stringtranslate.com

Компьютерная анимация

Пример компьютерной анимации, созданной с помощью техники « захвата движения ».

Компьютерная анимация — это процесс, используемый для цифровой генерации движущихся изображений. Более общий термин «компьютерно-генерируемые изображения » (CGI) охватывает как неподвижные, так и движущиеся изображения , в то время как компьютерная анимация относится только к движущимся изображениям. Современная компьютерная анимация обычно использует 3D-компьютерную графику .

Компьютерная анимация — это цифровой преемник покадровой и традиционной анимации . Вместо физической модели или иллюстрации цифровой эквивалент обрабатывается покадрово. Кроме того, компьютерная анимация позволяет одному художнику-графику создавать такой контент без использования актеров, дорогостоящих декораций или реквизита . Чтобы создать иллюзию движения, изображение выводится на монитор компьютера и многократно заменяется новым похожим изображением, но немного сдвинутым во времени (обычно со скоростью 24, 25 или 30 кадров в секунду). Эта техника идентична тому, как иллюзия движения достигается с помощью телевидения и кино .

Кадров в секунду

Чтобы обмануть зрительную систему и заставить ее увидеть плавно движущийся объект, изображения должны быть нарисованы со скоростью около 12 кадров в секунду или быстрее ( кадр — это одно полное изображение). [1] При скорости выше 75–120 кадров в секунду не заметно никакого улучшения реализма или плавности из-за того, как глаз и мозг обрабатывают изображения. При скорости ниже 12 кадров в секунду большинство людей могут заметить рывки, связанные с рисованием новых изображений, которые портят иллюзию реалистичного движения. [2] Традиционная рисованная мультипликационная анимация часто использует 15 кадров в секунду, чтобы сэкономить на количестве необходимых рисунков, но это обычно допускается из-за стилизованной природы мультфильмов. Для создания более реалистичных изображений компьютерная анимация требует более высокой частоты кадров.

Фильмы, которые показывают в кинотеатрах США, показывают со скоростью 24 кадра в секунду, что достаточно для создания иллюзии непрерывного движения. Для высокого разрешения используются адаптеры.

Компьютерная анимация

Анимация, сгенерированная компьютером, — это обобщающий термин для трехмерной ( 3D ) анимации и двухмерной компьютерной анимации. Они также включают в себя такие подкатегории, как анимация , управляемая активами , гибридная и цифровая рисованная анимация. Создатели анимируют, используя код или программное обеспечение вместо рисунков карандашом на бумаге. Существует множество методов и дисциплин в анимации, сгенерированной компьютером, некоторые из которых являются цифровыми представлениями традиционной анимации, например, анимация по ключевым кадрам , а некоторые возможны только с помощью компьютера, например, моделирование жидкости .

Аниматоры «CG» могут нарушать физические законы, используя математические алгоритмы для обмана массы , силы и гравитации и многого другого. По сути, компьютерная анимация — это мощный инструмент, который может улучшить качество анимации, используя вычислительную мощь для раскрытия воображения аниматора. Это происходит потому, что компьютерная анимация позволяет делать такие вещи, как калькирование , которое позволяет 2D-аниматорам видеть поток своей работы сразу, и интерполяцию , которая позволяет 3D-аниматорам автоматизировать процесс промежуточных действий .

3D компьютерная анимация

Кадр анимации до и после рендеринга

Обзор

Для 3D компьютерной анимации объекты (модели) строятся на мониторе компьютера (моделируются), а 3D фигуры оснащаются виртуальным скелетом . Затем конечности, глаза, рот, одежда и т. д. фигуры перемещаются аниматором по ключевым кадрам . Обычно различия между ключевыми кадрами рисуются в процессе, известном как tweening . Однако в 3D компьютерной анимации это делается автоматически и называется интерполяцией . Наконец, анимация визуализируется и компонуется .

Прежде чем стать конечным продуктом, 3D-компьютерная анимация существует только как ряд движущихся фигур и систем в 3D-программном обеспечении и должна быть визуализирована . Это может происходить как отдельный процесс для анимаций, разработанных для фильмов и короткометражек, или это может быть сделано в реальном времени при анимации для видеоигр. После того, как анимация визуализирована, ее можно объединить в конечный продукт.

