stringtranslate.com

Законы движения Ньютона

Законы движения Ньютона — это три закона , которые описывают связь между движением объекта и действующими на него силами . Эти законы, составляющие основу механики Ньютона , можно перефразировать следующим образом:

  1. Тело остается в покое или движется с постоянной скоростью по прямой, если на него не действует сила.
  2. Чистая сила, действующая на тело, равна ускорению тела, умноженному на его массу, или, что то же самое, скорости изменения импульса тела со временем.
  3. Если два тела действуют друг на друга с силами, то эти силы имеют одинаковую величину, но противоположные направления. [1]

Три закона движения были впервые сформулированы Исааком Ньютоном в его книге «Philosophiæ Naturalis Principia Mathematica» ( «Математические принципы естественной философии »), первоначально опубликованной в 1687 году. [2] Ньютон использовал их для исследования и объяснения движения многих физических объектов и систем. Со времени Ньютона новые идеи, особенно в отношении концепции энергии, построили на его фундаменте область классической механики . Также были обнаружены ограничения законов Ньютона; новые теории необходимы, когда объекты движутся с очень высокими скоростями ( специальная теория относительности ), очень массивны ( общая теория относительности ) или очень малы ( квантовая механика ).

Предварительные условия

Законы Ньютона часто формулируются в терминах масс точек или частиц , то есть тел, объем которых пренебрежимо мал. Это разумное приближение для реальных тел, когда движением внутренних частей можно пренебречь и когда расстояние между телами намного превышает размер каждого из них. Например, Землю и Солнце можно аппроксимировать как точечные, если рассматривать орбиту первого вокруг второго, но Земля не является точечной, если рассматривать деятельность на ее поверхности. [примечание 1]

Математическое описание движения, или кинематика , основано на идее указания положений с помощью числовых координат. Движение представлено этими числами, меняющимися во времени: траектория тела представлена ​​функцией, которая присваивает каждому значению временной переменной значения всех координат положения. Самый простой случай — одномерный, то есть когда тело вынуждено двигаться только по прямой. Тогда его положение может быть задано одним числом, указывающим, где оно находится относительно некоторой выбранной контрольной точки. Например, тело может свободно скользить по дорожке, идущей слева направо, поэтому его местоположение можно указать по расстоянию от удобной нулевой точки или начала координат , при этом отрицательные числа обозначают положение слева, а положительные числа указывают позиции вправо. Если положение тела как функция времени равно , то его средняя скорость за интервал времени от до равна [5]

дельтаИсчислениемгновенную
производной[6]предела[5]
Ускорение[примечание 2]
второй производной[6]

Положение, если рассматривать его как смещение от исходной точки, представляет собой вектор : величину, имеющую как величину, так и направление. [8] : 1  Скорость и ускорение также являются векторными величинами. Математические инструменты векторной алгебры позволяют описывать движение в двух, трех и более измерениях. Векторы часто обозначаются стрелкой, например , или жирным шрифтом, например . Часто векторы визуально представляются в виде стрелок, причем направление вектора соответствует направлению стрелки, а величина вектора обозначается длиной стрелки. В числовом виде вектор можно представить в виде списка; например, вектор скорости тела может быть , что указывает на то, что оно движется со скоростью 3 метра в секунду по горизонтальной оси и 4 метра в секунду по вертикальной оси. Одно и то же движение, описанное в другой системе координат, будет представлено разными числами, и для преобразования между этими альтернативами можно использовать векторную алгебру. [8] : 4 

Физическая концепция силы делает количественную повседневную идею толчка или притяжения. [примечание 3] Силы в ньютоновской механике часто возникают из-за струн и веревок, трения, мышечных усилий, гравитации и т. д. Подобно перемещению, скорости и ускорению, сила является векторной величиной.

Законы

Первый закон

см. подпись
Искусственные спутники движутся по изогнутым орбитам , а не по прямым, из-за гравитации Земли .

В переводе с латыни первый закон Ньютона гласит:

Всякое тело продолжает находиться в состоянии покоя или равномерного прямолинейного движения, если только оно не будет вынуждено изменить это состояние под действием приложенных к нему сил. [12] : 114 

Первый закон Ньютона выражает принцип инерции : естественным поведением тела является движение по прямой с постоянной скоростью. В отсутствие внешних воздействий движение тела сохраняет статус-кво.

Современное понимание первого закона Ньютона состоит в том, что ни один инерциальный наблюдатель не имеет привилегий перед другими. Концепция инерционного наблюдателя делает количественной повседневную идею отсутствия ощущения воздействия движения. Например, человек, стоящий на земле и наблюдающий за проходящим мимо поездом, является инерционным наблюдателем. Если наблюдатель на земле видит, как поезд плавно движется по прямой с постоянной скоростью, то пассажир, сидящий в поезде, тоже будет инерционным наблюдателем: пассажир поезда не чувствует движения. Принцип, выраженный в первом законе Ньютона, заключается в том, что невозможно сказать, какой инерциальный наблюдатель «действительно» движется, а какой «действительно» стоит на месте. Состояние покоя одного наблюдателя — это состояние равномерного прямолинейного движения другого наблюдателя, и ни один эксперимент не может признать какую-либо точку зрения правильной или неправильной. Абсолютного стандарта отдыха не существует. [примечание 4]

Второй закон

Изменение движения объекта пропорционально приложенной силе; и производится в направлении прямой линии, по которой действует сила. [12] : 114 

Под «движением» Ньютон имел в виду величину, называемую теперь импульсом , которая зависит от количества материи, содержащейся в теле, скорости, с которой движется это тело, и направления, в котором оно движется. В современных обозначениях импульс тела равен произведению его массы и скорости:

[16]
Диаграмма свободного тела для блока на наклонной плоскости, иллюстрирующая нормальную силу, перпендикулярную плоскости ( N ), нисходящую силу тяжести ( mg ) и силу f вдоль направления плоскости, которая может быть приложена, например , по веревке.

Силы, действующие на тело, складываются как векторы , и поэтому общая сила, действующая на тело, зависит как от величины, так и от направления отдельных сил. Когда результирующая сила, действующая на тело, равна нулю, то согласно второму закону Ньютона тело не ускоряется и считается, что оно находится в механическом равновесии . Состояние механического равновесия устойчиво , если при незначительном изменении положения тела тело остается вблизи этого равновесия. В противном случае равновесие неустойчиво .

Распространенным визуальным представлением сил, действующих согласованно, является диаграмма свободного тела , которая схематически изображает интересующее тело и силы, приложенные к нему внешними воздействиями. [17] Например, диаграмма свободного тела блока, стоящего на наклонной плоскости , может иллюстрировать комбинацию гравитационной силы, «нормальной» силы , трения и натяжения струны. [примечание 5]

Второй закон Ньютона иногда представляют как определение силы, т. е. сила – это то, что существует, когда инерционный наблюдатель видит ускоряющееся тело. Чтобы это было больше, чем тавтология — ускорение подразумевает силу, сила подразумевает ускорение — необходимо также сделать какое-то другое утверждение о силе. Например, можно указать уравнение, подробно описывающее силу, как закон всемирного тяготения Ньютона . Подставив такое выражение во второй закон Ньютона, можно записать уравнение с предсказательной силой. [примечание 6] Второй закон Ньютона также рассматривается как изложение исследовательской программы по физике, устанавливающей, что важными целями предмета являются выявление сил, присутствующих в природе, и каталогизация составляющих материи. [примечание 7]

Третий закон

Каждому действию всегда противостоит равное противодействие; или взаимные действия двух тел друг на друга всегда равны и направлены в противоположные части. [12] : 116 
Ракеты работают, создавая сильную силу реакции, направленную вниз, с помощью ракетных двигателей . Это толкает ракету вверх, независимо от земли или атмосферы .

Слишком краткие формулировки третьего закона, такие как «действие равно противодействию », могли вызвать путаницу среди поколений студентов: «действие» и «противодействие» применимы к разным телам. Например, рассмотрим книгу, лежащую на столе. Гравитация Земли давит на книгу. «Реакция» на это «действие» — это не сила поддержки стола, на котором держится книга, а гравитационное притяжение книги, действующее на Землю. [примечание 8]

Третий закон Ньютона связан с более фундаментальным принципом сохранения импульса . Последнее остается верным даже в тех случаях, когда утверждение Ньютона не соответствует действительности, например, когда силовые поля , а также материальные тела переносят импульс, и когда импульс определен правильно, также и в квантовой механике . [примечание 9] В механике Ньютона, если два тела имеют импульсы и соответственно, то общий импульс пары равен , а скорость изменения равна

Кандидаты в дополнительные законы

В различных источниках предлагалось возвысить до статуса законов Ньютона другие идеи, используемые в классической механике. Например, в механике Ньютона общая масса тела, образованного соединением двух меньших тел, равна сумме их индивидуальных масс. Фрэнк Вильчек предложил привлечь внимание к этому предположению, назвав его «нулевым законом Ньютона». [27] Еще одним кандидатом на «нулевой закон» является тот факт, что в любой момент тело реагирует на силы, приложенные к нему в этот момент. [28] Аналогично, идея о том, что силы складываются одинаковыми векторами (или, другими словами, подчиняются принципу суперпозиции ), и идея о том, что силы изменяют энергию тела, были описаны как «четвертый закон». [примечание 10]

Примеры

Изучение поведения массивных тел с помощью законов Ньютона известно как механика Ньютона. Некоторые примеры задач в механике Ньютона особенно примечательны по концептуальным или историческим причинам.

Равноускоренное движение

Прыгающий мяч , снятый со скоростью 25 кадров в секунду с использованием стробоскопической вспышки . В промежутках между отскоками высота мяча как функция времени близка к параболе , отклоняющейся от параболической дуги из-за сопротивления воздуха, вращения и деформации в несферическую форму при ударе.

Если тело падает из состояния покоя вблизи поверхности Земли, то при отсутствии сопротивления воздуха оно будет ускоряться с постоянной скоростью. Это известно как свободное падение . Скорость, достигнутая во время свободного падения, пропорциональна затраченному времени, а пройденное расстояние пропорционально квадрату затраченного времени. [33] Важно отметить, что ускорение одинаково для всех тел, независимо от их массы. Это следует из объединения второго закона движения Ньютона с его законом всемирного тяготения . Последний утверждает, что величина силы гравитации Земли, действующей на тело, равна

Если тело не выводится из состояния покоя, а вместо этого пускается вверх и/или горизонтально с ненулевой скоростью, то свободное падение становится движением снаряда . [34] Когда сопротивлением воздуха можно пренебречь, снаряды следуют по траекториям в форме параболы , поскольку гравитация влияет на вертикальное движение тела, а не на его горизонтальное. На пике траектории снаряда его вертикальная скорость равна нулю, но ускорение направлено вниз, как и всегда. Установка неправильного вектора, равного нулю, является распространенной путаницей среди студентов-физиков. [35]

Равномерное круговое движение

Два объекта находятся в равномерном круговом движении, вращаясь вокруг барицентра (центра масс обоих объектов).

