stringtranslate.com

Малярия

Малярия — это инфекционное заболевание, переносимое комарами и поражающее позвоночных. [6] [7] [3] Человеческая малярия вызывает симптомы , которые обычно включают лихорадку , утомляемость , рвоту и головные боли . [1] [8] В тяжелых случаях она может вызвать желтуху , судороги , кому или смерть . [1] [9] Симптомы обычно проявляются через 10–15 дней после укуса инфицированного комара Anopheles . [10] [4] При отсутствии надлежащего лечения у людей могут возникнуть рецидивы заболевания через несколько месяцев. [3] У тех, кто недавно перенес инфекцию, повторное заражение обычно вызывает более легкие симптомы. [1] Эта частичная устойчивость исчезает в течение месяцев или лет, если человек не подвергается постоянному воздействию малярии. [1]

Малярию человека вызывают одноклеточные микроорганизмы группы Plasmodium . [10] Она распространяется исключительно через укусы инфицированных самок комаров Anopheles . [10] [11] Укус комара вводит паразитов из слюны комара в кровь человека. [3] Паразиты перемещаются в печень , где они созревают и размножаются. [1] Пять видов Plasmodium обычно заражают людей. [10] Три вида, связанные с более тяжелыми случаями, — это P. falciparum (который является причиной подавляющего большинства случаев смерти от малярии), P. vivax и P. knowlesi (малярия обезьян, которая ежегодно поражает тысячи людей). [12] [13] P. ovale и P. malariae обычно вызывают более легкую форму малярии. [1] [10] Малярию обычно диагностируют с помощью микроскопического исследования крови с использованием мазков крови или с помощью быстрых диагностических тестов на основе антигенов . [1] Разработаны методы, использующие полимеразную цепную реакцию для обнаружения ДНК паразита , но они не нашли широкого применения в районах, где распространена малярия, из-за их стоимости и сложности. [14]

Риск заболевания можно снизить, предотвращая укусы комаров с помощью противомоскитных сеток и репеллентов или мер по борьбе с комарами, таких как распыление инсектицидов и слив стоячей воды . [1] Существует несколько лекарств для профилактики малярии для путешественников в районах, где распространено это заболевание. [3] Младенцам и после первого триместра беременности в районах с высоким уровнем заболеваемости малярией рекомендуются эпизодические дозы комбинированного препарата сульфадоксин/пириметамин . [3] По состоянию на 2023 год Всемирная организация здравоохранения одобрила две вакцины против малярии . [15] Рекомендуемое лечение малярии — это комбинация противомалярийных препаратов , включающая артемизинин . [16] [17] [1] [3] Вторым лекарством может быть мефлохин , люмефантрин или сульфадоксин/пириметамин. [18] Хинин , наряду с доксициклином , может использоваться, если артемизинин недоступен. [18] В районах, где заболевание распространено, малярия должна быть подтверждена, если это возможно, до начала лечения из-за опасений по поводу повышения устойчивости к препаратам . [3] У паразитов развилась устойчивость к нескольким противомалярийным препаратам; например, устойчивый к хлорохину P. falciparum распространился в большинстве малярийных районов, а устойчивость к артемизинину стала проблемой в некоторых частях Юго-Восточной Азии . [3]

Заболевание широко распространено в тропических и субтропических регионах, которые существуют в широкой полосе вокруг экватора . [19] [1] Это включает большую часть Африки к югу от Сахары , Азии и Латинской Америки . [3] В 2022 году около 249 миллионов случаев малярии во всем мире привели к примерно 608 000 смертей, причем 80 процентов были в возрасте пяти лет или меньше. [20] Около 95% случаев и смертей произошли в странах Африки к югу от Сахары. Показатели заболеваемости снизились с 2010 по 2014 год, но возросли с 2015 по 2021 год. [17] По данным ЮНИСЕФ, почти каждую минуту в 2021 году от малярии умирал ребенок в возрасте до пяти лет, [21] и «многие из этих смертей можно предотвратить и вылечить». [22] Малярия обычно связана с бедностью и оказывает значительное негативное влияние на экономическое развитие. [23] [24] В Африке это, по оценкам, приводит к потерям в размере 12 миллиардов долларов США в год из-за увеличения расходов на здравоохранение, потери трудоспособности и неблагоприятного воздействия на туризм. [25]

Видео-резюме ( сценарий )

Этимология

Термин «малярия» происходит от средневекового итальянского слова : mala aria «плохой воздух», часть теории миазмов ; болезнь раньше называлась лихорадкой или болотной лихорадкой из-за ее связи с болотами и топями. [26] Термин появился в английском языке по крайней мере еще в 1768 году. [27] Малярия когда-то была распространена в большей части Европы и Северной Америки, [28] где она больше не является эндемичной, [29] хотя завозные случаи все же случаются. [30]

Признаки и симптомы

Основные симптомы малярии [31]

Взрослые, болеющие малярией, как правило, испытывают озноб и лихорадку — обычно в виде периодических интенсивных приступов , длящихся около шести часов, за которыми следует период потоотделения и облегчения лихорадки, — а также головную боль, усталость, дискомфорт в животе и мышечные боли . [32] У детей, как правило, наблюдаются более общие симптомы: лихорадка, кашель, рвота и диарея. [32]

Начальные проявления заболевания, общие для всех видов малярии, похожи на симптомы гриппа [33] и могут напоминать другие состояния, такие как сепсис , гастроэнтерит и вирусные заболевания [14] . Проявления могут включать головную боль , лихорадку , дрожь , боль в суставах , рвоту , гемолитическую анемию , желтуху , гемоглобин в моче , повреждение сетчатки и судороги [34] .

Классическим симптомом малярии является пароксизм — циклическое возникновение внезапного озноба, за которым следует дрожь, а затем лихорадка и потоотделение, возникающее каждые два дня ( трехдневная лихорадка ) при инфекциях P. vivax и P. ovale , и каждые три дня ( четырехдневная лихорадка ) при P. malariae . Инфекция P. falciparum может вызывать рецидивирующую лихорадку каждые 36–48 часов или менее выраженную и почти непрерывную лихорадку. [35]

Симптомы обычно проявляются через 10–15 дней после первого укуса комара, но могут проявиться и через несколько месяцев после заражения некоторыми штаммами P. vivax . [32] У путешественников, принимающих профилактические препараты от малярии, симптомы могут проявиться после того, как они прекратят принимать эти препараты. [32]

Тяжелая малярия обычно вызывается P. falciparum (часто называемой малярией falciparum). Симптомы малярии falciparum проявляются через 9–30 дней после заражения. [33] У людей с церебральной малярией часто проявляются неврологические симптомы, включая ненормальное положение тела , нистагм , паралич сопряженного взгляда (неспособность глаз поворачиваться вместе в одном направлении), опистотонус , судороги или кому . [33]

Диагностика на основе профилей запаха кожи

Люди источают широкий спектр запахов. Были проведены исследования того, как обнаружить заражение человека малярией с помощью летучих соединений из кожи, что предполагает, что летучие биомаркеры могут быть надежным источником для обнаружения инфекции, включая бессимптомную. Использование профилей запаха кожи тела может быть эффективным для диагностики мирового населения, а также для скрининга и мониторинга инфекции для официального искоренения малярии. Результаты исследований в основном опирались на химические объяснения для объяснения различий в привлекательности людей на основе различных профилей запаха. Существование летучих соединений, таких как жирные кислоты и молочная кислота, является существенной причиной того, почему некоторые люди более привлекательны для комаров, чем другие.