Атрибуты анимации

Для 3D-моделей атрибуты могут описывать любую характеристику объекта, которая может быть анимирована. Сюда входит преобразование (перемещение из одной точки в другую), масштабирование, вращение и более сложные атрибуты, такие как blend shape progression (превращение одной формы в другую). Каждый атрибут получает канал, на котором могут быть установлены ключевые кадры . Эти ключевые кадры могут использоваться более сложными способами, такими как анимация в слоях (объединение нескольких наборов данных ключевых кадров) или ключевое управление объектами для деформации или управления другими объектами. Например, к рукам персонажа может быть применен скелет, а к суставам могут быть установлены ключевые кадры преобразования и вращения. Затем движение суставов рук приведет к деформации формы руки.

Интерполяция

Программное обеспечение для 3D-анимации интерполирует между ключевыми кадрами, генерируя сплайн между ключами, нанесенными на график, который представляет анимацию. Кроме того, эти сплайны могут следовать кривым Безье , чтобы контролировать, как сплайн изгибается относительно ключевых кадров. Использование интерполяции позволяет 3D-аниматорам динамически изменять анимацию без необходимости переделывать всю промежуточную анимацию. Это также позволяет создавать сложные движения, такие как эллипсы, всего с несколькими ключевыми кадрами. Наконец, интерполяция позволяет аниматору изменять частоту кадров, время и даже масштаб движений в любой точке процесса анимации.

Процедурная и узловая анимация

Другой способ автоматизации 3D-анимации — использование процедурных инструментов, таких как 4D- шум . Шум — это любой алгоритм, который выводит псевдослучайные значения в пространстве измерений. [10] 4D-шум можно использовать для таких вещей, как перемещение роя пчел; первые три измерения соответствуют положению пчел в пространстве, а четвертое используется для изменения положения пчелы с течением времени. Шум также можно использовать в качестве дешевой замены для моделирования . Например, дым и облака можно анимировать с помощью шума.

Анимация на основе узлов полезна для анимации органических и хаотичных форм. Используя узлы, аниматор может создать сложный набор правил анимации, которые можно применять либо ко многим объектам одновременно, либо к одному очень сложному объекту. Хорошим примером этого может быть настройка движения частиц в соответствии с ритмом песни.

Дисциплины 3D-анимации

Существует множество различных дисциплин 3D-анимации, некоторые из которых включают в себя совершенно отдельные формы искусства. Например, моделирование волос для персонажей компьютерной анимации само по себе является карьерным путем, который включает в себя отдельные рабочие процессы, [11] и различное программное обеспечение и инструменты. Сочетание всех или некоторых дисциплин 3D-компьютерной анимации обычно называют в индустрии анимации конвейером 3D-анимации. [12]

2D компьютерная анимация

2D-компьютерная графика по-прежнему используется для стилистической, низкоскоростной и быстрой визуализации в реальном времени .

Компьютерная анимация по сути является цифровым преемником методов покадровой анимации , но с использованием 3D-моделей, и традиционных методов анимации, использующих покадровую анимацию 2D-иллюстраций.

Для анимации 2D-фигур используются отдельные объекты (иллюстрации) и отдельные прозрачные слои с виртуальным скелетом или без него.

2D-спрайты и псевдокод

В 2D компьютерной анимации движущиеся объекты часто называют « спрайтами ». Спрайт — это изображение, с которым связано местоположение. Местоположение спрайта немного меняется между каждым отображаемым кадром, чтобы спрайт казался движущимся. [16] Следующий псевдокод заставляет спрайт двигаться слева направо:

var  int x := 0, y := screenHeight / 2; пока x < screenWidthdrawBackground()drawSpriteAtXY (x, y) // рисуем поверх фона
x := x + 5 // двигаемся вправо

Компьютерная анимация

Компьютерная анимация обычно классифицируется как двухмерная ( 2D ) анимация. Рисунки либо рисуются вручную (карандашом на бумаге), либо интерактивно (на компьютере) с использованием различных вспомогательных устройств и размещаются в специальных программных пакетах. В программном пакете создатель размещает рисунки в различных ключевых кадрах, которые по сути создают контур наиболее важных движений. [17] Затем компьютер заполняет «промежуточные кадры», процесс, обычно известный как Tweening . [18] Компьютерная анимация использует новые технологии для создания контента быстрее, чем это возможно с помощью традиционной анимации , при этом сохраняя стилистические элементы традиционно нарисованных персонажей или объектов. [19]

Примерами фильмов, созданных с использованием компьютерной анимации, являются «Русалочка» , «Спасатели в Австралии» , «Красавица и чудовище» , «Аладдин» , «Король Лев» , «Покахонтас» , «Горбун из Нотр-Дама» , «Геркулес» , «Мулан» , «Тарзан» , «Мы вернулись! История динозавра» , «Балто » , «Анастасия» , «Титан AE» , «Принц Египта» , «Дорога в Эльдорадо» , «Спирит: Жеребец Симаррона» и «Синдбад: Легенда семи морей» .