Когда тело движется равномерно по кругу, сила, действующая на него, меняет направление его движения, но не скорость. Для тела, движущегося по окружности радиуса с постоянной скоростью , его ускорение имеет величину

[примечание 11]центростремительной силойорбиты[37] : 130 

Пушечное ядро ​​Ньютона — это мысленный эксперимент , который интерполирует движение снаряда и равномерное круговое движение. Пушечное ядро, слабо брошенное с края высокой скалы, упадет на землю за то же время, как если бы оно было сброшено из состояния покоя, поскольку сила гравитации влияет только на импульс ядра в направлении вниз, и ее эффект не уменьшается при горизонтальном движении. Если ядро ​​запустить с большей начальной горизонтальной скоростью, то оно пролетит большее расстояние, прежде чем упадет на землю, но все равно упадет на землю за то же время. Однако если ядро ​​запустить с еще большей начальной скоростью, то кривизна Земли станет значительной: сама земля выгнется в сторону от падающего ядра. Очень быстрое пушечное ядро ​​упадет с инерционной прямой траектории с той же скоростью, с которой Земля изгибается под ним; другими словами, он будет находиться на орбите (представляя, что его не замедляет сопротивление воздуха или препятствия). [38]

Гармоническое движение

Недемпфированная система пружина-масса совершает простое гармоническое движение.

Рассмотрим тело массы , способное двигаться вдоль оси, и предположим, что точка равновесия существует в положении . То есть при , результирующая сила, действующая на тело, равна нулевому вектору, и согласно второму закону Ньютона тело не будет ускоряться. Если сила, действующая на тело, пропорциональна смещению от точки равновесия и направлена ​​к точке равновесия, то тело будет совершать простое гармоническое движение . Записав силу как , второй закон Ньютона примет вид

Одна из причин, по которой гармонический осциллятор является концептуально важным примером, заключается в том, что он является хорошим приближением для многих систем, близких к устойчивому механическому равновесию. [примечание 12] Например, маятник имеет устойчивое равновесие в вертикальном положении: если он там неподвижен, то он останется там, а если его слегка толкнуть, то он будет раскачиваться вперед и назад. Если пренебречь сопротивлением воздуха и трением в шарнире, то сила, действующая на маятник, равна силе тяжести, и второй закон Ньютона принимает вид

синусряд Тейлора

Гармонический осциллятор можно демпфировать, часто за счет трения или вязкого сопротивления, и в этом случае энергия истекает из осциллятора, и амплитуда колебаний со временем уменьшается. Кроме того, гармонический осциллятор может приводиться в движение приложенной силой, что может привести к явлению резонанса . [40]

Объекты с переменной массой

Ракеты, такие как космический челнок «Атлантис» , толкают материю в одном направлении, а корабль толкают в другом. Это означает, что толкаемая масса ракеты и оставшийся в ней запас топлива постоянно меняются.

Ньютоновская физика рассматривает материю как нечто не созданное и не уничтоженное, хотя ее можно перестроить. Может случиться так, что интересующий объект приобретает или теряет массу из-за того, что к нему добавляется или удаляется материя. В такой ситуации законы Ньютона можно применить к отдельным частям материи, отслеживая, какие части принадлежат интересующему объекту с течением времени. Например, если ракета массы , движущаяся со скоростью , выбрасывает вещество со скоростью относительно ракеты, то

[18] : 139 

Работа и энергия

Физики разработали концепцию энергии после Ньютона, но она стала неотъемлемой частью того, что считается «ньютоновской» физикой. Энергию можно в общих чертах разделить на кинетическую , обусловленную движением тела, и потенциальную , обусловленную положением тела относительно других. Тепловая энергия , энергия, переносимая тепловым потоком, представляет собой тип кинетической энергии, связанный не с макроскопическим движением объектов, а с движением атомов и молекул, из которых они состоят. Согласно теореме о работе энергии , когда на тело действует сила, пока это тело движется вдоль линии силы, сила совершает работу над телом, и количество совершаемой работы равно изменению кинетической энергии тела. . [примечание 13] Во многих интересных случаях чистая работа, совершаемая силой, когда тело движется по замкнутому контуру — начиная с точки, двигаясь по некоторой траектории и возвращаясь в исходную точку, — равна нулю. Если это так, то силу можно записать через градиент функции , называемой скалярным потенциалом : [36] : 303 

[39] : 19 сохранения энергии

Движение и вращение твердого тела

Твердое тело — это объект, размер которого слишком велик, чтобы им можно было пренебречь, и который сохраняет одну и ту же форму с течением времени. В ньютоновской механике под движением твердого тела часто понимают разделение его на движение центра масс тела и движение вокруг центра масс.

Центр массы

Объект вилка-пробка-зубочистка, балансирующий на ручке со стороны зубочистки.
Общий центр масс вилки , пробки и зубочистки находится на кончике ручки.

Важные аспекты движения протяженного тела можно понять, если представить массу этого тела сосредоточенной в одной точке, известной как центр масс. Местоположение центра масс тела зависит от того, как распределен материал этого тела. Для набора точечных объектов с массами в позициях центр масс расположен в точке

[43][14] : 22–24 

Вращательные аналоги законов Ньютона.

Когда законы Ньютона применяются к вращающимся протяженным телам, они приводят к новым величинам, аналогичным тем, которые упоминались в первоначальных законах. Аналогом массы является момент инерции , аналогом импульса является угловой момент , а аналогом силы — крутящий момент .

Угловой момент рассчитывается относительно контрольной точки. [44] Если вектор перемещения от опорной точки к телу равен и тело имеет импульс , то угловой момент тела относительно этой точки равен, используя векторное векторное произведение ,

[14] : 14–15 

Угловой момент совокупности точечных масс и, следовательно, протяженного тела, находится путем сложения вкладов каждой из точек. Это дает возможность охарактеризовать вращение тела вокруг оси путем сложения угловых моментов его отдельных частей. Результат зависит от выбранной оси, формы тела и скорости вращения. [14] : 28 

Многочастичная гравитационная система

Анимация трех точек или тел, притягивающихся друг к другу

Закон всемирного тяготения Ньютона гласит, что любое тело притягивает любое другое тело вдоль соединяющей их прямой линии. Величина притягивающей силы пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Поиск формы орбит, которую будет производить закон обратных квадратов силы, известен как проблема Кеплера . Проблему Кеплера можно решить несколькими способами, в том числе путем демонстрации постоянства вектора Лапласа–Рунге–Ленца [45] или путем применения преобразования двойственности к двумерному гармоническому осциллятору. [46] Как бы это ни было решено, в результате орбиты будут иметь коническое сечение , то есть эллипсы (включая круги), параболы или гиперболы . Эксцентриситет орбиты и, следовательно, тип конического сечения определяются энергией и угловым моментом вращающегося тела . Планеты не обладают достаточной энергией, чтобы покинуть Солнце, поэтому их орбиты в хорошем приближении представляют собой эллипсы; поскольку планеты притягиваются друг к другу, реальные орбиты не являются точно коническими сечениями.

Если добавить третью массу, то задача Кеплера становится задачей трёх тел, которая вообще не имеет точного решения в замкнутой форме . То есть невозможно начать с дифференциальных уравнений, подразумеваемых законами Ньютона, и после конечной последовательности стандартных математических операций получить уравнения, выражающие движение трех тел во времени. [47] [48] Численные методы могут быть применены для получения полезных, хотя и приблизительных, результатов для задачи трех тел. [49] Положения и скорости тел могут храниться в переменных в памяти компьютера; Законы Ньютона используются для расчета того, как скорости будут меняться за короткий промежуток времени, и, зная скорости, можно вычислить изменения положения за этот промежуток времени. Этот процесс зациклен для приблизительного расчета траекторий тел. Вообще говоря, чем короче временной интервал, тем точнее приближение. [50]

Хаос и непредсказуемость

Нелинейная динамика

Три двойных маятника, инициализированные почти с одинаковыми начальными условиями, со временем расходятся.

Законы движения Ньютона допускают возможность хаоса . [51] [52] То есть, качественно говоря, физические системы, подчиняющиеся законам Ньютона, могут проявлять чувствительную зависимость от своих начальных условий: небольшое изменение положения или скорости одной части системы может привести к тому, что вся система будет вести себя радикально по-другому в течение короткого времени. Примечательные примеры включают задачу трех тел, двойной маятник , динамический бильярд и задачу Ферми-Пасты-Улама-Цингу .

Законы Ньютона можно применить к жидкостям , если рассматривать жидкость как состоящую из бесконечно малых частей, каждая из которых оказывает воздействие на соседние части. Уравнение количества движения Эйлера является выражением второго закона Ньютона, адаптированного к гидродинамике. [53] [54] Жидкость описывается полем скорости, т.е. функцией , которая присваивает вектор скорости каждой точке пространства и времени. Небольшой объект, увлекаемый потоком жидкости, может изменить скорость по двум причинам: во-первых, потому, что поле скорости в его положении меняется с течением времени, и, во-вторых, потому, что он перемещается в новое место, где поле скорости имеет другое значение. Следовательно, когда второй закон Ньютона применяется к бесконечно малой части жидкости, ускорение имеет два члена, комбинацию, известную как полная или материальная производная . Масса бесконечно малой части зависит от плотности жидкости , и на нее действует результирующая сила, если давление жидкости меняется от одной ее стороны к другой. Соответственно, становится

вязкостиуравнение Навье – Стокса
кинематическая вязкость[53]

Особенности

Математически возможно, что совокупность точечных масс, движущихся в соответствии с законами Ньютона, отбросит некоторые из них с такой силой, что они улетят в бесконечность за конечное время. [55] Это нефизическое поведение, известное как «сингулярность без столкновений», [48] зависит от того, что массы точечны и способны приближаться друг к другу сколь угодно близко, а также от отсутствия релятивистского ограничения скорости в ньютоновской физике. [56]

Пока неизвестно, демонстрируют ли уравнения Эйлера и Навье – Стокса аналогичное поведение изначально гладких решений, «раздувающихся» за конечное время. Вопрос о существовании и гладкости решений Навье–Стокса является одной из задач Премии тысячелетия . [57]

Связь с другими формулировками классической физики

Классическую механику можно математически сформулировать множеством разных способов, кроме «ньютоновского» описания (которое само по себе, конечно, включает вклад других авторов как до, так и после Ньютона). Физическое содержание этих различных формулировок такое же, как и у ньютоновских, но они дают разное понимание и облегчают различные типы вычислений. Например, механика Лагранжа помогает выявить связь между симметрией и законами сохранения, и она полезна при расчете движения связанных тел, таких как масса, ограниченная в движении по криволинейной траектории или по поверхности сферы. [14] : 48  Гамильтонова механика удобна для статистической физики , [58] [59] : 57  приводит к дальнейшему пониманию симметрии, [14] : 251  и может быть развита в сложные методы теории возмущений . [14] : 284  Из-за широты этих тем обсуждение здесь будет ограничено кратким рассмотрением того, как они переформулируют законы движения Ньютона.

