СМИ, связанные с 3D-моделированием, на Викискладе?