Текст-в-видео

Видео, созданное с использованием невыпущенной модели преобразования текста в видео с открытым исходным кодом Sora от OpenAI , с использованием подсказки:A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.
Модель преобразования текста в видео — это модель машинного обучения , которая использует описание на естественном языке в качестве входных данных для создания видео , соответствующего входному тексту. [20] Достижения в 2020-х годах в создании высококачественных текстово-обусловленных видео в значительной степени были обусловлены разработкой моделей распространения видео . [21]

История

Ранняя цифровая компьютерная анимация была разработана в Bell Telephone Laboratories в 1960-х годах Эдвардом Э. Заяцем, Фрэнком В. Синденом, Кеннетом К. Ноултоном и А. Майклом Ноллом. [22] Другая цифровая анимация также практиковалась в Ливерморской национальной лаборатории имени Лоуренса . [23]

В 1967 году Чарльзом Сури и Джеймсом Шаффером была создана компьютерная анимация под названием «Колибри». [24] В 1968 году на БЭСМ -4 Николаем Константиновым была создана компьютерная анимация под названием «Котёнок», изображающая движущуюся кошку. [25] В 1971 году была создана компьютерная анимация под названием «Метаданные», показывающая различные формы. [26]

Ранним шагом в истории компьютерной анимации стало продолжение фильма 1973 года «Мир Дикого Запада» , научно-фантастического фильма об обществе, в котором роботы живут и работают среди людей. [27] В сиквеле «Мир будущего» (1976) использовались трехмерные каркасные изображения, в которых были представлены анимированные на компьютере рука и лицо, оба созданные выпускниками Университета Юты Эдвином Кэтмеллом и Фредом Парком . [28] Эти изображения первоначально появились в их студенческом фильме «Анимированная на компьютере рука» , который они закончили в 1972 году . [29] [30]

Разработки в области технологий CGI ежегодно освещаются на SIGGRAPH [ 31] — ежегодной конференции по компьютерной графике и интерактивным технологиям, которую ежегодно посещают тысячи компьютерных специалистов. [32] Разработчики компьютерных игр и 3D-видеокарт стремятся достичь того же визуального качества на персональных компьютерах в реальном времени, которое возможно для фильмов и анимации CGI. С быстрым развитием качества рендеринга в реальном времени художники начали использовать игровые движки для рендеринга неинтерактивных фильмов, что привело к появлению художественной формы Machinima .

Кино и телевидение

«Весна», 3D-мультфильм, созданный с помощью Blender

Короткометражные фильмы CGI выпускались как независимая анимация с 1976 года. [33] Ранние примеры художественных фильмов, включающих CGI-анимацию, включают фильмы с живыми актерами «Звездный путь 2: Гнев Хана» и «Трон» (оба 1982), [34] и японский аниме- фильм «Голго 13: Профессионал» (1983). [35] «VeggieTales» — первый американский полностью трехмерный компьютерный анимационный сериал, продаваемый напрямую (снят в 1993 году); его успех вдохновил другие анимационные сериалы, такие как «Перезагрузка» (1994) и «Трансформеры: Войны зверей» (1996), на принятие полностью компьютерного стиля.

Первым полнометражным компьютерно-анимационным телесериалом был ReBoot [36] , который дебютировал в сентябре 1994 года; сериал рассказывал о приключениях персонажей, живущих внутри компьютера. [37] Первым полнометражным компьютерно-анимационным фильмом стала Toy Story (1995) , созданная Disney и Pixar [38] [39] [40] после приключения, сосредоточенного вокруг антропоморфных игрушек и их владельцев, этот новаторский фильм также стал первым из многих полностью компьютерно-анимационных фильмов. [39]

Популярность компьютерной анимации (особенно в области спецэффектов ) резко возросла в современную эпоху американской анимации . [41] Такие фильмы, как «Аватар» (2009) и «Книга джунглей» (2016), используют CGI для большей части хронометража фильма, но по-прежнему включают в него живых актеров. [42] Компьютерная анимация в эту эпоху достигла фотореализма до такой степени, что компьютерно-анимированные фильмы, такие как «Король Лев» (2019), могут продаваться так, как если бы они были живыми актерами. [43] [44]

Методы анимации

3D игровой персонаж, анимированный с помощью скелетной анимации
В этом .gif- файле 2D Flash-анимации каждая «палочка» фигуры синхронизирована с ключевыми кадрами для создания движения.