лагранжиан

Лагранжева механика отличается от ньютоновской формулировки тем, что рассматривает сразу все траектории, а не предсказывает движение тела в один момент. [14] : 109  В лагранжевой механике традиционно обозначать положение с и скорость с . Простейшим примером является массивная точечная частица, лагранжиан которой можно записать как разность ее кинетической и потенциальной энергий:

Вариационное исчисление[36] : 485 уравнение Эйлера–Лагранжа
частных производных
[8] : 737 

Ландау и Лифшиц утверждают, что лагранжева формулировка делает концептуальное содержание классической механики более ясным, чем начало с законов Ньютона. [20] Лагранжева механика обеспечивает удобную основу для доказательства теоремы Нётер , которая связывает симметрии и законы сохранения. [60] Сохранение импульса можно получить, применив теорему Нётер к лагранжиану многочастичной системы, поэтому третий закон Ньютона — это скорее теорема, чем предположение. [14] : 124 

гамильтониан

Эмми Нётер , чье доказательство знаменитой теоремы, связывающей симметрию и законы сохранения, в 1915 году стало ключевым достижением в современной физике и может быть удобно сформулировано на языке лагранжевой или гамильтоновой механики.

В гамильтоновой механике динамика системы представлена ​​функцией, называемой гамильтонианом, которая во многих интересующих случаях равна полной энергии системы. [8] : 742  Гамильтониан является функцией положений и импульсов всех тел, составляющих систему, а также может явно зависеть от времени. Производные по времени переменных положения и импульса задаются частными производными гамильтониана через уравнения Гамильтона . [14] : 203  Самый простой пример — точечная масса, вынужденная двигаться по прямой под действием потенциала. Записывая координату положения и импульс тела, гамильтониан имеет вид

[51] [8] : 742 

Как и в формулировке Лагранжа, в гамильтоновой механике сохранение импульса можно вывести с помощью теоремы Нётер, что делает третий закон Ньютона идеей, которая скорее выводится, чем предполагается. [14] : 251 

Среди предложений по реформированию стандартной вводной программы по физике есть одно, которое преподает концепцию энергии перед концепцией силы, по сути, «вводную гамильтонову механику». [61] [62]

Гамильтон – Якоби

Уравнение Гамильтона -Якоби дает еще одну формулировку классической механики, которая делает ее математически аналогичной волновой оптике . [14] : 284  [63] В этой формулировке также используются функции Гамильтона, но иначе, чем в формулировке, описанной выше. Пути, по которым проходят тела или группы тел, выводятся из функции положения и времени . Гамильтониан включен в уравнение Гамильтона – Якоби, дифференциальное уравнение для . Тела движутся во времени так, что их траектории перпендикулярны поверхностям констант аналогично тому, как луч света распространяется в направлении, перпендикулярном его волновому фронту. Проще всего это выразить для случая одной точечной массы, в которой есть функция , и точечная масса движется в том направлении, в котором изменяется наиболее круто. Другими словами, импульс точечной массы представляет собой градиент :

степеницепочки
[64]полную или материальную производную[65]

Связь с другими физическими теориями

Термодинамика и статистическая физика

Моделирование более крупной, но все же микроскопической частицы (желтого цвета), окруженной газом из более мелких частиц, иллюстрирующее броуновское движение .

В статистической физике кинетическая теория газов применяет законы движения Ньютона к большому числу частиц (обычно порядка числа Авогадро ). Кинетическая теория может объяснить, например, давление , которое газ оказывает на контейнер, удерживающий его, как совокупность множества ударов атомов, каждый из которых сообщает крошечный импульс. [59] : 62 

Уравнение Ланжевена представляет собой частный случай второго закона Ньютона, адаптированный для случая описания небольшого объекта, стохастически бомбардируемого объектами еще меньшего размера. [66] : 235  Можно написать

коэффициент сопротивленияброуновского движения[67]

Электромагнетизм

Три закона Ньютона можно применить к явлениям, связанным с электричеством и магнетизмом , хотя существуют тонкости и оговорки.

Закон Кулона для электрической силы между двумя неподвижными электрически заряженными телами имеет почти ту же математическую форму, что и закон всемирного тяготения Ньютона: сила пропорциональна произведению зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой между ними. Кулоновская сила, действующая на заряд, равна по величине силе, действующей на , и направлена ​​в совершенно противоположном направлении. Таким образом, закон Кулона согласуется с третьим законом Ньютона. [68]

Электромагнетизм рассматривает силы как создаваемые полями , действующими на заряды. Закон силы Лоренца дает выражение для силы, действующей на заряженное тело, которое можно включить во второй закон Ньютона, чтобы вычислить его ускорение. [69] : 85  Согласно закону силы Лоренца, на заряженное тело, находящееся в электрическом поле, действует сила, направленная в направлении этого поля, сила, пропорциональная его заряду и напряженности электрического поля. Кроме того, на движущееся заряженное тело в магнитном поле действует сила, также пропорциональная его заряду, в направлении, перпендикулярном как полю, так и направлению движения тела. Используя векторное векторное произведение ,

Действует закон силы Лоренца: электроны изгибаются по круговой траектории под действием магнитного поля.

Если электрическое поле исчезает ( ), то сила будет перпендикулярна движению заряда, как и в случае равномерного кругового движения, изученного выше, и заряд будет вращаться (или, в более общем случае, двигаться по спирали ) вокруг силовых линий магнитного поля. на циклотронной частоте . [66] : 222  Масс-спектрометрия работает путем приложения электрических и/или магнитных полей к движущимся зарядам и измерения результирующего ускорения, которое по закону силы Лоренца дает отношение массы к заряду . [70]

Совокупность заряженных тел не всегда подчиняется третьему закону Ньютона: может произойти изменение импульса одного тела без компенсаторного изменения импульса другого. Расхождение объясняется импульсом, переносимым самим электромагнитным полем. Импульс единицы объема электромагнитного поля пропорционален вектору Пойнтинга . [71] : 184  [72]

Существует тонкий концептуальный конфликт между электромагнетизмом и первым законом Ньютона: теория электромагнетизма Максвелла предсказывает, что электромагнитные волны будут распространяться через пустое пространство с постоянной, определенной скоростью. Таким образом, некоторые инерциальные наблюдатели, по-видимому, имеют привилегированный статус перед другими, а именно те, кто измеряет скорость света и находит ее значение, предсказанное уравнениями Максвелла. Другими словами, свет обеспечивает абсолютный стандарт скорости, однако принцип инерции утверждает, что такого стандарта не должно быть. Это противоречие разрешается в специальной теории относительности, которая пересматривает понятия пространства и времени таким образом, что все инерциальные наблюдатели соглашаются со скоростью света в вакууме. [примечание 14]

Специальная теория относительности

В специальной теории относительности нарушается правило, которое Вильчек назвал «нулевым законом Ньютона»: масса составного объекта — это не просто сумма масс отдельных частей. [75] : 33  Первый закон Ньютона, движение по инерции, остается верным. Форма второго закона Ньютона, согласно которой сила — это скорость изменения импульса, также справедлива, как и закон сохранения импульса. Однако определение импульса изменено. Среди последствий этого — тот факт, что чем быстрее движется тело, тем труднее его ускорить, и поэтому, сколько бы сил ни прилагалось, тело не может быть ускорено до скорости света. В зависимости от решаемой задачи импульс в специальной теории относительности можно представить в виде трехмерного вектора , где – масса покоя тела , а – фактор Лоренца , который зависит от скорости тела. Альтернативно, импульс и сила могут быть представлены в виде четырех векторов . [76] : 107 

Третий закон Ньютона должен быть модифицирован в специальной теории относительности. Третий закон относится к силам, действующим между двумя телами в один и тот же момент времени, а ключевой особенностью специальной теории относительности является то, что одновременность относительна. События, которые происходят в одно и то же время относительно одного наблюдателя, могут происходить в разное время относительно другого. Таким образом, в данной системе отсчета наблюдателя действие и противодействие не могут быть строго противоположными, и общий импульс взаимодействующих тел может не сохраняться. Сохранение импульса восстанавливается за счет включения импульса, запасенного в поле, описывающем взаимодействие тел. [77] [78]

Механика Ньютона является хорошим приближением к специальной теории относительности, когда задействованные скорости малы по сравнению со скоростью света. [79] : 131 

Общая теория относительности

Общая теория относительности — это теория гравитации, превосходящая теорию Ньютона. В общей теории относительности сила гравитации переосмысливается как искривление пространства-времени . Искривленная траектория, подобная орбите, является не результатом силы, отклоняющей тело от идеальной прямой траектории, а, скорее, попыткой тела свободно упасть через фон, который сам искривлен присутствием других масс. Замечание Джона Арчибальда Уиллера , ставшее пословицей среди физиков, резюмирует теорию: «Пространство-время говорит материи, как двигаться; материя говорит пространству-времени, как искривляться». [80] [81] Сам Уиллер считал эту взаимосвязь современной, обобщенной формой третьего закона Ньютона. [80] Связь между распределением материи и кривизной пространства-времени определяется уравнениями поля Эйнштейна , для выражения которых требуется тензорное исчисление . [75] : 43  [82]

Ньютоновская теория гравитации является хорошим приближением к предсказаниям общей теории относительности, когда гравитационные эффекты слабы и объекты движутся медленно по сравнению со скоростью света. [73] : 327  [83]

Квантовая механика

Квантовая механика — это теория физики, первоначально разработанная для понимания микроскопических явлений: поведения на уровне молекул, атомов или субатомных частиц. Грубо говоря, чем меньше система, тем больше адекватная математическая модель требует понимания квантовых эффектов. Концептуальная основа квантовой физики сильно отличается от классической физики . Вместо того, чтобы думать о таких величинах, как положение, импульс и энергия, как о свойствах объекта , нужно учитывать, какой результат может появиться при выполнении измерения выбранного типа. Квантовая механика позволяет физику рассчитать вероятность того, что выбранное измерение приведет к определенному результату. [84] [85] Ожидаемое значение измерения — это среднее значение возможных результатов, которые оно может дать, взвешенное по вероятности их появления. [86]

Теорема Эренфеста обеспечивает связь между значениями квантового ожидания и вторым законом Ньютона, связь, которая обязательно является неточной, поскольку квантовая физика фундаментально отличается от классической. В квантовой физике положение и импульс представлены математическими объектами, известными как эрмитовы операторы , а правило Борна используется для расчета ожидаемых значений измерения положения или измерения импульса. Эти ожидаемые значения обычно меняются со временем; то есть в зависимости от времени, в которое (например) производится измерение положения, вероятности различных его возможных результатов будут различаться. Теорема Эренфеста, грубо говоря, гласит, что уравнения, описывающие, как эти математические ожидания изменяются с течением времени, имеют форму, напоминающую второй закон Ньютона. Однако чем более выражены квантовые эффекты в данной ситуации, тем труднее сделать из этого сходства осмысленные выводы. [примечание 15]

История

Понятия, заложенные в законах движения Ньютона — масса, скорость, импульс, сила — имеют предшественников в более ранних работах, а содержание ньютоновской физики получило дальнейшее развитие после Ньютона. Ньютон объединил знания о небесных движениях с изучением событий на Земле и показал, что одна теория механики может охватывать и то, и другое. [примечание 16]