Летучие соединения

Каника Кханна, научный сотрудник Калифорнийского университета в Беркли, изучающий структурную основу мембранной манипуляции и слияния клеток бактериальными патогенами, обсуждает исследования, которые определяют, как профили запаха могут быть использованы для диагностики заболевания. В рамках исследования были собраны образцы летучих соединений у примерно 400 детей в школах Западной Кении - для выявления бессимптомных инфекций. Эти биомаркеры были установлены как неинвазивный способ обнаружения малярийных инфекций. Кроме того, эти летучие соединения были в значительной степени обнаружены антеннами комаров как аттрактант, что делает детей более уязвимыми для укусов комаров. [36]

Жирные кислоты

Жирные кислоты были идентифицированы как привлекательное соединение для комаров, они обычно находятся в летучих выделениях кожи. Эти жирные кислоты, которые создают профили запаха тела, возникают из метаболизма глицерина, молочной кислоты, аминокислот и липидов - через действие бактерий, находящихся в коже. Они создают «химическую подпись», чтобы комары могли найти потенциального хозяина, в частности, человека. [37]

Молочная кислота

Молочная кислота, естественно вырабатываемый левовращающий изомер, долгое время считалась аттрактантом комаров. Молочная кислота в основном вырабатывается эккриновыми потовыми железами, создавая большое количество пота на поверхности кожи. Из-за высокого уровня молочной кислоты, выделяемой организмом человека, была выдвинута гипотеза, что она представляет собой специфический сигнал распознавания хозяина человеком для антропофильных (привлекаемых людьми) комаров.

Резкий запах ног

Большинство исследований используют человеческие запахи в качестве стимулов для привлечения комаров, ищущих хозяина, и сообщают о сильном и значительном привлекательном эффекте. Исследования обнаружили, что образцы человеческого запаха очень эффективны для привлечения комаров. Было показано, что запахи ног имеют наибольшую привлекательность для антропофильных комаров. Некоторые из этих исследований включали ловушки, которые были наживкой из нейлоновых носков, ранее носимых участниками-людьми, и считались эффективными для ловли взрослых комаров. Запахи ног имеют большое количество летучих соединений, которые, в свою очередь, вызывают обонятельную реакцию у комаров. [37]

Осложнения

Малярия имеет несколько серьезных осложнений , включая развитие респираторного дистресса , который встречается у 25% взрослых и 40% детей с тяжелой формой малярии P. falciparum . Возможные причины включают респираторную компенсацию метаболического ацидоза , некардиогенный отек легких , сопутствующую пневмонию и тяжелую анемию . Хотя острый респираторный дистресс-синдром встречается редко у маленьких детей с тяжелой формой малярии, он встречается у 5–25% взрослых и до 29% беременных женщин. [38] Коинфекция ВИЧ с малярией увеличивает смертность. [39] Почечная недостаточность является признаком лихорадки Блэкуотер , при которой гемоглобин из лизированных эритроцитов просачивается в мочу. [33]

Инфекция P. falciparum может привести к церебральной малярии, форме тяжелой малярии, которая включает энцефалопатию . Она связана с побелением сетчатки, что может быть полезным клиническим признаком для дифференциации малярии от других причин лихорадки. [40] Могут возникнуть увеличенная селезенка , увеличенная печень или оба эти симптома , сильная головная боль, низкий уровень сахара в крови и гемоглобин в моче с почечной недостаточностью . [33] Осложнения могут включать спонтанное кровотечение, коагулопатию и шок . [41]

Малярия во время беременности может стать причиной мертворождения , детской смертности , выкидышей и низкого веса при рождении , [42] особенно при заражении P. falciparum , но также и при заражении P. vivax . [43]

Причина

Жизненный цикл малярийных паразитов: Спорозоиты попадают в организм через укус комара. Попав в печень, они размножаются в тысячи мерозоитов. Мерозоиты заражают эритроциты и размножаются, заражая все больше и больше эритроцитов. Некоторые паразиты образуют гаметоциты, которые поглощаются комаром, продолжая жизненный цикл.

Малярия вызывается заражением паразитами рода Plasmodium . [44] У людей малярию вызывают шесть видов Plasmodium : P. falciparum , P. malariae , P. ovale curtisi , P. ovale wallikeri , P. vivax и P. knowlesi . [45] Среди инфицированных P. falciparum является наиболее распространенным идентифицированным видом (~75%), за которым следует P. vivax (~20%). [14] Хотя традиционно считается, что P. falciparum является причиной большинства смертей, [46] последние данные свидетельствуют о том, что малярия, вызванная P. vivax, связана с потенциально опасными для жизни состояниями примерно так же часто, как и с диагнозом инфекции P. falciparum . [47] P. vivax пропорционально более распространен за пределами Африки. [48] ​​Были зарегистрированы некоторые случаи заражения человека несколькими видами плазмодия от высших обезьян , но за исключением P. knowlesiзоонозного вида, вызывающего малярию у макак [49] — они в основном имеют ограниченное значение для общественного здравоохранения. [50]

Комары Anopheles изначально заражаются плазмодием , питаясь кровью ранее инфицированного плазмодием человека. [51] [52] Затем паразиты обычно попадают в организм через укус инфицированного комара Anopheles . Некоторые из этих инокулированных паразитов, называемые « спорозоитами », вероятно, остаются в коже, [53] но другие перемещаются с кровотоком в печень , где они проникают в гепатоциты . [54] Они растут и делятся в печени в течение 2–10 дней, причем каждый инфицированный гепатоцит в конечном итоге содержит до 40 000 паразитов. [54] Инфицированные гепатоциты распадаются, высвобождая эти инвазивные клетки плазмодия , называемые « мерозоитами », в кровоток. В крови мерозоиты быстро проникают в отдельные эритроциты , размножаясь в течение 24–72 часов, образуя 16–32 новых мерозоита. [54] Инфицированные эритроциты лизируются, и новые мерозоиты заражают новые эритроциты, что приводит к циклу, который непрерывно увеличивает количество паразитов у инфицированного человека. [54] В течение раундов этого цикла заражения небольшая часть паразитов не размножается, а вместо этого развивается в паразитов ранней половой стадии, называемых мужскими и женскими « гаметоцитами ». Эти гаметоциты развиваются в костном мозге в течение 11 дней, затем возвращаются в кровоток, ожидая укуса другого комара. [54] Оказавшись внутри комара, гаметоциты подвергаются половому размножению и в конечном итоге образуют дочерние спорозоиты, которые мигрируют в слюнные железы комара, чтобы быть введенными в нового хозяина при укусе комара. [54]

Инфекция печени не вызывает никаких симптомов; все симптомы малярии являются результатом заражения эритроцитов. [45] Симптомы развиваются, когда на миллилитр крови приходится более 100 000 паразитов . [45] Многие из симптомов, связанных с тяжелой малярией, вызваны тенденцией P. falciparum связываться со стенками кровеносных сосудов , что приводит к повреждению пораженных сосудов и окружающих тканей. Паразиты, секвестрированные в кровеносных сосудах легких, способствуют дыхательной недостаточности . В мозге они способствуют коме . В плаценте они способствуют низкому весу при рождении и преждевременным родам, а также увеличивают риск абортов и мертворождения. [45] Разрушение эритроцитов во время инфекции часто приводит к анемии, усугубляемой снижением выработки новых эритроцитов во время инфекции. [45]

Только самки комаров питаются кровью; самцы комаров питаются нектаром растений и не переносят болезнь. Самки комаров рода Anopheles предпочитают питаться ночью. Обычно они начинают искать еду в сумерках и продолжают всю ночь, пока не добьются успеха. [55] Однако в Африке из-за широкого использования противомоскитных сеток они начали кусаться раньше, до времени их использования. [56] Малярийные паразиты также могут передаваться через переливание крови , хотя это случается редко. [57]

Рецидивирующая малярия

Симптомы малярии могут повторяться после различных бессимптомных периодов. В зависимости от причины рецидив можно классифицировать как обострение , рецидив или повторное заражение. Рецидив — это когда симптомы возвращаются после бессимптомного периода из-за неспособности удалить паразитов в крови с помощью адекватного лечения. [58] Рецидив — это когда симптомы снова появляются после того, как паразиты были устранены из крови, но сохранились в виде спящих гипнозоитов [59] в клетках печени. Рецидив обычно происходит между 8 и 24 неделями после первоначальных симптомов и часто наблюдается при инфекциях P. vivax и P. ovale . [14] Случаи малярии P. vivax в умеренных районах часто связаны с зимовкой гипнозоитов, при этом рецидивы начинаются через год после укуса комара. [60] Повторное заражение означает, что паразиты были устранены из всего организма, но затем были введены новые паразиты. Повторное заражение нелегко отличить от рецидива и ухудшения состояния, хотя рецидив инфекции в течение двух недель после окончания лечения обычно приписывают неэффективности лечения. [61] У людей может развиться некоторый иммунитет при частом инфицировании. [62]

Патофизиология

Микрофотография плаценты мертворождения из -за материнской малярии. Окраска гематоксилином и эозином . Эритроциты безъядерные; сине- черное окрашивание в ярко-красных структурах (эритроцитах) указывает на чужеродные ядра паразитов.
Электронная микрофотография эритроцита, инфицированного Plasmodium falciparum (в центре), иллюстрирующая «шишечки» адгезионного белка.