В большинстве систем трехмерной компьютерной анимации аниматор создает упрощенное представление анатомии персонажа, которое аналогично скелету или фигурке из палочек . [45] Они располагаются в позе по умолчанию, известной как поза связывания , или Т-поза. Положение каждого сегмента скелетной модели определяется переменными анимации, или сокращенно аварами . У персонажей людей и животных многие части скелетной модели соответствуют фактическим костям, но скелетная анимация также используется для анимации других вещей, с чертами лица (хотя существуют и другие методы для лицевой анимации ). [46] Персонаж «Вуди» в «Истории игрушек» , например, использует 712 аваров (212 только на лице). Компьютер обычно не визуализирует скелетную модель напрямую (она невидима), но он использует скелетную модель для вычисления точного положения и ориентации этого определенного персонажа, что в конечном итоге визуализируется в изображение. Таким образом, изменяя значения аваров с течением времени, аниматор создает движение, заставляя персонажа перемещаться из кадра в кадр.

Существует несколько методов генерации значений Avar для получения реалистичного движения. Традиционно аниматоры напрямую манипулируют Avar. [47] Вместо того, чтобы устанавливать Avar для каждого кадра, они обычно устанавливают Avar в стратегических точках (кадрах) во времени и позволяют компьютеру интерполировать или делать переходы между ними в процессе, называемом ключевым кадром . Ключевое кадрирование передает управление в руки аниматора и имеет корни в традиционной анимации, нарисованной вручную . [48]

Напротив, более новый метод, называемый захватом движения , использует кадры живого действия . [49] Когда компьютерная анимация управляется захватом движения, настоящий исполнитель разыгрывает сцену так, как будто он является персонажем, который будет анимирован. [50] Их движение записывается на компьютер с помощью видеокамер и маркеров, а затем это исполнение применяется к анимированному персонажу. [51]

Каждый метод имеет свои преимущества, и по состоянию на 2007 год игры и фильмы используют один или оба этих метода в производстве. Анимация по ключевым кадрам может создавать движения, которые было бы трудно или невозможно воспроизвести, в то время как захват движения может воспроизводить тонкости конкретного актера. [52] Например, в фильме 2006 года Пираты Карибского моря: Сундук мертвеца Билл Найи озвучивал персонажа Дэви Джонса . Несмотря на то, что сам Найи не появляется в фильме, фильм выиграл от его игры, записав нюансы его языка тела, позы, выражения лица и т. д. Таким образом, захват движения уместен в ситуациях, когда требуется правдоподобное, реалистичное поведение и действие, но требуемые типы персонажей превосходят то, что можно сделать с помощью обычного костюмирования.

Моделирование

3D компьютерная анимация объединяет 3D модели объектов и запрограммированное или вручную «ключевое» движение. Эти модели строятся из геометрических вершин, граней и ребер в 3D системе координат. Объекты лепятся так же, как настоящая глина или гипс, работая от общих форм до конкретных деталей с помощью различных инструментов для лепки. Если 3D модель не должна быть сплошного цвета, она должна быть окрашена « текстурами » для реалистичности. Система анимации костей/суставов настраивается для деформации модели CGI (например, чтобы заставить гуманоидную модель ходить). В процессе, известном как риггинг , виртуальной марионетке даются различные контроллеры и ручки для управления движением. [53] [54] Данные анимации могут быть созданы с помощью захвата движения или ключевого кадра человеком-аниматором или их комбинации. [55]

3D-модели, созданные для анимации, могут содержать тысячи контрольных точек — например, «Вуди» из «Истории игрушек» использует 700 специализированных контроллеров анимации. Студия Rhythm and Hues трудилась два года, чтобы создать Аслана в фильме «Хроники Нарнии: Лев, колдунья и платяной шкаф» , в котором было около 1851 контроллера (742 только на лице). В фильме 2004 года « Послезавтра » дизайнерам пришлось проектировать силы экстремальных погодных условий с помощью видеореференсов и точных метеорологических фактов. Для ремейка «Кинг-Конга» 2005 года актер Энди Серкис был использован для помощи дизайнерам в определении главного местоположения гориллы в кадрах и использовал его выражения для моделирования «человеческих» характеристик существа. Ранее Серкис озвучивал и играл Голлума в трилогии Дж. Р. Р. Толкиена « Властелин колец» .