Античность и средневековье

Статуя Аристотеля
Аристотель
(384–322 до н. э. )

Предмет физики часто восходит к Аристотелю , но история рассматриваемых концепций затенена множеством факторов. Точное соответствие между аристотелевскими и современными концепциями установить непросто: Аристотель не различал четко того, что мы назвали бы скоростью и силой, использовал один и тот же термин для плотности и вязкости и понимал движение, как всегда, через среду, а не через пространство. . Кроме того, некоторые концепции, которые часто называют «аристотелевскими», лучше было бы приписать его последователям и комментаторам. [91] Эти комментаторы обнаружили, что аристотелевская физика с трудом объясняет движение снаряда. [примечание 17] Аристотель делил движение на два типа: «естественное» и «насильственное». «Естественным» движением земного твердого вещества было падение вниз, тогда как «насильственное» движение могло оттолкнуть тело в сторону. Более того, в физике Аристотеля «неистовое» движение требует непосредственной причины; отделенное от причины своего «неистового» движения, тело вернется к своему «естественному» поведению. Тем не менее, копье продолжает двигаться после того, как покинуло руку метателя. Аристотель пришел к выводу, что воздуху вокруг копья необходимо придать способность перемещать копье вперед. Иоанн Филопон , византийский греческий мыслитель, действовавший в шестом веке, находил это абсурдным: одна и та же среда, воздух, каким-то образом отвечала как за поддержание движения, так и за его замедление. Если бы идея Аристотеля была верна, сказал Филопон, армии запускали бы оружие, дуя на них мехами. Филопон утверждал, что приведение тела в движение придает качество, импульс , который содержится внутри самого тела. Пока импульс сохранялся, тело продолжало двигаться. [93] : 47  В последующие столетия версии теории импульса были выдвинуты такими людьми, как Нур ад-Дин аль-Битруджи , Авиценна , Абу'л-Баракат аль-Багдади , Иоанн Буридан и Альберт Саксонский . Оглядываясь назад, идею импульса можно рассматривать как предшественника современной концепции импульса. [примечание 18] Интуитивное представление о том, что объекты движутся в соответствии с каким-то импульсом, сохраняется у многих студентов, изучающих вводную физику. [95]

Инерция и первый закон

Французский философ Рене Декарт ввел понятие инерции в своих «законах природы» в « Мире » ( Traité du monde et de la lumière ), написанном в 1629–1633 годах. Однако «Мир» претендовал на гелиоцентрическое мировоззрение, и в 1633 году эта точка зрения привела к большому конфликту между Галилео Галилеем и римско-католической инквизицией . Декарт знал об этом споре и не хотел вмешиваться. «Мир» не был опубликован до 1664 года, через десять лет после его смерти. [96]

Юстус Сустерманс – Портрет Галилео Галилея
Галилео Галилей
(1564–1642)

Современная концепция инерции принадлежит Галилею. На основании своих экспериментов Галилей пришел к выводу, что «естественным» поведением движущегося тела является продолжение движения до тех пор, пока ему не помешает что-то другое. В «Двух новых науках» (1638 г.) Галилей писал: [97] [98]

Представьте себе любую частицу, спроецированную на горизонтальную плоскость без трения; тогда мы знаем, из того, что было более полно объяснено на предыдущих страницах, что эта частица будет двигаться вдоль той же самой плоскости с движением, которое будет равномерным и вечным, при условии, что эта плоскость не имеет границ.

Портрет Рене Декарта
Рене Декарт
(1596–1650)

Галилей признал, что при движении снаряда гравитация Земли влияет на вертикальное, но не на горизонтальное движение. [99] Однако идея инерции Галилея не была точно той, которая была бы закреплена в первом законе Ньютона. Галилей считал, что тело, движущееся по инерции на большое расстояние, будет повторять кривую Земли. Эту идею исправили Исаак Бекман , Декарт и Пьер Гассенди , которые признали, что движение по инерции должно быть движением по прямой линии. [100] Декарт опубликовал свои законы природы (законы движения) с этой поправкой в ​​« Принципах философии» ( Principia Philosophiae ) в 1644 году, при этом гелиоцентрическая часть была смягчена. [101] [96]

При круговом движении мяч перерезает нить и отлетает по касательной.

Первый закон природы: каждая вещь, предоставленная самой себе, продолжает оставаться в том же состоянии; поэтому любое движущееся тело продолжает двигаться, пока что-то не остановит его.

Второй закон природы: каждая движущаяся вещь, если ее предоставить самой себе, движется по прямой; поэтому любое тело, движущееся по кругу, всегда стремится отойти от центра круга.

По словам американского философа Ричарда Дж. Блэквелла , голландский ученый Христиан Гюйгенс разработал свою собственную, краткую версию закона в 1656 году . Corporum ex Percussione .

Гипотеза I: Любое тело, уже находящееся в движении, будет продолжать двигаться постоянно с той же скоростью и по прямой, если ему не помешать.

По мнению Гюйгенса, этот закон был известен, в частности, Галилею и Декарту. [102]

Сила и второй закон

Христиан Гюйгенс
(1629–1695)

Христиан Гюйгенс в своей работе «Horologium Oscillatorium» (1673) выдвинул гипотезу, что «под действием силы тяжести, каковы бы ни были ее источники, случается, что тела движутся посредством движения, состоящего как из равномерного движения в том или ином направлении, так и из движение вниз под действием силы тяжести». Второй закон Ньютона обобщил эту гипотезу гравитации на все силы. [103]

Одной из важных характеристик ньютоновской физики является то, что силы могут действовать на расстоянии , не требуя физического контакта. [примечание 19] Например, Солнце и Земля притягиваются друг к другу гравитацией, несмотря на то, что их разделяют миллионы километров. Это контрастирует с идеей, которую отстаивал среди других Декарт, о том, что гравитация Солнца удерживает планеты на орбитах, закручивая их в вихре прозрачной материи, эфира . [110] Ньютон рассматривал эфирные объяснения силы, но в конечном итоге отверг их. [108] Изучение магнетизма Уильямом Гилбертом и другими создало прецедент для размышлений о нематериальных силах, [108] и не сумев найти количественно удовлетворительное объяснение своего закона гравитации с точки зрения эфирной модели, Ньютон в конце концов заявил: « Я не притворяйтесь гипотезами »: независимо от того, можно ли найти такую ​​модель, как вихри Декарта, лежащую в основе теорий движения и гравитации «Начал», первым основанием для их оценки должны быть сделанные ими успешные предсказания. [111] И действительно, со времен Ньютона все попытки создать такую ​​модель терпели неудачу .

Сохранение импульса и третий закон

Портрет Иоганна Кеплера
Иоганн Кеплер
(1571–1630)

Иоганн Кеплер предположил, что гравитационное притяжение взаимно — что, например, Луна притягивает Землю, а Земля — Луну, — но он не утверждал, что такие пары равны и противоположны. [112] В своих «Принципах философии» (1644 г.) Декарт выдвинул идею о том, что при столкновении тел «количество движения» остается неизменным. Декарт определил эту величину несколько неточно, сложив произведения скорости и «размера» каждого тела, где «размер» для него включал как объем, так и площадь поверхности. [113] Более того, Декарт считал Вселенную наполненной , то есть наполненной материей, поэтому любое движение требовало, чтобы тело смещало среду при ее движении.

В 1650-х годах Гюйгенс изучал столкновения между твердыми сферами и вывел принцип, который сейчас называют сохранением импульса. [114] [115] Кристофер Рен позже вывел те же правила для упругих столкновений , что и Гюйгенс, а Джон Уоллис применил закон сохранения импульса для изучения неупругих столкновений . Ньютон цитировал работы Гюйгенса, Рена и Уоллиса в подтверждение справедливости своего третьего закона. [116]

Ньютон постепенно пришел к своему набору трех законов. В рукописи 1684 года, написанной Гюйгенсу , он перечислил четыре закона: принцип инерции, изменение движения силой, утверждение об относительном движении, которое сегодня назвали бы инвариантностью Галилея , и правило, согласно которому взаимодействия между телами не меняют движение. их центра масс. В более поздней рукописи Ньютон добавил закон действия и противодействия, заявив при этом, что этот закон и закон о центре масс подразумевают друг друга. Ньютон, вероятно, остановился на изложении «Начал» с тремя основными законами, а затем и другими утверждениями, сведенными к следствиям, в 1685 году. [117]

После «Начал»

Страница 157 из «Небесного механизма» (1831 г.), расширенная версия Мэри Сомервилль первых двух томов « Трактата о небесной механике» Лапласа. [118] Здесь Сомервилль выводит закон обратных квадратов гравитации из законов движения планет Кеплера .

Ньютон сформулировал свой второй закон, сказав, что сила, действующая на тело, пропорциональна изменению его движения или импульса. К тому времени, когда он писал « Начала», он уже разработал исчисление (которое он называл « наукой о флюксиях »), но в «Началах» он не использовал его явно, возможно, потому, что считал геометрические аргументы в традиции Евклида более строгий. [119] : 15  [120] Следовательно, «Начала» не выражают ускорение как вторую производную положения и поэтому не дают второго закона как . Эта форма второго закона была написана (для частного случая постоянной силы) по крайней мере еще в 1716 году Якобом Германом ; Леонард Эйлер использовал ее в качестве основной предпосылки в 1740-х годах. [121] Эйлер был пионером в изучении твердых тел [122] и создал основную теорию гидродинамики. [123] Пятитомный «Трактат о небесной механике» Пьера-Симона Лапласа (1798–1825) отказался от геометрии и разработал механику исключительно посредством алгебраических выражений, одновременно решая вопросы, которые «Начала» оставили открытыми, как и полная теория приливов и отливов . [124]

Концепция энергии стала ключевой частью ньютоновской механики в постньютоновский период. Решение Гюйгенса о столкновении твердых сфер показало, что в этом случае сохраняется не только импульс, но и кинетическая энергия (или, скорее, величина, которую, ретроспективно, мы можем определить как половину полной кинетической энергии). Вопрос о том, что сохраняется при всех других процессах, таких как неупругие столкновения и замедленное трением движение, не был решен до XIX века. Дебаты на эту тему перекликались с философскими спорами между метафизическими взглядами Ньютона и Лейбница, а варианты термина «сила» иногда использовались для обозначения того, что мы бы назвали типами энергии. Например, в 1742 году Эмили дю Шатле писала: «Мертвая сила состоит из простой тенденции к движению: такова сила пружины, готовой расслабиться; живая сила — это то, чем обладает тело, когда оно находится в реальном движении». В современной терминологии «мертвая сила» и «живая сила» соответствуют потенциальной энергии и кинетической энергии соответственно. [125] Сохранение энергии не было признано универсальным принципом до тех пор, пока не было понято, что энергия механической работы может рассеиваться в тепло. [126] [127] Имея прочное обоснование концепции энергии, законы Ньютона можно было бы затем вывести в формулировках классической механики, в которых энергия ставится на первое место, как в лагранжевых и гамильтоновых формулировках, описанных выше.