Малярийная инфекция развивается в две фазы: одна из них затрагивает печень (экзоэритроцитарная фаза), а другая — красные кровяные клетки или эритроциты (эритроцитарная фаза). Когда инфицированный комар прокалывает кожу человека, чтобы поесть крови, спорозоиты в слюне комара попадают в кровоток и мигрируют в печень, где они заражают гепатоциты, размножаясь бесполым путем и бессимптомно в течение 8–30 дней. [63]

После потенциального периода покоя в печени эти организмы дифференцируются , давая тысячи мерозоитов, которые после разрыва клеток хозяина попадают в кровь и заражают эритроциты, начиная эритроцитарную стадию жизненного цикла. [63] Паразит незаметно покидает печень, заворачиваясь в клеточную мембрану инфицированной клетки печени хозяина. [64]

Внутри эритроцитов паразиты размножаются дальше, снова бесполым путем, периодически вырываясь из клеток хозяина, чтобы вторгнуться в свежие эритроциты. Происходит несколько таких циклов амплификации. Таким образом, классические описания волн лихорадки возникают из одновременных волн мерозоитов, вырывающихся и инфицирующих эритроциты. [63]

Некоторые спорозоиты P. vivax не сразу развиваются в мерозоиты экзоэритроцитарной фазы, а вместо этого производят гипнозоиты, которые остаются в состоянии покоя в течение периодов от нескольких месяцев (обычно 7–10 месяцев) до нескольких лет. [60] После периода покоя они реактивируются и производят мерозоиты. Гипнозоиты ответственны за длительную инкубацию и поздние рецидивы при инфекциях P. vivax , [60] хотя их существование в P. ovale неопределенно. [65]

Паразит относительно защищен от атак иммунной системы организма , поскольку большую часть своего жизненного цикла человека он находится в печени и клетках крови и относительно невидим для иммунного надзора. Однако циркулирующие инфицированные клетки крови уничтожаются в селезенке . Чтобы избежать этой участи, паразит P. falciparum выставляет адгезивные белки на поверхности инфицированных клеток крови, заставляя клетки крови прилипать к стенкам мелких кровеносных сосудов, тем самым изолируя паразита от прохождения через общий кровоток и селезенку. [66] Блокировка микрососудов вызывает симптомы, подобные симптомам плацентарной малярии. [67] Изолированные эритроциты могут нарушить гематоэнцефалический барьер и вызвать церебральную малярию. [68]

Генетическая устойчивость

Из-за высокого уровня смертности и заболеваемости, вызванных малярией, особенно видом P. falciparum , она оказала наибольшее селективное давление на геном человека в недавней истории. Несколько генетических факторов обеспечивают некоторую устойчивость к ней, включая серповидноклеточную анемию , талассемию , дефицит глюкозо-6-фосфатдегидрогеназы и отсутствие антигенов Даффи на эритроцитах. [69] [70] [71]

Влияние серповидноклеточной анемии на иммунитет к малярии иллюстрирует некоторые эволюционные компромиссы, которые произошли из-за эндемичной малярии. Серповидноклеточная анемия вызывает изменение молекулы гемоглобина в крови. Обычно эритроциты имеют очень гибкую, двояковогнутую форму, которая позволяет им перемещаться по узким капиллярам ; однако, когда модифицированные молекулы гемоглобина S подвергаются воздействию небольшого количества кислорода или собираются вместе из-за обезвоживания, они могут слипаться, образуя нити, которые заставляют клетку деформироваться в изогнутую серповидную форму. В этих нитях молекула не так эффективна в захвате или выделении кислорода, и клетка недостаточно гибка, чтобы свободно циркулировать. На ранних стадиях малярии паразит может вызвать серповидность инфицированных эритроцитов, и поэтому они быстрее удаляются из циркуляции. Это снижает частоту, с которой малярийные паразиты завершают свой жизненный цикл в клетке. Индивиды, которые являются гомозиготными (с двумя копиями аномального аллеля гемоглобина бета ) , имеют серповидноклеточную анемию , в то время как те, кто являются гетерозиготными (с одним аномальным аллелем и одним нормальным аллелем), испытывают устойчивость к малярии без тяжелой анемии. Хотя более короткая продолжительность жизни для тех, кто имеет гомозиготное состояние, как правило, не благоприятствует выживанию признака, этот признак сохраняется в регионах, подверженных малярии, из-за преимуществ, предоставляемых гетерозиготной формой. [71] [72]

Нарушение функции печени

Дисфункция печени в результате малярии встречается редко и обычно возникает только у людей с другими заболеваниями печени, такими как вирусный гепатит или хроническое заболевание печени . Синдром иногда называют малярийным гепатитом . [73] Хотя это считалось редким явлением, малярийная гепатопатия увеличилась, особенно в Юго-Восточной Азии и Индии. Нарушение функции печени у людей с малярией коррелирует с большей вероятностью осложнений и смерти. [73]

Влияние на реакцию на вакцину

Малярийная инфекция влияет на иммунные реакции после вакцинации от различных заболеваний. Например, малярия подавляет иммунные реакции на полисахаридные вакцины. Потенциальным решением является проведение лечебного лечения перед вакцинацией в районах, где присутствует малярия. [74]

Диагноз

Мазок крови является золотым стандартом диагностики малярии.
Кольцевидные формы и гаметоциты Plasmodium falciparum в крови человека

Из-за неспецифической природы симптомов малярии диагноз обычно подозревается на основе симптомов и истории путешествий, а затем подтверждается лабораторным тестом для выявления наличия паразита в крови (паразитологический тест). В районах, где малярия распространена, Всемирная организация здравоохранения (ВОЗ) рекомендует врачам подозревать малярию у любого человека, который сообщает о лихорадке или у которого текущая температура выше 37,5 °C без какой-либо другой очевидной причины. [75] Малярию следует подозревать у детей с признаками анемии : бледные ладони или лабораторный тест, показывающий уровень гемоглобина ниже 8 граммов на децилитр крови. [75] В районах мира, где малярия встречается редко или отсутствует, ВОЗ рекомендует проводить тестирование только для людей с возможным контактом с малярией (обычно путешествующих в район, эндемичный по малярии) и необъяснимой лихорадкой. [75]

В странах Африки к югу от Сахары уровень тестирования низкий: в 2021 году только один из четырех (28%) детей с лихорадкой получил медицинскую консультацию или быстрый диагностический тест. Разница в тестировании между самыми богатыми и самыми бедными детьми составила 10 процентных пунктов (33% против 23%). Кроме того, в Восточной и Южной Африке была протестирована большая доля детей (36%), чем в Западной и Центральной Африке (21%). [21] По данным ЮНИСЕФ, в 2021 году 61% детей с лихорадкой обращались за консультацией или лечением в медицинское учреждение или к поставщику услуг. Различия также наблюдаются по уровню благосостояния: разница в поведении при обращении за медицинской помощью между детьми из самых богатых (71%) и самых бедных (53%) домохозяйств составляет 18 процентных пунктов. [21]

Малярия обычно подтверждается микроскопическим исследованием мазков крови или экспресс-диагностическими тестами на основе антигенов (RDT). Микроскопия, т. е. исследование окрашенной по Гимзе крови с помощью светового микроскопа, является золотым стандартом диагностики малярии. [45] Микроскописты обычно исследуют как «толстую пленку» крови, что позволяет им сканировать много клеток крови за короткое время, так и «тонкую пленку» крови, что позволяет им четко видеть отдельных паразитов и идентифицировать инфицирующие виды плазмодиев . [45] В типичных полевых лабораторных условиях микроскопист может обнаружить паразитов, когда на микролитр крови приходится не менее 100 паразитов , что находится примерно в нижнем диапазоне симптоматической инфекции. [75] Микроскопическая диагностика относительно ресурсоемка, требует обученного персонала, специального оборудования, электроэнергии и постоянного снабжения предметными стеклами и красителями для микроскопии . [75]