Оборудование

Трассированная лучом 3D-модель домкрата внутри куба и домкрата под ним

Компьютерная анимация может быть создана с помощью компьютера и программного обеспечения для анимации. Некоторые впечатляющие анимации могут быть достигнуты даже с помощью базовых программ; однако, рендеринг может потребовать много времени на обычном домашнем компьютере. [56] Профессиональные аниматоры фильмов, телевидения и видеоигр могли бы создавать фотореалистичную анимацию с высокой детализацией. Этот уровень качества для анимации фильмов занял бы сотни лет, чтобы создать на домашнем компьютере. Вместо этого используются многие мощные рабочие станции. [57] Графические рабочие станции используют от двух до четырех процессоров, и они намного мощнее, чем настоящий домашний компьютер, и специализируются на рендеринге. Многие рабочие станции (известные как « рендер-ферма » ) объединены в сеть, чтобы эффективно действовать как гигантский компьютер, [58] в результате чего получается компьютерно-анимированный фильм, который может быть завершен примерно за один-пять лет (однако, этот процесс состоит не только из рендеринга). Рабочая станция обычно стоит от 2000 до 16 000 долларов, причем более дорогие станции могут выполнять рендеринг намного быстрее из-за более технологически продвинутого оборудования, которое они содержат. Профессионалы также используют цифровые кинокамеры , захват движения/производительности , синие экраны , программное обеспечение для редактирования фильмов , реквизит и другие инструменты, используемые для анимации фильмов. Программы, такие как Blender, позволяют людям, которые не могут позволить себе дорогое программное обеспечение для анимации и рендеринга, работать так же, как и те, кто использует коммерческое оборудование. [59]

Анимация лица

Реалистичное моделирование черт лица человека является одним из самых сложных и востребованных элементов в компьютерной графике. Компьютерная анимация лица — это очень сложная область, где модели обычно включают очень большое количество переменных анимации. [60] Исторически говоря, первые руководства SIGGRAPH по современному состоянию лицевой анимации в 1989 и 1990 годах оказались поворотным моментом в этой области, объединив и консолидировав несколько исследовательских элементов и вызвав интерес у ряда исследователей. [61]

Система кодирования движений лица (с 46 «единицами действия», «прикусывание губ» или «прищуривание»), разработанная в 1976 году, стала популярной основой для многих систем. [62] Еще в 2001 году MPEG-4 включал 68 параметров анимации лица (FAP) для губ, челюстей и т. д., и с тех пор эта область достигла значительного прогресса, а использование микровыражений лица возросло. [62] [63]

В некоторых случаях аффективное пространство , модель эмоционального состояния PAD , может использоваться для назначения определенных эмоций лицам аватаров . [64] При таком подходе модель PAD используется как эмоциональное пространство высокого уровня, а пространство нижнего уровня — это параметры анимации лица MPEG-4 (FAP). Затем используется пространство параметров частичного выражения (PEP) среднего уровня в двухуровневой структуре — сопоставление PAD-PEP и модель перевода PEP-FAP. [65]

Реализм

Джой и Херон – типичный пример реалистичной анимации

Реализм в компьютерной анимации может означать, что каждый кадр выглядит фотореалистично , в том смысле, что сцена визуализируется так, чтобы напоминать фотографию, или делает анимацию персонажей правдоподобной и реалистичной. [66] Компьютерная анимация также может быть реалистичной с фотореалистичным рендерингом или без него . [67]

Одной из тенденций в компьютерной анимации была попытка создать человеческих персонажей, которые выглядят и двигаются с наивысшей степенью реализма. Возможным результатом при попытке создать приятных, реалистичных человеческих персонажей является зловещая долина , концепция, в которой человеческая аудитория (до определенного момента) имеет тенденцию иметь все более негативную, эмоциональную реакцию, поскольку человеческая копия выглядит и действует все более и более человечно. Фильмы, в которых пытались создать фотореалистичных человеческих персонажей, такие как «Полярный экспресс» , [68] [69] [70] «Беовульф» , [71] и «Рождественская песнь» [72] [73], были раскритикованы как «сбивающие с толку» и «жуткие».