В современных представлениях законов Ньютона используется математика векторов - тема, которая не разрабатывалась до конца 19 - начала 20 веков. Векторная алгебра, впервые разработанная Джозайей Уиллардом Гиббсом и Оливером Хевисайдом , возникла и в значительной степени вытеснила более раннюю систему кватернионов , изобретенную Уильямом Роуэном Гамильтоном . [128] [129]

Смотрите также

Примечания

  1. ^ См., например, Зейн. [3] : 1-2  Дэвид Тонг отмечает: «Частица определяется как объект незначительного размера: например, электрон, теннисный мяч или планета. Очевидно, достоверность этого утверждения зависит от контекста...» [ 4]
  2. ^ Отрицательное ускорение включает в себя как замедление (когда текущая скорость положительна), так и ускорение (когда текущая скорость отрицательна). По этому и другим вопросам, которые часто вызывают затруднения у студентов, см. McDermott et al. [7]
  3. ^ Изучение механики осложняется тем, что бытовые слова, такие как энергия , употребляются с техническим смыслом. [9] Более того, слова, которые являются синонимами в повседневной речи, не являются синонимами в физике: например, сила — это не то же самое, что мощность или давление , а масса имеет другое значение, чем вес . [10] [11] : 150 
  4. ^ Обсуждение учебников см., например, Resnick, [13] Frautschi et al. [12] : 62–63  или Хосе и Салетан. [14] : 7–9  Сам Ньютон считал, что абсолютные пространство и время существуют, но что единственные меры пространства и времени, доступные эксперименту, относительны. [15]
  5. ^ В одном учебнике отмечается, что блок, скользящий по наклонной плоскости, - это то, что «некоторые циники считают самой скучной проблемой во всей физике». [18] : 70  Еще одна шутка: «Никто никогда не узнает, сколько умов, жаждущих познать тайны Вселенной, вместо этого обнаружили, что изучают наклонные плоскости и шкивы, и решили переключиться на какую-нибудь более интересную профессию». [12] : 173 
  6. ^ См., например, обсуждение Хосе и Салетана. [14] : 9  Фраучи и др., [12] : 134  , а также Фейнман, Лейтон и Сэндс, [19] : 12-1  утверждают, что второй закон является неполным без спецификации силы другим законом, например, закон гравитации. Клеппнер и Коленков утверждают, что второй закон является неполным без третьего закона: наблюдатель, который видит, как одно тело ускоряется без соответствующего ускорения другого тела, которое должно компенсировать это, пришел бы к выводу не о том, что действует сила, а о том, что он не является инерционным наблюдателем. . [18] : 60  Ландау и Лифшиц обходят этот вопрос, начиная с лагранжева формализма, а не с ньютоновского. [20]
  7. ^ См., например, Фраучи и др., [12] : 134  , а также Фейнмана, Лейтона и Сэндса. [19] : 12-2 
  8. ^ См., например, Моебс и др., [21] Гоник и Хаффман, [22] Лоу и Уилсон, [23] Стоклмайер и др., [24] Хеллингман, [25] и Ходанбози. [26]
  9. ^ См., например, Frautschi et al. [12] : 356 
  10. ^ О первом см. Greiner, [29] или Wachter and Hoeber. [30] О последнем см. Тейт [31] и Хевисайд. [32]
  11. ^ Среди многих объяснений этого в учебниках есть Frautschi et al. [12] : 104  и Боас. [36] : 287 
  12. Среди многих учебников по этому вопросу есть Hand and Finch [39] : 81  , а также Kleppner и Kolenkow. [18] : 103 
  13. ^ Методы лечения можно найти, например, в Chabay et al. [41] и МакКаллум и др. [42] : 449 
  14. ^ Обсуждения можно найти, например, у Фраучи и др., [12] : 215  Панофски и Филлипс, [71] : 272  Гольдштейн, Пул и Сафко, [73] : 277  и Вернер. [74]
  15. ^ Подробности можно найти в учебниках, например, Cohen-Tannoudji et al. [87] : 242  и Перес. [88] : 302 
  16. ^ Как пишет один физик: «Физическая теория возможна, потому что мы погружены и включены во весь процесс – потому что мы можем воздействовать на объекты вокруг нас. Наша способность вмешиваться в природу проясняет даже движение планет вокруг Солнца – массы настолько велики, а расстояния настолько огромны, что наша роль как участников кажется незначительной.Ньютон смог преобразовать кинематическое описание Солнечной системы, данное Кеплером, в гораздо более мощную динамическую теорию, потому что он добавил понятия из экспериментальных методов Галилея – силу, массу, импульс и гравитацию. По-настоящему внешний наблюдатель сможет дойти только до Кеплера. Динамические концепции формулируются на основе того, что мы можем установить, контролировать и измерить». [89] См., например, Каспар и Хеллман. [90]
  17. ^ Аристотелевская физика также испытывала трудности с объяснением плавучести - вопрос, который Галилей пытался решить без полного успеха. [92]
  18. Аннелиз Майер предупреждает: «Импульс не является ни силой, ни формой энергии, ни импульсом в современном смысле; он имеет что-то общее со всеми этими другими концепциями, но не тождествен ни одному из них». [94] : 79 
  19. ^ Сам Ньютон был страстным алхимиком . Джон Мейнард Кейнс назвал его «последним из магов», чтобы описать его место на этапе перехода от протонауки к современной науке. [104] [105] Было высказано предположение, что алхимия вдохновила Ньютона на идею «действия на расстоянии», то есть, когда одно тело оказывает силу на другое, не находясь в прямом контакте. [106] Это предложение пользовалось значительной поддержкой среди историков науки [107] , пока не стало возможным более обширное исследование работ Ньютона, после чего оно вышло из моды. Однако оказывается, что алхимия Ньютона повлияла на его оптику , в частности на то, как он думал о сочетании цветов. [108] [109]