В местах, где микроскопия недоступна, малярия диагностируется с помощью RDT, быстрых тестов на антигены , которые обнаруживают паразитарные белки в образце крови из пальца . [75] В продаже имеется множество RDT, нацеленных на паразитарные белки, богатый гистидином белок 2 (HRP2, обнаруживает только P. falciparum ), лактатдегидрогеназу или альдолазу . [75] Тест HRP2 широко используется в Африке, где преобладает P. falciparum . [45] Однако, поскольку HRP2 сохраняется в крови до пяти недель после лечения инфекции, тест HRP2 иногда не может определить, есть ли у человека в настоящее время малярия или она была ранее. [75] Кроме того, у некоторых паразитов P. falciparum в регионе Амазонки отсутствует ген HRP2 , что затрудняет обнаружение. [75] RDT быстро и легко развертываются в местах, где нет полноценных диагностических лабораторий. [75] Однако они дают значительно меньше информации, чем микроскопия, и иногда различаются по качеству от производителя к производителю и от партии к партии. [75]

Были разработаны серологические тесты для обнаружения антител против плазмодия в крови, но они не используются для диагностики малярии из-за их относительно низкой чувствительности и специфичности. Были разработаны высокочувствительные тесты амплификации нуклеиновых кислот , но они не используются в клинической практике из-за их относительно высокой стоимости и низкой специфичности для активных инфекций. [75]

Классификация

Всемирная организация здравоохранения (ВОЗ) классифицирует малярию как «тяжелую» или «неосложненную» . [14] Она считается тяжелой, если присутствует любой из следующих критериев, в противном случае она считается неосложненной. [76]

Церебральная малярия определяется как тяжелая форма малярии, вызванная P. falciparum , проявляющаяся неврологическими симптомами, включая кому (со степенью тяжести по шкале комы Глазго менее 11 или по шкале комы Блантайра менее 3), или комой, которая длится более 30 минут после приступа. [77]

Профилактика

Комар Anopheles stephensi вскоре после получения крови от человека (капля крови выделяется как излишек). Этот комар является переносчиком малярии, и борьба с комарами является эффективным способом снижения заболеваемости.

Методы, используемые для профилактики малярии, включают лекарства, уничтожение комаров и профилактику укусов. По состоянию на 2023 год ВОЗ одобрила для использования у детей две вакцины против малярии : RTS,S и R21 . [15] [78] Наличие малярии в каком-либо районе требует сочетания высокой плотности населения, высокой плотности популяции комаров Anopheles и высоких показателей передачи от человека к комарам и от комаров к человеку. Если любой из этих показателей достаточно снижен, паразит в конечном итоге исчезает из этого района, как это произошло в Северной Америке, Европе и некоторых частях Ближнего Востока. Однако, если паразит не будет уничтожен во всем мире, он может восстановиться, если условия вернутся к комбинации, благоприятствующей размножению паразита. Кроме того, стоимость уничтожения комаров Anopheles на человека возрастает с уменьшением плотности населения, что делает это экономически нецелесообразным в некоторых районах. [79]

Профилактика малярии может быть более экономически эффективной, чем лечение заболевания в долгосрочной перспективе, но требуемые первоначальные затраты недоступны для многих беднейших людей мира. Существует большая разница в расходах на программы контроля (т. е. поддержания низкой эндемичности) и ликвидации между странами. Например, в Китае, правительство которого в 2010 году объявило о стратегии ликвидации малярии в китайских провинциях , требуемые инвестиции составляют небольшую долю государственных расходов на здравоохранение. Напротив, аналогичная программа в Танзании обойдется примерно в одну пятую бюджета общественного здравоохранения. [80] В 2021 году Всемирная организация здравоохранения подтвердила, что Китай ликвидировал малярию. [81] В 2023 году Всемирная организация здравоохранения подтвердила, что Азербайджан , Таджикистан и Белиз ликвидировали малярию. [82]

В районах, где распространена малярия, дети до пяти лет часто страдают анемией , которая иногда вызвана малярией. Назначение детям с анемией в этих районах профилактических противомалярийных препаратов немного улучшает уровень эритроцитов в крови, но не влияет на риск смерти или необходимость госпитализации. [83]

Борьба с комарами

Мужчина распыляет керосиновое масло в стоячей воде, зона Панамского канала , 1912 г.

Борьба с переносчиками относится к методам, используемым для снижения малярии путем снижения уровня передачи комарами. Для индивидуальной защиты наиболее эффективные репелленты от насекомых основаны на ДЭТА или пикаридине . [84] Однако недостаточно доказательств того, что репелленты от комаров могут предотвратить заражение малярией. [85] Обработанные инсектицидами сетки (ОИС) и остаточное распыление в помещениях (ОИС) эффективны, широко используются для профилактики малярии, и их использование внесло значительный вклад в снижение заболеваемости малярией в 21 веке. [86] [87] [88] ОИС и ОИС могут быть недостаточными для ликвидации заболевания, поскольку эти вмешательства зависят от того, сколько людей используют сетки, сколько пробелов в инсектициде (низкие зоны покрытия), если люди не защищены вне дома, и от увеличения количества комаров, устойчивых к инсектицидам. [86] Изменения в домах людей для предотвращения воздействия комаров могут быть важной долгосрочной профилактической мерой. [86]

Сетки, обработанные инсектицидом

Использование противомоскитной сетки

Противомоскитные сетки помогают держать комаров подальше от людей и снижают уровень заражения и передачи малярии. Сетки не являются идеальным барьером и часто обрабатываются инсектицидом, предназначенным для уничтожения комаров до того, как они успеют найти путь через сетку. Обработанные инсектицидом сетки (ОИС) оцениваются как в два раза более эффективные, чем необработанные сетки, и обеспечивают более 70% защиты по сравнению с отсутствием сетки. [89] В период с 2000 по 2008 год использование ОИС спасло жизни примерно 250 000 младенцев в странах Африки к югу от Сахары. [90] По данным ЮНИСЕФ, в 2019 году только 36% домохозяйств имели достаточно ОИС для всех членов домохозяйства. [91] В 2000 году 1,7 миллиона (1,8%) африканских детей, проживающих в районах мира, где распространена малярия, были защищены ОИС. Это число увеличилось до 20,3 миллионов (18,5%) африканских детей, использующих ОИС в 2007 году, в результате чего 89,6 миллионов детей остались без защиты [92] и до 68% африканских детей, использующих противомоскитные сетки в 2015 году. [93] Процент детей, спящих под ОИС в странах Африки к югу от Сахары, увеличился с менее 40% в 2011 году до более 50% в 2021 году. [21] Большинство сеток пропитаны пиретроидами , классом инсектицидов с низкой токсичностью . Они наиболее эффективны при использовании от заката до рассвета. [94] Рекомендуется повесить большую «кроватную сетку» над центром кровати и либо заправить края под матрас, либо убедиться, что она достаточно большая, чтобы касаться земли. [95] ОИС полезны для исходов беременности в эндемичных по малярии регионах Африки, но необходимы дополнительные данные по Азии и Латинской Америке. [96]

В районах с высокой устойчивостью к малярии пиперонилбутоксид (ПБО) в сочетании с пиретроидами в противомоскитных сетках эффективен для снижения уровня заражения малярией. [97] Остаются вопросы относительно долговечности ПБО на сетках, поскольку воздействие на смертность комаров не сохранялось после двадцати стирок в экспериментальных испытаниях. [97]

ЮНИСЕФ отмечает, что использование обработанных инсектицидом сеток возросло с 2000 года за счет ускоренного производства, закупки и доставки, заявляя, что «более 2,5 млрд. СОИ были распространены по всему миру с 2004 года, причем 87% (2,2 млрд.) были распределены в странах Африки к югу от Сахары. В 2021 году производители поставили около 220 млн. СОИ в страны, эндемичные по малярии, что на 9 млн. СОИ меньше по сравнению с 2020 годом и на 33 млн. меньше, чем было поставлено в 2019 году». [22] По состоянию на 2021 год 66% домохозяйств в странах Африки к югу от Сахары имели СОИ, при этом цифры «колеблются от 31% в Анголе в 2016 году до примерно 97% в Гвинее-Бисау в 2019 году». [22] Однако чуть более половины домохозяйств с СОИ имели их в достаточном количестве, чтобы защитить всех членов домохозяйства. [22]

Остаточное распыление в помещении

Стены, где внутри помещений применялось остаточное распыление ДДТ. Мертвые комары остаются на стене, в конечном итоге падая на пол.