Целью компьютерной анимации не всегда является максимально точное воспроизведение живого действия, поэтому во многих анимационных фильмах вместо этого используются персонажи, которые являются антропоморфными животными, легендарными существами и персонажами, супергероями или имеют нереалистичные, мультяшные пропорции. [74] Компьютерная анимация также может быть адаптирована для имитации или замены других видов анимации, таких как традиционная покадровая анимация (как показано в фильмах «Смывайся» или «Мелочь пузатая» ). Некоторые из давних основных принципов анимации , такие как сжатие и растяжение , требуют движения, которое не является строго реалистичным, и такие принципы по-прежнему широко применяются в компьютерной анимации. [75]

Веб-анимация

Популярность веб-сайтов , позволяющих участникам загружать собственные фильмы для просмотра другими, создала растущее сообщество независимых и любительских компьютерных аниматоров. [76] С утилитами и программами, часто включенными бесплатно в современные операционные системы , многие пользователи могут создавать свои собственные анимированные фильмы и короткометражки. Существует также несколько бесплатных и открытых программных приложений для анимации. Легкость, с которой эти анимации могут распространяться, привлекла также профессиональных талантов анимации. Такие компании, как PowToon и Vyond, пытаются преодолеть разрыв, предоставляя любителям доступ к профессиональной анимации в виде клипартов .

Самые старые (наиболее обратно совместимые) веб-анимации находятся в анимированном формате GIF , который можно легко загрузить и просмотреть в Интернете. [77] Однако растровый графический формат GIF-анимаций замедляет загрузку и частоту кадров, особенно при больших размерах экрана. Растущий спрос на более качественную веб-анимацию был удовлетворен векторной графической альтернативой, которая полагалась на использование плагина . В течение десятилетий Flash-анимации были распространенным форматом, пока сообщество веб-разработчиков не отказалось от поддержки плагина Flash Player . Веб-браузеры на мобильных устройствах и мобильные операционные системы никогда полностью не поддерживали плагин Flash.

К этому времени пропускная способность интернета и скорость загрузки возросли, что сделало растровую графическую анимацию более удобной. Некоторые из более сложных векторных графических анимаций имели более низкую частоту кадров из-за сложного рендеринга по сравнению с некоторыми альтернативами растровой графики. Многие из GIF- и Flash-анимаций уже были преобразованы в цифровые видеоформаты , которые были совместимы с мобильными устройствами и уменьшали размеры файлов с помощью технологии сжатия видео . Однако совместимость все еще была проблематичной, поскольку некоторые видеоформаты, такие как Apple QuickTime и Microsoft Silverlight, требовали плагинов. YouTube также полагался на плагин Flash для доставки цифрового видео в формате Flash Video .

Последними альтернативами являются HTML5- совместимые анимации. Такие технологии, как JavaScript и CSS-анимации, сделали последовательность движения изображений на веб-страницах HTML5 более удобной. SVG-анимации предложили векторную графическую альтернативу оригинальному графическому формату Flash, SmartSketch . YouTube предлагает HTML5-альтернативу для цифрового видео. APNG (анимированный PNG) предложил растровую графическую альтернативу анимированным GIF-файлам, которая обеспечивает многоуровневую прозрачность, недоступную в GIF-файлах.

Подробный пример

Компьютерная анимация использует различные методы для создания анимаций. Чаще всего сложная математика используется для манипулирования сложными трехмерными полигонами , применения « текстур », освещения и других эффектов к полигонам и, наконец, визуализации полного изображения. Для создания анимации и организации ее хореографии может использоваться сложный графический пользовательский интерфейс . Другая техника, называемая конструктивной объемной геометрией, определяет объекты путем проведения булевых операций над правильными формами и имеет то преимущество, что анимации могут быть точно созданы при любом разрешении.