Рекомендации

  1. ^ Торнтон, Стивен Т.; Мэрион, Джерри Б. (2004). Классическая динамика частиц и систем (5-е изд.). Брук Коул. п. 49. ИСБН 0-534-40896-6.
  2. ^ Ньютон, Исаак; Читтенден, Северо-Запад; Мотт, Эндрю; Хилл, Теодор Престон (1846). Начала Ньютона: математические принципы натуральной философии. Библиотеки Калифорнийского университета. Дэниел Эйди.
  3. ^ Зейн, Самья (2019). Методы классической механики: от лагранжевой механики к ньютоновской. Институт физики. ISBN 978-0-750-32076-4. ОСЛК  1084752471.
  4. ^ Тонг, Дэвид (январь 2015 г.). «Классическая динамика: Математические исследования Кембриджского университета, часть II» (PDF) . Кембриджский университет . Проверено 12 февраля 2022 г.
  5. ^ аб Хьюз-Халлетт, Дебора ; МакКаллум, Уильям Г .; Глисон, Эндрю М .; и другие. (2013). Исчисление: одно- и многомерное (6-е изд.). Хобокен, Нью-Джерси: Уайли. стр. 76–78. ISBN 978-0-470-88861-2. ОСЛК  794034942.
  6. ^ аб Томпсон, Сильванус П .; Гарднер, Мартин (1998). Исчисление стало проще . Макмиллан. стр. 84–85. ISBN 978-0-312-18548-0. ОСЛК  799163595.
  7. ^ Макдермотт, Лилиан С .; Розенквист, Марк Л.; ван Зи, Эмили Х. (июнь 1987 г.). «Трудности учащихся в соединении графиков и физики: примеры из кинематики». Американский журнал физики . 55 (6): 503–513. Бибкод : 1987AmJPh..55..503M. дои : 10.1119/1.15104. ISSN  0002-9505.
  8. ^ abcde Gbur, Грег (2011). Математические методы оптической физики и техники. Кембридж, Великобритания: Издательство Кембриджского университета. ISBN 978-0-511-91510-9. ОСЛК  704518582.
  9. ^ Драйвер, Розалинда; Уоррингтон, Линда (1 июля 1985 г.). «Использование студентами принципа энергосбережения в проблемных ситуациях». Физическое образование . 20 (4): 171–176. Бибкод : 1985PhyEd..20..171D. дои : 10.1088/0031-9120/20/4/308. S2CID  250781921.
  10. ^ Брукс, Дэвид Т.; Эткина, Евгения (25 июня 2009 г.). «Сила», онтология и язык». Специальные темы физического обзора — исследования в области физического образования . 5 (1): 010110. Бибкод : 2009PRPER...5a0110B. doi : 10.1103/PhysRevSTPER.5.010110 . ISSN  1554-9178.
  11. ^ Уроне, Пол Питер; Хинрикс, Роджер; Диркс, Ким; Шарма, Манджула (2021). Колледж физики. ОпенСтакс . ISBN 978-1-947172-01-2. ОСЛК  895896190.
  12. ^ abcdefghij Frautschi, Стивен С .; Оленик, Ричард П.; Апостол, Том М .; Гудштейн, Дэвид Л. (2007). Механическая вселенная: механика и тепло (дополнительное издание). Кембридж [Кембриджшир]: Издательство Кембриджского университета. ISBN 978-0-521-71590-4. ОСЛК  227002144.
  13. ^ Резник, Роберт (1968). Введение в специальную теорию относительности . Уайли. стр. 8–16. ОСЛК  1120819093.
  14. ^ abcdefghijklm Хосе, Хорхе В .; Салетан, Юджин Дж. (1998). Классическая динамика: современный подход. Кембридж [Англия]: Издательство Кембриджского университета. ISBN 978-1-139-64890-5. ОСЛК  857769535.
  15. ^ Брэдинг, Кэтрин (август 2019 г.). «Заметка о стержнях и часах в «Началах» Ньютона». Исследования по истории и философии науки. Часть B: Исследования по истории и философии современной физики . 67 : 160–166. Бибкод :2019ШПМП..67..160Б. дои :10.1016/j.shpsb.2017.07.004. S2CID  125131430.
  16. ^ Резник, Роберт; Холлидей, Дэвид (1966). «Раздел 5-4: Масса; Второй закон Ньютона». Физика . Джон Уайли и сыновья. LCCN  66-11527.
  17. ^ Розенгрант, Дэвид; Ван Хевелен, Алан; Эткина, Евгения (1 июня 2009 г.). «Используют ли студенты и понимают ли они диаграммы свободного тела?». Специальные темы физического обзора — исследования в области физического образования . 5 (1): 010108. Бибкод : 2009PRPER...5a0108R. doi : 10.1103/PhysRevSTPER.5.010108 . ISSN  1554-9178.
  18. ^ abcd Клеппнер, Дэниел; Коленков, Роберт Дж. (2014). Введение в механику (2-е изд.). Кембридж: Издательство Кембриджского университета. ISBN 978-0-521-19811-0. ОСЛК  854617117.
  19. ^ аб Фейнман, Ричард П .; Лейтон, Роберт Б .; Сэндс, Мэтью Л. (1989) [1965]. Фейнмановские лекции по физике, том 1 . Ридинг, Массачусетс: Паб Addison-Wesley. ISBN компании 0-201-02010-6. ОСЛК  531535.
  20. ^ аб Ландау, Лев Д .; Лифшиц, Евгений Михайлович (1969). Механика . Курс теоретической физики . Том. 1. Перевод Сайкса, Дж. Б.; Белл, Дж. С. (2-е изд.). Пергамон Пресс . п. VII. ISBN 978-0-080-06466-6. OCLC  898931862. Действительно, только при таком подходе изложение может составить логическое целое и избежать тавтологических определений основных механических величин. Более того, он существенно проще и приводит к наиболее полному и прямому способу решения задач механики.
  21. ^ Моебс, Уильям; и другие. (2023). «5.5 Третий закон Ньютона». Университетская физика, Том 1 . ОпенСтакс. п. 220. ИСБН 978-1-947172-20-3.
  22. ^ Гоник, Ларри ; Хаффман, Искусство (1991). Мультяшный справочник по физике . ХарперПерэнниал. п. 50. ISBN 0-06-273100-9.
  23. ^ Лоу, Дэвид Дж.; Уилсон, Кейт Ф. (январь 2017 г.). «Роль конкурирующих структур знаний в подрыве обучения: второй и третий законы Ньютона». Американский журнал физики . 85 (1): 54–65. Бибкод : 2017AmJPh..85...54L. дои : 10.1119/1.4972041. ISSN  0002-9505.
  24. ^ Стокльмайер, Сью ; Рейнер, Джон П.; Гор, Майкл М. (октябрь 2012 г.). «Изменение порядка законов Ньютона - почему и как третий закон должен быть первым». Учитель физики . 50 (7): 406–409. Бибкод : 2012PhTea..50..406S. дои : 10.1119/1.4752043. ISSN  0031-921X.
  25. ^ Хеллингман, К. (март 1992 г.). «Возвращение к третьему закону Ньютона». Физическое образование . 27 (2): 112–115. Бибкод : 1992PhyEd..27..112H. дои : 10.1088/0031-9120/27/2/011. ISSN  0031-9120. S2CID  250891975.
  26. ^ Ходанбоси, Кэрол (август 1996 г.). Фэрман, Джонатан Г. (ред.). «Третий закон движения». www.grc.nasa.gov .
  27. ^ Вильчек, Франк (2003). «Происхождение массы» (PDF) . Ежегодник физики Массачусетского технологического института, 2003 год . Проверено 13 января 2022 г.
  28. ^ Шерр, Рэйчел Э .; Редиш, Эдвард Ф. (1 января 2005 г.). «Нулевой закон Ньютона: учимся, слушая наших студентов». Учитель физики . 43 (1): 41–45. Бибкод : 2005PhTea..43...41S. дои : 10.1119/1.1845990. ISSN  0031-921X.
  29. ^ Грейнер, Уолтер (2003). Классическая механика: точечные частицы и теория относительности. Нью-Йорк: Спрингер. п. 135. ИСБН 978-0-387-21851-9.
  30. ^ Вахтер, Армин; Хобер, Хеннинг (2006). Сборник теоретической физики . Нью-Йорк: Спрингер. п. 6. ISBN 978-0-387-25799-0.
  31. ^ Тейт, Питер Гатри (1889). «Механика». Британская энциклопедия . Том. 15 (9-е изд.). стр. 715–716.
  32. ^ Хевисайд, Оливер (август 1905 г.). «Поперечный импульс электрона». Природа . 72 (1870): 429. Бибкод : 1905Natur..72Q.429H. дои : 10.1038/072429a0 . ISSN  0028-0836. S2CID  4016382.
  33. ^ Никодеми, Олимпия (1 февраля 2010 г.). «Галилей и Ореме: кто современен? Кто средневековый?». Журнал «Математика» . 83 (1): 24–32. дои : 10.4169/002557010X479965. ISSN  0025-570X. S2CID  122113958.
  34. ^ Шольберг, Кейт (2020). «Часто задаваемые вопросы: движение снаряда». Физика 361 . Проверено 16 января 2022 г.
  35. ^ Карли, Марта; Липпиелло, Стефания; Пантано, Орнелла; Перона, Марио; Тормен, Джузеппе (19 марта 2020 г.). «Проверка способности учащихся использовать производные, интегралы и векторы в чисто математическом и физическом контексте». Физический обзор Исследования в области физики . 16 (1): 010111. Бибкод : 2020PRPER..16a0111C. doi : 10.1103/PhysRevPhysEducRes.16.010111 . hdl : 11577/3340932 . ISSN  2469-9896. S2CID  215832738.
  36. ^ abc Боас, Мэри Л. (2006). Математические методы в физических науках (3-е изд.). Хобокен, Нью-Джерси: Уайли. ISBN 978-0-471-19826-0. ОСЛК  61332593.
  37. ^ Браун, Майк (2010). Как я убил Плутон и почему это произошло (1-е изд.). Нью-Йорк: Шпигель и Грау. ISBN 978-0-385-53108-5. ОСЛК  495271396.
  38. ^ Топпер, Д.; Винсент, Делавэр (1 января 1999 г.). «Анализ диаграммы снаряда Ньютона». Европейский журнал физики . 20 (1): 59–66. Бибкод : 1999EJPh...20...59T. дои : 10.1088/0143-0807/20/1/018. ISSN  0143-0807. S2CID  250883796.
  39. ^ аб Хэнд, Луи Н.; Финч, Джанет Д. (1998). Аналитическая механика. Кембридж: Издательство Кембриджского университета. ISBN 0-521-57327-0. ОСЛК  37903527.
  40. ^ Биллах, К. Юсуф; Сканлан, Роберт Х. (1 февраля 1991 г.). «Резонанс, разрушение моста Такома-Нарроуз и учебники физики для студентов» (PDF) . Американский журнал физики . 59 (2): 118–124. Бибкод : 1991AmJPh..59..118B. дои : 10.1119/1.16590. ISSN  0002-9505.
  41. ^ Чабай, Рут ; Шервуд, Брюс; Титус, Аарон (июль 2019 г.). «Единый современный подход к преподаванию энергии в вводной физике». Американский журнал физики . 87 (7): 504–509. Бибкод : 2019AmJPh..87..504C. дои : 10.1119/1.5109519 . ISSN  0002-9505. S2CID  197512796.
  42. ^ Хьюз-Халлетт, Дебора ; МакКаллум, Уильям Г .; Глисон, Эндрю М .; и другие. (2013). Исчисление: одно- и многомерное (6-е изд.). Хобокен, Нью-Джерси: Уайли. ISBN 978-0-470-88861-2. ОСЛК  794034942.
  43. ^ Люблинская, Ирина Е. (январь 1998 г.). «Центральные столкновения — общий случай». Учитель физики . 36 (1): 18–19. Бибкод : 1998PhЧай..36...18л. дои : 10.1119/1.879949. ISSN  0031-921X.
  44. ^ Клоуз, Хантер Г.; Херон, Паула Р.Л. (октябрь 2011 г.). «Студенческое понимание углового момента классических частиц». Американский журнал физики . 79 (10): 1068–1078. Бибкод : 2011AmJPh..79.1068C. дои : 10.1119/1.3579141. ISSN  0002-9505.
  45. Мунган, Карл Э. (1 марта 2005 г.). «Еще один комментарий к статье «Эксцентриситет как вектор»». Европейский журнал физики . 26 (2): L7–L9. дои : 10.1088/0143-0807/26/2/L01. ISSN  0143-0807. S2CID  121740340.
  46. Саджо, Мария Луиза (1 января 2013 г.). «Преобразование Болина: скрытая симметрия, связывающая Гука с Ньютоном». Европейский журнал физики . 34 (1): 129–137. Бибкод : 2013EJPh...34..129S. дои : 10.1088/0143-0807/34/1/129. ISSN  0143-0807. S2CID  119949261.
  47. ^ Барроу-Грин, июнь (1997). Пуанкаре и задача трех тел . Американское математическое общество. стр. 8–12. Бибкод : 1997ptbp.book.....B. ISBN 978-0-8218-0367-7.