Остаточное распыление в помещении — это распыление инсектицидов на стены внутри дома. После кормления многие комары отдыхают на близлежащей поверхности, переваривая кровь, поэтому, если стены домов покрыты инсектицидами, отдыхающие комары могут быть убиты до того, как они успеют укусить другого человека и передать малярийного паразита. [98] По состоянию на 2006 год Всемирная организация здравоохранения рекомендует 12 инсектицидов в операциях IRS, включая ДДТ и пиретроиды цифлутрин и дельтаметрин . [99] Такое использование небольших количеств ДДТ в целях общественного здравоохранения разрешено Стокгольмской конвенцией , которая запрещает его использование в сельском хозяйстве. [100] Одной из проблем со всеми формами IRS является устойчивость к инсектицидам . Комары, пораженные IRS, как правило, отдыхают и живут в помещении, а из-за раздражения, вызванного распылением, их потомки, как правило, отдыхают и живут на открытом воздухе, что означает, что они меньше подвержены воздействию IRS. [101] В сообществах, использующих обработанные инсектицидами сетки, в дополнение к остаточному распылению в помещениях инсектицидов, не относящихся к пиретроидам, было обнаружено связанное с этим снижение заболеваемости малярией. [102] Кроме того, использование инсектицидов, подобных пиретроидам, в дополнение к остаточному распылению в помещениях не привело к заметному дополнительному эффекту в сообществах, использующих обработанные инсектицидами сетки. [102]

Модификации жилья

Housing is a risk factor for malaria and modifying the house as a prevention measure may be a sustainable strategy that does not rely on the effectiveness of insecticides such as pyrethroids.[86][103] The physical environment inside and outside the home that may improve the density of mosquitoes are considerations. Examples of potential modifications include how close the home is to mosquito breeding sites, drainage and water supply near the home, availability of mosquito resting sites (vegetation around the home), the proximity to live stock and domestic animals, and physical improvements or modifications to the design of the home to prevent mosquitoes from entering,[86] such as window screens.

In addition to installing window screens, house screening measures include screening ceilings, doors, and eaves. In 2021, the World Health Organization's (WHO) Guideline Development Group conditionally recommended screening houses in this manner to reduce malaria transmission.[104] However, the WHO does point out that there are local considerations that need to be addressed when incorporating these techniques. These considerations include the delivery method, maintenance, house design, feasibility, resource needs, and scalability.[104]

Several studies have suggested that screening houses can have a significant impact on malaria transmission. Beyond the protective barrier screening provides, it also does not call for daily behavioral changes in the household.[105] Screening eaves can also have a community-level protective effect, ultimately reducing mosquito-biting densities in neighboring houses that do not have this intervention in place.[105]

In some cases, studies have used insecticide-treated (e.g., transfluthrin) or untreated netting to deter mosquito entry.[105] One widely used intervention is the In2Care BV EaveTube. In 2021, In2Care BV received funding from the United States Agency for International Development to develop a ventilation tube that would be installed in housing walls.[106] When mosquitoes approach households, the goal is for them to encounter these EaveTubes instead. Inside these EaveTubes is insecticide-treated netting that is lethal to insecticide-resistant mosquitoes.[106] This approach to mosquito control is called the Lethal House Lure method. The WHO is currently evaluating the efficacy of this product for widespread use.[107]

Mass drug administration

Mass drug administration (MDA) involves the administration of drugs to the entire population of an area regardless of disease status.[108] A 2021 Cochrane review on the use of community administration of ivermectin found that, to date, low quality evidence shows no significant impact on reducing incidence of malaria transmission from the community administration of ivermectin.[109]

Other mosquito control methods

People have tried a number of other methods to reduce mosquito bites and slow the spread of malaria. Efforts to decrease mosquito larvae by decreasing the availability of open water where they develop, or by adding substances to decrease their development, are effective in some locations.[110] Electronic mosquito repellent devices, which make very high-frequency sounds that are supposed to keep female mosquitoes away, have no supporting evidence of effectiveness.[111] There is a low certainty evidence that fogging may have an effect on malaria transmission.[112] Larviciding by hand delivery of chemical or microbial insecticides into water bodies containing low larval distribution may reduce malarial transmission.[113] There is insufficient evidence to determine whether larvivorous fish can decrease mosquito density and transmission in the area.[114]

Medications

There are a number of medications that can help prevent or interrupt malaria in travellers to places where infection is common. Many of these medications are also used in treatment. In places where Plasmodium is resistant to one or more medications, three medications—mefloquine, doxycycline, or the combination of atovaquone/proguanil (Malarone)—are frequently used for prevention.[115] Doxycycline and the atovaquone/proguanil are better tolerated while mefloquine is taken once a week.[115] Areas of the world with chloroquine-sensitive malaria are uncommon.[116] Antimalarial mass drug administration to an entire population at the same time may reduce the risk of contracting malaria in the population, however the effectiveness of mass drug administration may vary depending on the prevalence of malaria in the area.[117] Other factors such as drug administration plus other protective measures such as mosquito control, the proportion of people treated in the area, and the risk of reinfection with malaria may play a role in the effectiveness of mass drug treatment approaches.[117]

The protective effect does not begin immediately, and people visiting areas where malaria exists usually start taking the drugs one to two weeks before they arrive, and continue taking them for four weeks after leaving (except for atovaquone/proguanil, which only needs to be started two days before and continued for seven days afterward).[118] The use of preventive drugs is often not practical for those who live in areas where malaria exists, and their use is usually given only to pregnant women and short-term visitors. This is due to the cost of the drugs, side effects from long-term use, and the difficulty in obtaining antimalarial drugs outside of wealthy nations.[119] During pregnancy, medication to prevent malaria has been found to improve the weight of the baby at birth and decrease the risk of anaemia in the mother.[120] The use of preventive drugs where malaria-bearing mosquitoes are present may encourage the development of partial resistance.[121]

Giving antimalarial drugs to infants through intermittent preventive therapy can reduce the risk of having malaria infection, hospital admission, and anaemia.[122]

Mefloquine is more effective than sulfadoxine-pyrimethamine in preventing malaria for HIV-negative pregnant women. Cotrimoxazole is effective in preventing malaria infection and reduce the risk of getting anaemia in HIV-positive women.[123] Giving sulfadoxine-pyrimethamine for three or more doses as intermittent preventive therapy is superior than two doses for HIV-positive women living in malaria-endemic areas.[124]

Prompt treatment of confirmed cases with artemisinin-based combination therapies (ACTs) may also reduce transmission.[125]

Research on malaria vaccines

Malaria vaccines have been another goal of research. The first promising studies demonstrating the potential for a malaria vaccine were performed in 1967 by immunising mice with live, radiation-attenuated sporozoites, which provided significant protection to the mice upon subsequent injection with normal, viable sporozoites. Since the 1970s, there has been considerable progress in developing similar vaccination strategies for humans.[126]

In 2013, WHO and the malaria vaccine funders group set a goal to develop vaccines designed to interrupt malaria transmission with malaria eradication's long-term goal.[127] The first vaccine, called RTS,S, was approved by European regulators in 2015.[128] As of 2023, two malaria vaccines have been licensed for use.[15] Other approaches to combat malaria may require investing more in research and greater primary health care.[129] Continuing surveillance will also be important to prevent the return of malaria in countries where the disease has been eliminated.[130]