Анимационные студии

Некоторые известные продюсеры компьютерно-анимационных художественных фильмов:

Смотрите также

Ссылки

Цитаты

  1. ^ Массон 1999, стр. 148.
  2. Parent 2012, стр. 100–101, 255.
  3. ^ Вебер, Карон; Хирасаки, Китт (2000). «Интерактивный дизайн в Pixar Animation Studios». Расширенные рефераты CHI '00 по человеческому фактору в компьютерных системах - CHI '00 . Нью-Йорк, Нью-Йорк, США: ACM Press. стр. 211. doi :10.1145/633410.633413. ISBN 1-58113-248-4.
  4. ^ Зортиан, Джулия (2015-11-19). «Как «История игрушек» изменила историю кино». TIME . Получено 2024-05-22 .
  5. ^ «'Godzilla Minus One' вдыхает новую жизнь в культового кайдзю». Animation World Network . Получено 22.05.2024 .
  6. ^ Шиллинг, Марк (14.03.2024). «„Годзилла минус один“ боролся со всеми трудностями и одержал крупную победу на церемонии вручения премии «Оскар». The Japan Times . Получено 22.05.2024 .
  7. ^ «Кормилец демонстрирует мощное повествовательное воздействие анимации». www.technicolor.com . Получено 22.05.2024 .
  8. ^ ab James, Oliver; von Tunzelmann, Eugenie; Franklin, Paul; Thorne, Kip S. (2015-03-19). "Гравитационное линзирование вращающимися черными дырами в астрофизике и в фильме Interstellar". Classical and Quantum Gravity . 32 (6): 065001. arXiv : 1502.03808 . Bibcode :2015CQGra..32f5001J. doi :10.1088/0264-9381/32/6/065001. ISSN  0264-9381.
  9. ^ "Вот что заставило 2D-анимацию в 'Клаусе' выглядеть '3D'". до и после . 2019-11-14 . Получено 2024-05-22 .
  10. ^ "Книга шейдеров". Книга шейдеров . Получено 2024-05-22 .
  11. ^ Bertails, Florence & Hadap, Sunil & Cani, Marie-Paule & Lin, Ming & Marschner, Stephen & Kim, Tae & Kacic-Alesic, Zoran & Ward, Kelly. (2008). Реалистичное моделирование волос — анимация и рендеринг. Заметки о занятиях ACM SIGGRAPH 2008. 10.1145/1401132.1401247.
  12. ^ Нагди, Араш; Адиб, Пайам; Адиб, Араш Нагди и Пайам (2021-05-10). "3D Animation Pipeline: A Start-to-Finish Guide (обновление 2023 года)". Dream Farm Studios . Получено 2024-05-21 .
  13. ^ "Эксклюзив: Джо Леттери обсуждает новый конвейер лиц Wētā FX для Аватара 2 - fxguide". www.fxguide.com/ . 2022-12-21 . Получено 2024-05-21 .
  14. ^ laurenlola (2022-03-09). "Аниматоры "Turning Red" о влиянии аниме и работе с Доме Ши". Главная страница CAAM . Получено 2024-05-22 .
  15. ^ Эберле, Дэвид (2018). «Лучшие столкновения и более быстрая ткань для Коко от Pixar». ACM SIGGRAPH 2018 Talks . стр. 1–2. doi :10.1145/3214745.3214801. ISBN 978-1-4503-5820-0.
  16. ^ Массон 1999, стр. 123.
  17. ^ Массон 1999, стр. 115.
  18. ^ Массон 1999, стр. 284.
  19. ^ Рус, Дэйв (2013). «Как работает компьютерная анимация». HowStuffWorks . Получено 15.02.2013 .
  20. ^ Отчет об индексе искусственного интеллекта 2023 (PDF) (Отчет). Стэнфордский институт искусственного интеллекта, ориентированного на человека. стр. 98. В 2022 году было выпущено несколько высококачественных моделей преобразования текста в видео, систем ИИ, которые могут генерировать видеоклипы из заданного текста.
  21. ^ Мельник, Эндрю; Люблянац, Михал; Лу, Конг; Янь, Ци; Жэнь, Вайминг; Риттер, Хельге (2024-05-06). «Модели диффузии видео: обзор». arXiv : 2405.03150 [cs.CV].
  22. Массон 1999, стр. 390–394.
  23. ^ Сито 2013, стр. 69–75.
  24. ^ "Чарльз Сури, Fragmentation Animations, 1967 – 1970: Колибри (1967)". YouTube . 31 августа 2009 г.