  48. ^ AB Барроу-Грин, июнь (2008 г.). «Задача трёх тел». В Гауэрсе, Тимоти ; Барроу-Грин, июнь ; Лидер, Имре (ред.). Принстонский спутник математики . Издательство Принстонского университета. стр. 726–728. ISBN 978-0-691-11880-2. ОСЛК  682200048.
  49. ^ Брин, Барбара Дж.; Вейдерт, Кристин Э.; Линднер, Джон Ф.; Уокер, Лиза Мэй; Келли, Кейси; Хайдтманн, Эван (апрель 2008 г.). «Приглашение к смущающе параллельным вычислениям». Американский журнал физики . 76 (4): 347–352. Бибкод : 2008AmJPh..76..347B. дои : 10.1119/1.2834738. ISSN  0002-9505.
  50. ^ МакКэндлиш, Дэвид (июль 1973 г.). Ширер, Дональд Л. (ред.). «Решение задачи трех тел с помощью компьютера». Американский журнал физики . 41 (7): 928–929. дои : 10.1119/1.1987423. ISSN  0002-9505.
  51. ^ аб Масоливер, Жауме; Рос, Ана (1 марта 2011 г.). «Интегрируемость и хаос: классическая неопределенность». Европейский журнал физики . 32 (2): 431–458. arXiv : 1012.4384 . Бибкод : 2011EJPh...32..431M. дои : 10.1088/0143-0807/32/2/016. ISSN  0143-0807. S2CID  58892714.
  52. ^ Лоус, Присцилла В. (апрель 2004 г.). «Раздел по колебаниям, детерминизму и хаосу для студентов-физиков». Американский журнал физики . 72 (4): 446–452. Бибкод : 2004AmJPh..72..446L. дои : 10.1119/1.1649964. ISSN  0002-9505.
  53. ^ Аб Зи, Энтони (2020). Полет ночью Физика . Издательство Принстонского университета. стр. 363–364. ISBN 978-0-691-18254-4. OCLC  1288147292.
  54. ^ Хан-Кван, Дэниел; Якобелли, Микаэла (7 апреля 2021 г.). «От второго закона Ньютона к уравнениям Эйлера идеальных жидкостей». Труды Американского математического общества . 149 (7): 3045–3061. arXiv : 2006.14924 . дои : 10.1090/proc/15349 . ISSN  0002-9939. S2CID  220127889.
  55. ^ Саари, Дональд Г .; Ся, Чжихун (май 1995 г.). «До бесконечности за конечное время» (PDF) . Уведомления Американского математического общества . 42 : 538–546.
  56. ^ Баэз, Джон К. (2021). «Борьба с континуумом». В Анеле, Матье; Катрен, Габриэль (ред.). Новые пространства в физике: формальные и концептуальные размышления . Издательство Кембриджского университета. стр. 281–326. arXiv : 1609.01421 . ISBN 978-1-108-49062-7. OCLC  1195899886.
  57. ^ Фефферман, Чарльз Л. (2006). «Существование и гладкость уравнения Навье – Стокса». В Карлсоне, Джеймс; Яффе, Артур ; Уайлс, Эндрю (ред.). Проблемы Премии тысячелетия (PDF) . Провиденс, Род-Айленд: Американское математическое общество и Математический институт Клэя. стр. 57–67. ISBN 978-0-821-83679-8. ОСЛК  466500872.
  58. ^ Эренфест, Пол ; Эренфест, Татьяна (1990) [1959]. Концептуальные основы статистического подхода в механике. Нью-Йорк: Dover Publications. п. 18. ISBN 0-486-66250-0. ОСЛК  20934820.
  59. ^ Аб Кардар, Мехран (2007). Статистическая физика частиц . Издательство Кембриджского университета . ISBN 978-0-521-87342-0. ОСЛК  860391091.
  60. ^ Байерс, Нина (2006). «Эмми Нётер». В Байерсе, Нина; Уильямс, Гэри (ред.). Из тени: вклад женщин ХХ века в физику . Кембридж: Издательство Кембриджского университета. стр. 83–96. ISBN 978-0-521-82197-1. ОСЛК  1150964892.
  61. ^ ЛеГресли, Сара Э.; Дельгадо, Дженнифер А.; Брунер, Кристофер Р.; Мюррей, Майкл Дж.; Фишер, Кристофер Дж. (13 сентября 2019 г.). «Учебная программа по вводному курсу физики, основанная на расчетах и ​​ориентированная на энергию, повышает успеваемость учащихся на местном уровне и на последующих курсах». Физический обзор Исследования в области физики . 15 (2): 020126. Бибкод : 2019PRPER..15b0126L. doi : 10.1103/PhysRevPhysEducRes.15.020126 . hdl : 1808/29610 . ISSN  2469-9896. S2CID  203484310.
  62. Болл, Филип (13 сентября 2019 г.). «Обучение энергии важнее сил». Физика . 12 : 100. Бибкод : 2019PhyOJ..12..100B. дои :10.1103/Физика.12.100. S2CID  204188746.
  63. Хоучмандзаде, Бахрам (май 2020 г.). «Уравнение Гамильтона – Якоби: альтернативный подход». Американский журнал физики . 88 (5): 353–359. arXiv : 1910.09414 . Бибкод : 2020AmJPh..88..353H. дои : 10.1119/10.0000781. ISSN  0002-9505. S2CID  204800598.
  64. ^ Розен, Натан (февраль 1965 г.). «Смешанные состояния в классической механике». Американский журнал физики . 33 (2): 146–150. Бибкод : 1965AmJPh..33..146R. дои : 10.1119/1.1971282. ISSN  0002-9505.
  65. ^ Вайнер, Дж. Х. (ноябрь 1974 г.). «Гидродинамическая аналогия уравнению Гамильтона – Якоби». Американский журнал физики . 42 (11): 1026–1028. Бибкод : 1974AmJPh..42.1026W. дои : 10.1119/1.1987920. ISSN  0002-9505.
  66. ^ аб Райхл, Линда Э. (2016). Современный курс статистической физики (4-е изд.). Вайнхайм, Германия: Wiley-VCH. ISBN 978-3-527-69048-0. ОКЛК  966177746.
  67. ^ Мермин, Н. Дэвид (август 1961 г.). «Две модели броуновского движения». Американский журнал физики . 29 (8): 510–517. Бибкод : 1961AmJPh..29..510M. дои : 10.1119/1.1937823. ISSN  0002-9505.
  68. Кнойбил, Фабиана Б. (1 ноября 2016 г.). «Нарушение третьего закона Ньютона: электромагнитные случаи». Европейский журнал физики . 37 (6): 065201. Бибкод : 2016EJPh...37f5201K. дои : 10.1088/0143-0807/37/6/065201. ISSN  0143-0807. S2CID  126380404.
  69. ^ Тоннела, Мария-Антуанетта (1966). Принципы электромагнитной теории и теории относительности. Дордрехт: Д. Рейдель. ISBN 90-277-0107-5. ОСЛК  844001.
  70. ^ Чу, Кэролайн С.; Лебрилла, Карлито Б. (2010). «Введение в современные методы масс-спектрометрии». В Джу, Томас (ред.). Биомедицинские применения биофизики. Тотова, Нью-Джерси: Humana Press. стр. 137–154. дои : 10.1007/978-1-60327-233-9_6. ISBN 978-1-60327-233-9. Проверено 24 марта 2022 г.
  71. ^ аб Панофски, Вольфганг К.Х .; Филлипс, Мельба (2005) [1962]. Классическое электричество и магнетизм (2-е изд.). Минеола, Нью-Йорк: Dover Publications. ISBN 0-486-43924-0. ОСЛК  56526974.
  72. ^ Бонга, Беатрис; Пуассон, Эрик; Ян, Хуан (ноябрь 2018 г.). «Баланс собственного крутящего момента и углового момента вращающейся заряженной сферы». Американский журнал физики . 86 (11): 839–848. arXiv : 1805.01372 . Бибкод : 2018AmJPh..86..839B. дои : 10.1119/1.5054590. ISSN  0002-9505. S2CID  53625857.
  73. ^ аб Гольдштейн, Герберт ; Пул, Чарльз П.; Сафко, Джон Л. (2002). Классическая механика (3-е изд.). Сан-Франциско: Эддисон Уэсли. ISBN 0-201-31611-0. ОСЛК  47056311.
  74. Вернер, Рейнхард Ф. (9 октября 2014 г.). «Комментарий к «Что сделал Белл»". Журнал физики A: Математический и теоретический . 47 (42): 424011. Бибкод : 2014JPhA...47P4011W. doi : 10.1088/1751-8113/47/42/424011. ISSN  1751-8113. S2CID  122180759.
  75. ^ аб Шоке-Брюа, Ивонн (2009). Общая теория относительности и уравнения Эйнштейна. Оксфорд: Издательство Оксфордского университета. ISBN 978-0-19-155226-7. ОСЛК  317496332.
  76. ^ Эллис, Джордж Ф.Р .; Уильямс, Рут М. (2000). Плоское и искривленное пространство-время (2-е изд.). Оксфорд: Издательство Оксфордского университета. ISBN 0-19-850657-0. ОСЛК  44694623.
  77. ^ Французский, AP (1968). Специальная теория относительности . WW Нортон и компания. п. 224. ИСБН 0-393-09804-4.
  78. ^ Хавас, Питер (1 октября 1964 г.). «Четырехмерные формулировки ньютоновской механики и их связь со специальной и общей теорией относительности». Обзоры современной физики . 36 (4): 938–965. Бибкод : 1964RvMP...36..938H. doi : 10.1103/RevModPhys.36.938. ISSN  0034-6861. ...обычное предположение ньютоновской механики состоит в том, что силы определяются одновременными положениями (и, возможно, их производными) частиц и что они связаны третьим законом Ньютона. Такое предположение невозможно в специальной теории относительности, поскольку одновременность не является инвариантным понятием в этой теории.
  79. ^ Ставров, Ива (2020). Кривизна пространства и времени, введение в геометрический анализ . Провиденс, Род-Айленд: Американское математическое общество. ISBN 978-1-4704-6313-7. ОКЛК  1202475208.
  80. ^ аб Уилер, Джон Арчибальд (18 июня 2010 г.). Геоны, черные дыры и квантовая пена: жизнь в физике. WW Нортон и компания. ISBN 978-0-393-07948-7.
  81. ^ Керстинг, Магдалена (май 2019 г.). «Свободное падение в искривленном пространстве-времени — как визуализировать гравитацию в общей теории относительности». Физическое образование . 54 (3): 035008. Бибкод : 2019PhyEd..54c5008K. дои : 10.1088/1361-6552/ab08f5 . hdl : 10852/74677 . ISSN  0031-9120. S2CID  127471222.
  82. ^ Прескод-Вайнштейн, Чанда (2021). Неупорядоченный космос: путешествие в темную материю, пространство-время и отложенные мечты. Нью-Йорк, штат Нью-Йорк: Книги жирным шрифтом. ISBN 978-1-5417-2470-9. ОСЛК  1164503847.
  83. ^ Гудштейн, Джудит Р. (2018). Итальянские математики Эйнштейна: Риччи, Леви-Чивита и рождение общей теории относительности. Провиденс, Род-Айленд: Американское математическое общество. п. 143. ИСБН 978-1-4704-2846-4. ОСЛК  1020305599.
  84. ^ Мермин, Н. Дэвид (1993). «Скрытые переменные и две теоремы Джона Белла». Обзоры современной физики . 65 (3): 803–815. arXiv : 1802.10119 . Бибкод : 1993РвМП...65..803М. doi : 10.1103/RevModPhys.65.803. S2CID  119546199. Фундаментальная квантовая доктрина заключается в том, что измерение, как правило, не раскрывает ранее существовавшее значение измеряемого свойства.
  85. ^ Шаффер, Кэтрин; Баррето Лемос, Габриэла (24 мая 2019 г.). «Уничтожение вещи: введение в «Что» и «И что» квантовой физики». Основы науки . 26 :7–26. arXiv : 1908.07936 . дои : 10.1007/s10699-019-09608-5. ISSN  1233-1821. S2CID  182656563.
  86. ^ Маршман, Эмили; Сингх, Чандралеха (1 марта 2017 г.). «Исследование и улучшение понимания студентами распределений вероятностей для измерения физических наблюдаемых в квантовой механике». Европейский журнал физики . 38 (2): 025705. Бибкод : 2017EJPh...38b5705M. дои : 10.1088/1361-6404/aa57d1 . ISSN  0143-0807. S2CID  126311599.
  87. ^ Коэн-Таннуджи, Клод ; Диу, Бернар; Лалоэ, Франк (2005). Квантовая механика . Перевод Хемли, Сьюзен Рид; Островский, Николь; Островский, Дэн. Джон Уайли и сыновья. ISBN 0-471-16433-Х.
  88. ^ Перес, Ашер (1993). Квантовая теория: концепции и методы . Клювер . ISBN 0-7923-2549-4. ОСЛК  28854083.