As of 2019 it is undergoing pilot trials in 3 sub-Saharan African countries—Ghana, Kenya and Malawi—as part of the WHO's Malaria Vaccine Implementation Programme (MVIP).[131]

Immunity (or, more accurately, tolerance) to P. falciparum malaria does occur naturally, but only in response to years of repeated infection.[62][132] An individual can be protected from a P. falciparum infection if they receive about a thousand bites from mosquitoes that carry a version of the parasite rendered non-infective by a dose of X-ray irradiation.[133] The highly polymorphic nature of many P. falciparum proteins results in significant challenges to vaccine design. Vaccine candidates that target antigens on gametes, zygotes, or ookinetes in the mosquito midgut aim to block the transmission of malaria. These transmission-blocking vaccines induce antibodies in the human blood; when a mosquito takes a blood meal from a protected individual, these antibodies prevent the parasite from completing its development in the mosquito.[134] Other vaccine candidates, targeting the blood-stage of the parasite's life cycle, have been inadequate on their own.[135] For example, SPf66 was tested extensively in areas where the disease was common in the 1990s, but trials showed it to be insufficiently effective.[136]

As of 2020, the RTS,S vaccine has been shown to reduce the risk of malaria by about 40% in children in Africa.[78][137] A preprint study of the R21 vaccine has shown 77% vaccine efficacy.[needs update][138]

In 2021, researchers from the University of Oxford reported findings from a Phase IIb trial of a candidate malaria vaccine, R21/Matrix-M, which demonstrated efficacy of 77% over 12-months of follow-up. This vaccine is the first to meet the World Health Organization's Malaria Vaccine Technology Roadmap goal of a vaccine with at least 75% efficacy.[139]

Germany-based BioNTECH SE is developing an mRNA-based malaria vaccine BN165 [140] which has recently initiated a Phase 1 study [clinicaltrials.gov identifier: NCT05581641] in December 2022. The vaccine, based on the circumsporozite protein (CSP) is being tested in adults aged 18–55 yrs at 3 dose levels to select a safe and tolerable dose of a three-dose schedule. Unlike GSK's RTS,S (AS01) and Serum Institute of India's R21/MatrixM, BNT-165 is being studied in adult age groups meaning it could be developed for Western travelers as well as those living in endemic countries. For the travelers profile, a recent commercial assessment forecast potential gross revenues of BNT-165 at $479m (2030) 5-yrs post launch, POS-adjusted revenues.[141]

Others

Community participation and health education strategies promoting awareness of malaria and the importance of control measures have been successfully used to reduce the incidence of malaria in some areas of the developing world.[142] Recognising the disease in the early stages can prevent it from becoming fatal. Education can also inform people to cover over areas of stagnant, still water, such as water tanks that are ideal breeding grounds for the parasite and mosquito, thus cutting down the risk of the transmission between people. This is generally used in urban areas where there are large centers of population in a confined space and transmission would be most likely in these areas.[143] Intermittent preventive therapy is another intervention that has been used successfully to control malaria in pregnant women and infants,[144] and in preschool children where transmission is seasonal.[145]

Treatment

Advertisement entitled "The Mosquito Danger". Includes 6 panel cartoon:#1 breadwinner has malaria, family starving; #2 wife selling ornaments; #3 doctor administers quinine; #4 patient recovers; #5 doctor indicating that quinine can be obtained from post office if needed again; #6 man who refused quinine, dead on stretcher.
An advertisement for quinine as a malaria treatment from 1927.

Malaria is treated with antimalarial medications; the ones used depends on the type and severity of the disease.[146] While medications against fever are commonly used, their effects on outcomes are not clear.[147][148] Providing free antimalarial drugs to households may reduce childhood deaths when used appropriately. Programmes which presumptively treat all causes of fever with antimalarial drugs may lead to overuse of antimalarials and undertreat other causes of fever. Nevertheless, the use of malaria rapid-diagnostic kits can help to reduce over-usage of antimalarials.[149][150]

Uncomplicated malaria

Simple or uncomplicated malaria may be treated with oral medications. Artemisinin drugs are effective and safe in treating uncomplicated malaria.[151] Artemisinin in combination with other antimalarials (known as artemisinin-combination therapy, or ACT) is about 90% effective when used to treat uncomplicated malaria.[90] The most effective treatment for P. falciparum infection is the use of ACT, which decreases resistance to any single drug component.[152][153] Artemether-lumefantrine (six-dose regimen) is more effective than the artemether-lumefantrine (four-dose regimen) or other regimens not containing artemisinin derivatives in treating falciparum malaria.[154][155] Another recommended combination is dihydroartemisinin and piperaquine.[156][157][158] Artemisinin-naphthoquine combination therapy showed promising results in treating falciparum malaria but more research is needed to establish its efficacy as a reliable treatment.[159] Artesunate plus mefloquine performs better than mefloquine alone in treating uncomplicated falciparum malaria in low transmission settings.[160] Atovaquone-proguanil is effective against uncomplicated falciparum with a possible failure rate of 5% to 10%; the addition of artesunate may reduce failure rate.[161] Azithromycin monotherapy or combination therapy has not shown effectiveness in treating Plasmodium falciparum or Plasmodium vivax malaria.[162] Amodiaquine plus sulfadoxine-pyrimethamine may achieve less treatment failures when compared to sulfadoxine-pyrimethamine alone in uncomplicated falciparum malaria.[163] There is insufficient data on chlorproguanil-dapsone in treating uncomplicated falciparum malaria.[164][165] The addition of primaquine with artemisinin-based combination therapy for falciparum malaria reduces its transmission at day 3-4 and day 8 of infection.[166] Sulfadoxine-pyrimethamine plus artesunate is better than sulfadoxine-pyrimethamine plus amodiaquine in controlling treatment failure at day 28. However, the latter is better than the former in reducing gametocytes in blood at day 7.[167]

Infection with P. vivax, P. ovale or P. malariae usually does not require hospitalisation. Treatment of P. vivax malaria requires both elimination of the parasite in the blood with chloroquine or with artemisinin-based combination therapy and clearance of parasites from the liver with an 8-aminoquinoline agent such as primaquine or tafenoquine.[168][169] These two drugs act against blood stages as well, the extent to which they do so still being under investigation.[170]

To treat malaria during pregnancy, the WHO recommends the use of quinine plus clindamycin early in the pregnancy (1st trimester), and ACT in later stages (2nd and 3rd trimesters).[171][172] There is limited safety data on the antimalarial drugs in pregnancy.[173]

Severe and complicated malaria

Cases of severe and complicated malaria are almost always caused by infection with P. falciparum. The other species usually cause only febrile disease.[174] Severe and complicated malaria cases are medical emergencies since mortality rates are high (10% to 50%).[175]

Recommended treatment for severe malaria is the intravenous use of antimalarial drugs. For severe malaria, parenteral artesunate was superior to quinine in both children and adults.[176][177] In another systematic review, artemisinin derivatives (artemether and arteether) were as efficacious as quinine in the treatment of cerebral malaria in children.[178] Treatment of severe malaria involves supportive measures that are best done in a critical care unit. This includes the management of high fevers and the seizures that may result from it. It also includes monitoring for poor breathing effort, low blood sugar, and low blood potassium.[46] Artemisinin derivatives have the same or better efficacy than quinolones in preventing deaths in severe or complicated malaria.[179] Quinine loading dose helps to shorten the duration of fever and increases parasite clearance from the body.[180] There is no difference in effectiveness when using intrarectal quinine compared to intravenous or intramuscular quinine in treating uncomplicated/complicated falciparum malaria.[181] There is insufficient evidence for intramuscular arteether to treat severe malaria.[182] The provision of rectal artesunate before transfer to hospital may reduce the rate of death for children with severe malaria.[183] In children with malaria and concomitant hypoglycaemia, sublingual administration of glucose appears to result in better increases in blood sugar after 20 minutes when compared to oral administration, based on very limited data.[184]