  25. ^ ""Котенок" 1968 компьютерная анимация". YouTube . 9 марта 2006.
  26. ^ "Метаданные 1971". YouTube . 23 ноября 2010 г.
  27. Массон 1999, стр. 404.
  28. Массон 1999, стр. 282–288.
  29. ^ Сито 2013, стр. 64.
  30. ^ Означает 2011 год.
  31. ^ Сито 2013, стр. 97–98.
  32. ^ Сито 2013, стр. 95–97.
  33. ^ Массон 1999, стр. 58.
  34. ^ "Создание Трона". Video Games Player . Том 1, № 1. Carnegie Publications. Сентябрь 1982. С. 50–5.
  35. ^ Бек, Джерри (2005). The Animated Movie Guide . Chicago Review Press . стр. 216. ISBN 1569762228.
  36. ^ Сито 2013, стр. 188.
  37. ^ Массон 1999, стр. 430.
  38. Массон 1999, стр. 432.
  39. ^ ab Masson 1999, стр. 302.
  40. ^ "Our Story", Pixar, 1986–2013. Получено 15.02.2013. "The Pixar Timeline, 1979 to Present". Pixar. Архивировано из оригинала 05.09.2015.
  41. Массон 1999, стр. 52.
  42. ^ Томпсон, Энн (01.01.2010). «Как инновационная 3D-технология Джеймса Кэмерона создала Аватара». Popular Mechanics . Получено 24.04.2019 .
  43. ^ Флеминг, Майк-младший (13 октября 2016 г.). «Диснеевский фильм «Король Лев» с живыми актерами на роль сценариста возьмет Джеффа Натансона». Deadline Hollywood . Архивировано из оригинала 15 октября 2016 г. Получено 9 июля 2019 г.
  44. ^ Роттенберг, Джош (19 июля 2019 г.). «'Король Лев': анимационный или с живыми актерами? Все сложно». Los Angeles Times . Получено 13 декабря 2021 г. .
  45. Parent 2012, стр. 193–196.
  46. Parent 2012, стр. 324–326.
  47. Parent 2012, стр. 111–118.
  48. ^ Сито 2013, стр. 132.
  49. ^ Массон 1999, стр. 118.
  50. Массон 1999, стр. 94–98.
  51. ^ Массон 1999, стр. 226.
  52. ^ Массон 1999, стр. 204.
  53. ^ Родитель 2012, стр. 289.
  54. ^ animationmentor.com Почему хороший риггер — лучший друг аниматора, Автор: Озгюр Айдогду
  55. ^ Бин 2012, стр. 2-15.
  56. ^ Массон 1999, стр. 158.
  57. ^ Сито 2013, стр. 144.
  58. ^ Сито 2013, стр. 195.
  59. ^ "blender.org – Дом проекта Blender – Бесплатное и открытое программное обеспечение для создания 3D-графики". blender.org .
  60. Массон 1999, стр. 110–116.
  61. ^ Parke & Waters 2008, стр. xi.
  62. ^ ab Магненат Тельманн и Тельманн 2004, с. 122.
  63. ^ Перейра и Эбрахими 2002, с. 404.
  64. ^ Перейра и Эбрахими 2002, стр. 60–61.
  65. ^ Пайва, Прада и Пикард 2007, стр. 24–33.
  66. Массон 1999, стр. 160–161.
  67. Parent 2012, стр. 14–17.
  68. ^ Захарек, Стефани (10.11.2004). "Полярный экспресс". Салон . Получено 08.06.2015 .
  69. ^ Герман, Барбара (2013-10-30). «10 самых страшных фильмов и почему они пугают нас». Newsweek . Получено 2015-06-08 .
  70. ^ Клинтон, Пол (10.11.2004). "Обзор: "Полярный экспресс" - жуткая поездка". CNN . Получено 08.06.2015 .
  71. Цифровые актеры в «Беовульфе» просто сверхъестественны. Архивировано 27 августа 2011 г. в Wayback Machine  – New York Times , 14 ноября 2007 г.
  72. Ноймайер, Джо (5 ноября 2009 г.). «Бла, вздор! «Рождественская песнь в 3D» по Диккенсу местами хороша, но не хватает духа». New York Daily News . Архивировано из оригинала 10 июля 2018 г. Получено 10 октября 2015 г.
  73. ^ Уильямс, Мэри Элизабет (5 ноября 2009 г.). «Рождественская песнь Диснея: чушь!». Salon.com . Архивировано из оригинала 11 января 2010 г. Получено 10 октября 2015 г.
  74. ^ Сито 2013, стр. 7.
  75. ^ Сито 2013, стр. 59.
  76. ^ Сито 2013, стр. 82, 89.
  77. ^ Куперберг 2002, стр. 112–113.

Цитируемые работы

Внешние ссылки