  89. ^ Д. Билодо, цитируется по Фуксу, Кристоферу А. (6 января 2011 г.). Достижение совершеннолетия с квантовой информацией . Издательство Кембриджского университета. стр. 310–311. ISBN 978-0-521-19926-1. OCLC  759812415.
  90. ^ Каспар, Макс (2012) [1959]. Кеплер . Перевод Хеллмана, К. Дорис . Дувр. п. 178. ИСБН 978-0-486-15175-5. ОСЛК  874097920.
  91. ^ Угалья, Моника (2015). «Гидростатическая физика Аристотеля». Аннали делла Нормальная школа Пизы. Класс письма и философии . 7 (1): 169–199. ISSN  0392-095Х. JSTOR  43915795.
  92. ^ Страулино, С.; Гамби, CMC; Ригини, А. (январь 2011 г.). «Опыты по плавучести и поверхностному натяжению по Галилео Галилею». Американский журнал физики . 79 (1): 32–36. Бибкод : 2011AmJPh..79...32S. дои : 10.1119/1.3492721. hdl : 2158/530056 . ISSN  0002-9505. Аристотель в своей «Физике» утверждал, что твердая вода при том же объеме должна иметь больший вес, чем жидкая. Мы знаем, что это утверждение неверно, поскольку плотность льда ниже плотности воды (водородные связи создают открытую кристаллическую структуру в твердой фазе), и по этой причине лед может плавать. [...] Аристотелевская теория плавучести утверждает, что тела в жидкости поддерживаются за счет сопротивления жидкости разделению проникающим объектом, точно так же, как большой кусок дерева поддерживает ударяющий по нему топор, или мед поддерживает ложку. Согласно этой теории, лодка должна тонуть на мелководье больше, чем в открытом море, подобно тому, как топор легко может пробить и даже сломать небольшой кусок дерева, но не может пробить большой кусок.
  93. ^ Сорабджи, Ричард (2010). «Иоанн Филопон». Филопон и отказ от аристотелевской науки (2-е изд.). Институт классических исследований Лондонского университета. ISBN 978-1-905-67018-5. JSTOR  44216227. OCLC  878730683.
  94. ^ Майер, Аннелизе (1982). Сарджент, Стивен Д. (ред.). На пороге точной науки . Издательство Пенсильванского университета. ISBN 978-0-812-27831-6. ОСЛК  495305340.
  95. ^ См., например:
  96. ^ аб Блэквелл, Ричард Дж. (1966). «Законы движения Декарта». Исида . 57 (2): 220–234. дои : 10.1086/350115. JSTOR  227961. S2CID  144278075.
  97. ^ Галилей, Г. (1954) [1638, 1914]. Крю Х., Де Сальвио А. (ред.). Диалоги о двух новых науках. Dover Publications Inc. с. 268.{{cite book}}: CS1 maint: multiple names: editors list (link)
  98. ^ Галилей, Г. (1974) [1638]. Две новые науки, включая центры тяжести и силу удара. Перевод Дрейка, издательство S. University of Wisconsin Press. стр. 217 [268].{{cite book}}: CS1 maint: date and year (link)
  99. ^ Хеллман, К. Дорис (1955). «Наука в эпоху Возрождения: обзор». Новости Ренессанса . 8 (4): 186–200. дои : 10.2307/2858681. ISSN  0277-903X. JSTOR  2858681.
  100. ^ ЛоЛордо, Антония (2007). Пьер Гассенди и рождение ранней современной философии. Нью-Йорк: Издательство Кембриджского университета. стр. 175–180. ISBN 978-0-511-34982-9. ОСЛК  182818133.
  101. ^ Декарт, Р. (2008) [1644]. Беннетт, Дж. (ред.). Принципы философии (PDF) . Часть II, § 37, 39.
  102. ^ аб Блэквелл, Ричард Дж.; Гюйгенс, Кристиан (1977). «Христиан Гюйгенс. Движение сталкивающихся тел». Исида . 68 (4): 574–597. дои : 10.1086/351876. JSTOR  230011. S2CID  144406041.
  103. ^ Пурсио, Брюс (октябрь 2011 г.). «Действительно ли второй закон Ньютона принадлежит Ньютону?». Американский журнал физики . 79 (10): 1015–1022. Бибкод : 2011AmJPh..79.1015P. дои : 10.1119/1.3607433. ISSN  0002-9505.
  104. Фара, Патрисия (15 августа 2003 г.). «Был ли Ньютон ньютонианцем?». Наука . 301 (5635): 920. doi :10.1126/science.1088786. ISSN  0036-8075. S2CID  170120455.
  105. ^ Хиггитт, Ребекка (2015). Наука и культура в девятнадцатом веке: воссоздание Ньютона. Нью-Йорк: Тейлор и Фрэнсис. п. 147. ИСБН 978-1-317-31495-0. ОКЛК  934741893.
  106. ^ Доббс, Бетти Джо Титер (1975). Основы алхимии Ньютона: или «Охота на Грина Лайона» . Издательство Кембриджского университета. стр. 211–212. ISBN 9780521273817. ОСЛК  1058581988.
  107. ^ Уэст, Ричард (1980). Никогда в покое . Издательство Кембриджского университета. п. 390. ИСБН 9780521231435. ОСЛК  5677169.
  108. ^ abc Ньюман, Уильям Р. (2016). «Предварительная переоценка алхимии Ньютона». Кембриджский спутник Ньютона (2-е изд.). Издательство Кембриджского университета. стр. 454–484. ISBN 978-1-107-01546-3. ОСЛК  953450997.
  109. Нуммедаль, Тара (1 июня 2020 г.). «Уильям Р. Ньюман. Алхимик Ньютон: наука, загадка и поиски «тайного огня» природы». Исида . 111 (2): 395–396. дои : 10.1086/709344. ISSN  0021-1753. S2CID  243203703.
  110. ^ Олдерси-Уильямс, Хью (2020). Голландский свет: Христиан Гюйгенс и становление науки в Европе. Лондон: Пикадор. ISBN 978-1-5098-9333-1. ОСЛК  1144105192.
  111. ^ Коэн, И. Бернард (1962). «Первая английская версия гипотез Ньютона non fingo». Исида . 53 (3): 379–388. дои : 10.1086/349598. ISSN  0021-1753. JSTOR  227788. S2CID  144575106.
  112. ^ Джаммер, Макс (1999) [1962]. Концепции силы: исследование основ динамики . Минеола, Нью-Йорк: Dover Publications. стр. 91, 127. ISBN. 978-0-486-40689-3. ОСЛК  40964671.
  113. Словик, Эдвард (15 октября 2021 г.). «Физика Декарта». Стэнфордская энциклопедия философии . Проверено 6 марта 2022 г.
  114. ^ Эрлихсон, Герман (февраль 1997 г.). «Молодой Гюйгенс решает проблему упругих столкновений». Американский журнал физики . 65 (2): 149–154. Бибкод : 1997AmJPh..65..149E. дои : 10.1119/1.18659. ISSN  0002-9505.
  115. ^ Смит, Джордж Э. (октябрь 2006 г.). «Спор vis viva: спор на заре динамики». Физика сегодня . 59 (10): 31–36. Бибкод : 2006PhT....59j..31S. дои : 10.1063/1.2387086. ISSN  0031-9228.
  116. ^ Дэвис, Э.Б. (2009). «Некоторые размышления о «Началах» Ньютона». Британский журнал истории науки . 42 (2): 211–224. дои : 10.1017/S000708740800188X. ISSN  0007-0874. JSTOR  25592244. S2CID  145120248.
  117. ^ Смит, Джордж Э. (декабрь 2020 г.). «Законы движения Ньютона». В Шлиссере, Эрик; Сминк, Крис (ред.). Оксфордский справочник Ньютона . Издательство Оксфордского университета. Онлайн перед печатью. doi : 10.1093/oxfordhb/9780199930418.013.35. ISBN 978-0-199-93041-8. ОКЛК  972369868.
  118. ^ Паттерсон, Элизабет К. (декабрь 1969 г.). «Мэри Сомервилл». Британский журнал истории науки . 4 (4): 311–339. дои : 10.1017/S0007087400010232. ISSN  0007-0874. S2CID  246612625. Это ни в коем случае не был простой перевод работы Лапласа. Вместо этого она попыталась объяснить его метод, «...с помощью которого эти результаты были выведены из одного общего уравнения движения материи» и довести математические навыки читателя до уровня, когда изложение математики и идей Лапласа стало бы значимым - тогда дать дайджест на английском языке его великой работы. При необходимости к исходному тексту добавлялись диаграммы, а также включались доказательства различных задач по физической механике и астрономии. ... [F]или почти сто лет после своего появления книга продолжала служить учебником по высшей математике и астрономии в английских школах.
  119. ^ Барон, Маргарет Э. (1969). Истоки исчисления бесконечно малых (1-е изд.). Оксфорд: Пергамон Пресс. ISBN 978-1-483-28092-9. ОСЛК  892067655.
  120. ^ Данлоп, Кэтрин (май 2012 г.). «Математическая форма измерения и аргументация в пользу предложения I в «Началах» Ньютона». Синтезируйте . 186 (1): 191–229. дои : 10.1007/s11229-011-9983-8. ISSN  0039-7857. S2CID  11794836.
  121. Смит, Джордж (20 декабря 2007 г.). «Philosophiae Naturalis Principia Mathematica» Ньютона. Стэнфордская энциклопедия философии . Проверено 6 марта 2022 г.
  122. ^ Маркина, JE; Маркина, ML; Маркина, В.; Эрнандес-Гомес, Джей-Джей (1 января 2017 г.). «Леонард Эйлер и механика твердых тел». Европейский журнал физики . 38 (1): 015001. Бибкод : 2017EJPh...38a5001M. дои : 10.1088/0143-0807/38/1/015001. ISSN  0143-0807. S2CID  125948408.
  123. ^ Гессен, Мэри Б. (2005) [1961]. Силы и поля: концепция действия на расстоянии в истории физики (переиздание Дувра). Минеола, Нью-Йорк: Dover Publications. п. 189. ИСБН 978-0-486-44240-2. ОСЛК  57579169.
  124. Смит, Джордж (19 декабря 2007 г.). "Исаак Ньютон". Стэнфордская энциклопедия философии . Проверено 6 марта 2022 г. Эти достижения в нашем понимании движения планет побудили Лапласа выпустить четыре основных тома своего « Трактата о небесной механике» с 1799 по 1805 год, работы, в которой собраны в одном месте все теоретические и эмпирические результаты исследований, основанных на « Началах » Ньютона . С этого времени ньютоновская наука возникла из работ Лапласа, а не Ньютона.
  125. ^ Райхенбергер, Андреа (июнь 2018 г.). «Интерпретация Эмили Дю Шатле законов движения в свете механики XVIII века». Исследования по истории и философии науки. Часть А. 69 : 1–11. Бибкод :2018SHPSA..69....1R. дои :10.1016/j.shpsa.2018.01.006. PMID  29857796. S2CID  46923474.
  126. ^ Фронтали, Клара (сентябрь 2014 г.). «История физических терминов: «энергия»». Физическое образование . 49 (5): 564–573. Бибкод : 2014PhyEd..49..564F. дои : 10.1088/0031-9120/49/5/564. ISSN  0031-9120. S2CID  122097990.
  127. Гбур, Грег (10 декабря 2018 г.). «История сохранения энергии: стрелы, кровь и пиво (Часть 1)». Черепа в звездах . Проверено 7 марта 2022 г. «История сохранения энергии: стрелы, кровь и пиво (часть 2)». 29 декабря 2018 года . Проверено 7 марта 2022 г. «История сохранения энергии: стрелы, кровь и пиво (часть 3)». 25 августа 2019 года . Проверено 7 марта 2022 г.
  128. ^ Сильва, Сибелле Селестино; де Андраде Мартинс, Роберто (сентябрь 2002 г.). «Полярные и осевые векторы против кватернионов». Американский журнал физики . 70 (9): 958–963. Бибкод : 2002AmJPh..70..958S. дои : 10.1119/1.1475326. ISSN  0002-9505.
  129. ^ Райх, Карин (1996). «Появление векторного исчисления в физике: первые десятилетия». В Шубринге, Герт (ред.). Герман Гюнтер Грассманн (1809–1877): дальновидный математик, ученый и ученый-неогуманист . Бостонские исследования в области философии науки. Том. 187. Клювер. стр. 197–210. ISBN 978-9-048-14758-8. ОСЛК  799299609.

дальнейшее чтение