Cerebral malaria is the form of severe and complicated malaria with the worst neurological symptoms.[185] There is insufficient data on whether osmotic agents such as mannitol or urea are effective in treating cerebral malaria.[186] Routine phenobarbitone in cerebral malaria is associated with fewer convulsions but possibly more deaths.[187] There is no evidence that steroids would bring treatment benefits for cerebral malaria.[188]

Managing cerebral malariaCerebral malaria usually makes a patient comatose. If the cause of the coma is in doubt, testing for other locally prevalent causes of encephalopathy (bacterial, viral or fungal infection) should be carried out. In areas where there is a high prevalence of malaria infection (e.g. tropical region) treatment can start without testing first.[44] To manage the cerebral malaria when confirmed the following can be done:

There is insufficient evidence to show that blood transfusion is useful in either reducing deaths for children with severe anaemia or in improving their haematocrit in one month.[190] There is insufficient evidence that iron chelating agents such as deferoxamine and deferiprone improve outcomes of those with malaria falciparum infection.[191]

Monoclonal antibodies

A 2022 clinical trial shows that a monoclonal antibody mAb L9LS offers protection against malaria. It binds the Plasmodium falciparum circumsporozoite protein (CSP-1), essential to disease, and makes it ineffective.[192]

Resistance

Drug resistance poses a growing problem in 21st-century malaria treatment.[193] In the 2000s (decade), malaria with partial resistance to artemisins emerged in Southeast Asia.[194][195] Resistance is now common against all classes of antimalarial drugs apart from artemisinins. Treatment of resistant strains became increasingly dependent on this class of drugs. The cost of artemisinins limits their use in the developing world.[196] Malaria strains found on the Cambodia–Thailand border are resistant to combination therapies that include artemisinins, and may, therefore, be untreatable.[197] Exposure of the parasite population to artemisinin monotherapies in subtherapeutic doses for over 30 years and the availability of substandard artemisinins likely drove the selection of the resistant phenotype.[198] Resistance to artemisinin has been detected in Cambodia, Myanmar, Thailand, and Vietnam,[199] and there has been emerging resistance in Laos.[200][201] Resistance to the combination of artemisinin and piperaquine was first detected in 2013 in Cambodia, and by 2019 had spread across Cambodia and into Laos, Thailand and Vietnam (with up to 80 percent of malaria parasites resistant in some regions).[202]

There is insufficient evidence in unit packaged antimalarial drugs in preventing treatment failures of malaria infection. However, if supported by training of healthcare providers and patient information, there is improvement in compliance of those receiving treatment.[203]

Prognosis

Disability-adjusted life year for malaria per 100,000 inhabitants in 2004
   no data
   <10
   0–100
   100–500
   500–1000
  1000–1500
  1500–2000
  2000–2500
  2500–2750
  2750–3000
  3000–3250
  3250–3500
   ≥3500

When properly treated, people with malaria can usually expect a complete recovery.[204] However, severe malaria can progress extremely rapidly and cause death within hours or days.[205] In the most severe cases of the disease, fatality rates can reach 20%, even with intensive care and treatment.[14] Over the longer term, developmental impairments have been documented in children who have had episodes of severe malaria.[206] Chronic infection without severe disease can occur in an immune-deficiency syndrome associated with a decreased responsiveness to Salmonella bacteria and the Epstein–Barr virus.[207]

During childhood, malaria causes anaemia during a period of rapid brain development, and also direct brain damage resulting from cerebral malaria.[206] Some survivors of cerebral malaria have an increased risk of neurological and cognitive deficits, behavioural disorders, and epilepsy.[208] Malaria prophylaxis was shown to improve cognitive function and school performance in clinical trials when compared to placebo groups.[206]

Epidemiology

Deaths due to malaria per million persons in 2012
  0–0
  1–2
  3–54
  55–325
  326–679
  680–949
  950–1,358
Past and current malaria prevalence in 2009
Relative incidence of Plasmodium species by country of origin for imported cases to non-endemic countries[209]

The WHO estimates that in 2021 there were 247 million total cases of malaria resulting in 619,000 deaths.[17] Children under five years old are the most affected, accounting for 67% of malaria deaths worldwide in 2019.[210] About 125 million pregnant women are at risk of infection each year; in Sub-Saharan Africa, maternal malaria is associated with up to 200,000 estimated infant deaths yearly.[42] Since 2015, the WHO European Region has been free of malaria. The last country to report an indigenous malaria case was Tajikistan in 2014.[17] There are about 1300–1500 malaria cases per year in the United States.[38] The United States eradicated malaria as a major public health concern in 1951,[211] though small outbreaks persist.[212] Locally acquired mosquito-borne malaria occurred in the United States in 2003, when eight cases of locally acquired P. vivax malaria were identified in Florida, and again in May 2023, in four cases, as well as one case in Texas,[213] and in August in one case in Maryland.[214] About 900 people died from the disease in Europe between 1993 and 2003.[84] Both the global incidence of disease and resulting mortality have declined in recent years. According to the WHO and UNICEF, deaths attributable to malaria in 2015 were reduced by 60%[93] from a 2000 estimate of 985,000, largely due to the widespread use of insecticide-treated nets and artemisinin-based combination therapies.[90] Between 2000 and 2019, malaria mortality rates among all ages halved from about 30 to 13 per 100,000 population at risk. During this period, malaria deaths among children under five also declined by nearly half (47%) from 781,000 in 2000 to 416,000 in 2019.[91]

Malaria is presently endemic in a broad band around the equator, in areas of the Americas, many parts of Asia, and much of Africa; in Sub-Saharan Africa, 85–90% of malaria fatalities occur.[215] An estimate for 2009 reported that countries with the highest death rate per 100,000 of population were Ivory Coast (86.15), Angola (56.93) and Burkina Faso (50.66).[216] A 2010 estimate indicated the deadliest countries per population were Burkina Faso, Mozambique and Mali.[217] The Malaria Atlas Project aims to map global levels of malaria, providing a way to determine the global spatial limits of the disease and to assess disease burden.[218][219] This effort led to the publication of a map of P. falciparum endemicity in 2010 and an update in 2019.[220][221][222] As of 2021, 84 countries have endemic malaria.[17]

The geographic distribution of malaria within large regions is complex, and malaria-afflicted and malaria-free areas are often found close to each other.[223] Malaria is prevalent in tropical and subtropical regions because of rainfall, consistent high temperatures and high humidity, along with stagnant waters where mosquito larvae readily mature, providing them with the environment they need for continuous breeding.[224] In drier areas, outbreaks of malaria have been predicted with reasonable accuracy by mapping rainfall.[225] Malaria is more common in rural areas than in cities. For example, several cities in the Greater Mekong Subregion of Southeast Asia are essentially malaria-free, but the disease is prevalent in many rural regions, including along international borders and forest fringes.[226] In contrast, malaria in Africa is present in both rural and urban areas, though the risk is lower in the larger cities.[227]

Climate change

Climate change is likely to affect malaria transmission, but the degree of effect and the areas affected is uncertain.[228] Greater rainfall in certain areas of India, and following an El Niño event is associated with increased mosquito numbers.[229]

Since 1900 there has been substantial change in temperature and rainfall over Africa.[230] However, factors that contribute to how rainfall results in water for mosquito breeding are complex, incorporating the extent to which it is absorbed into soil and vegetation for example, or rates of runoff and evaporation.[231] Recent research has provided a more in-depth picture of conditions across Africa, combining a malaria climatic suitability model with a continental-scale model representing real-world hydrological processes.[231]

History

Ancient malaria oocysts preserved in Dominican amber

Although the parasite responsible for P. falciparum malaria has been in existence for 50,000–100,000 years, the population size of the parasite did not increase until about 10,000 years ago, concurrently with advances in agriculture[232] and the development of human settlements. Close relatives of the human malaria parasites remain common in chimpanzees. Some evidence suggests that the P. falciparum malaria may have originated in gorillas.[233]

References to the unique periodic fevers of malaria are found throughout history.[234] Ancient Indian physician Sushruta is believed to be among the first to attribute the disease to mosquitoes,[235] long before the Roman Columella associated the disease with insects from swamps.[236] Hippocrates described periodic fevers, labelling them tertian, quartan, subtertian and quotidian.[236] Malaria may have contributed to the decline of the Roman Empire,[237] and was so pervasive in Rome that it was known as the "Roman fever".[238] Several regions in ancient Rome were considered at-risk for the disease because of the favourable conditions present for malaria vectors. This included areas such as southern Italy, the island of Sardinia, the Pontine Marshes, the lower regions of coastal Etruria and the city of Rome along the Tiber. The presence of stagnant water in these places was preferred by mosquitoes for breeding grounds. Irrigated gardens, swamp-like grounds, run-off from agriculture, and drainage problems from road construction led to the increase of standing water.[239]

British doctor Ronald Ross received the Nobel Prize for Physiology or Medicine in 1902 for his work on malaria.

Malaria is not referenced in the medical books of the Mayans or Aztecs. Despite this, antibodies against malaria have been detected in some South American mummies, indicating that some malaria strains in the Americas might have a pre-Columbian origin.[240] European settlers and the West Africans they enslaved likely brought malaria to the Americas starting in the 16th century.[241][242]

Scientific studies on malaria made their first significant advance in 1880, when Charles Louis Alphonse Laveran—a French army doctor working in the military hospital of Constantine in Algeria—observed parasites inside the red blood cells of infected people for the first time.[243] He, therefore, proposed that malaria is caused by this organism, the first time a protist was identified as causing disease.[244] For this and later discoveries, he was awarded the 1907 Nobel Prize for Physiology or Medicine. A year later, Carlos Finlay, a Cuban doctor treating people with yellow fever in Havana, provided strong evidence that mosquitoes were transmitting disease to and from humans.[245] This work followed earlier suggestions by Josiah C. Nott,[246] and work by Sir Patrick Manson, the "father of tropical medicine", on the transmission of filariasis.[247]

Chinese medical researcher Tu Youyou received the Nobel Prize for Physiology or Medicine in 2015 for her work on the antimalarial drug artemisinin.

In April 1894, a Scottish physician, Sir Ronald Ross, visited Sir Patrick Manson at his house on Queen Anne Street, London. This visit was the start of four years of collaboration and fervent research that culminated in 1897 when Ross, who was working in the Presidency General Hospital in Calcutta, proved the complete life-cycle of the malaria parasite in mosquitoes.[248] He thus proved that the mosquito was the vector for malaria in humans by showing that certain mosquito species transmit malaria to birds. He isolated malaria parasites from the salivary glands of mosquitoes that had fed on infected birds.[248] For this work, Ross received the 1902 Nobel Prize in Medicine. After resigning from the Indian Medical Service, Ross worked at the newly established Liverpool School of Tropical Medicine and directed malaria-control efforts in Egypt, Panama, Greece and Mauritius.[249] The findings of Finlay and Ross were later confirmed by a medical board headed by Walter Reed in 1900. Its recommendations were implemented by William C. Gorgas in the health measures undertaken during construction of the Panama Canal. This public-health work saved the lives of thousands of workers and helped develop the methods used in future public-health campaigns against the disease.[250]

In 1896, Amico Bignami discussed the role of mosquitoes in malaria.[251] In 1898, Bignami, Giovanni Battista Grassi and Giuseppe Bastianelli succeeded in showing experimentally the transmission of malaria in humans, using infected mosquitoes to contract malaria themselves which they presented in November 1898 to the Accademia dei Lincei.[248]

Artemisia annua, source of the antimalarial drug artemisinin

The first effective treatment for malaria came from the bark of cinchona tree, which contains quinine. This tree grows on the slopes of the Andes, mainly in Peru. The indigenous peoples of Peru made a tincture of cinchona to control fever. Its effectiveness against malaria was found and the Jesuits introduced the treatment to Europe around 1640; by 1677, it was included in the London Pharmacopoeia as an antimalarial treatment.[252] It was not until 1820 that the active ingredient, quinine, was extracted from the bark, isolated and named by the French chemists Pierre Joseph Pelletier and Joseph Bienaimé Caventou.[253][254]

Quinine was the predominant malarial medication until the 1920s when other medications began to appear. In the 1940s, chloroquine replaced quinine as the treatment of both uncomplicated and severe malaria until resistance supervened, first in Southeast Asia and South America in the 1950s and then globally in the 1980s.[255]

The medicinal value of Artemisia annua has been used by Chinese herbalists in traditional Chinese medicines for 2,000 years.[256][257] In 1596, Li Shizhen recommended tea made from qinghao specifically to treat malaria symptoms in his "Compendium of Materia Medica", however the efficacy of tea, made with A. annua, for the treatment of malaria is dubious, and is discouraged by the World Health Organization (WHO).[258][259] Artemisinins, discovered by Chinese scientist Tu Youyou and colleagues in the 1970s from the plant Artemisia annua, became the recommended treatment for P. falciparum malaria, administered in severe cases in combination with other antimalarials.[260] Tu says she was influenced by a traditional Chinese herbal medicine source, The Handbook of Prescriptions for Emergency Treatments, written in 340 by Ge Hong.[261] For her work on malaria, Tu Youyou received the 2015 Nobel Prize in Physiology or Medicine.[262]

Plasmodium vivax was used between 1917 and the 1940s for malariotherapy—deliberate injection of malaria parasites to induce a fever to combat certain diseases such as tertiary syphilis. In 1927, the inventor of this technique, Julius Wagner-Jauregg, received the Nobel Prize in Physiology or Medicine for his discoveries. The technique was dangerous, killing about 15% of patients, so it is no longer in use.[263]

U.S. Marines with malaria in a field hospital on Guadalcanal, October 1942

The first pesticide used for indoor residual spraying was DDT.[264] Although it was initially used exclusively to combat malaria, its use quickly spread to agriculture. In time, pest control, rather than disease control, came to dominate DDT use, and this large-scale agricultural use led to the evolution of pesticide-resistant mosquitoes in many regions. The DDT resistance shown by Anopheles mosquitoes can be compared to antibiotic resistance shown by bacteria. During the 1960s, awareness of the negative consequences of its indiscriminate use increased, ultimately leading to bans on agricultural applications of DDT in many countries in the 1970s.[100] Before DDT, malaria was successfully eliminated or controlled in tropical areas like Brazil and Egypt by removing or poisoning the breeding grounds of the mosquitoes or the aquatic habitats of the larval stages, for example by applying the highly toxic arsenic compound Paris Green to places with standing water.[265]

Names

Various types of malaria have been called by the names below:[citation needed]

Eradication efforts

Members of the Malaria Commission of the League of Nations collecting larvae on the Danube delta, 1929

Malaria has been successfully eliminated or significantly reduced in certain areas, but not globally. Malaria was once common in the United States, but the US eliminated malaria from most parts of the country in the early 20th century using vector control programs, which combined the monitoring and treatment of infected humans, draining of wetland breeding grounds for agriculture and other changes in water management practices, and advances in sanitation, including greater use of glass windows and screens in dwellings.[266] The use of the pesticide DDT and other means eliminated malaria from the remaining pockets in southern states of the US in the 1950s, as part of the National Malaria Eradication Program.[267] Most of Europe, North America, Australia, North Africa and the Caribbean, and parts of South America, Asia and Southern Africa have also eliminated malaria.[268] The WHO defines "elimination" (or "malaria-free") as having no domestic transmission (indigenous cases) for the past three years. They also define "pre-elimination" and "elimination" stages when a country has fewer than 5 or 1, respectively, cases per 1000 people at risk per year. In 2021, the total of international and national funding for malaria control and elimination was $3.5 billion—only half of what is estimated to be needed.[21] According to UNICEF, to achieve the goal of a malaria-free world, annual funding would need to more than double to reach the US$6.8 billion target.[21]

In parts of the world with rising living standards, the elimination of malaria was often a collateral benefit of the introduction of window screens and improved sanitation.[269] A variety of usually simultaneous interventions represents best practice. These include antimalarial drugs to prevent or treat infection; improvements in public health infrastructure to diagnose, sequester and treat infected individuals; bednets and other methods intended to keep mosquitoes from biting humans; and vector control strategies[270] such as larvaciding with insecticides, ecological controls such as draining mosquito breeding grounds or introducing fish to eat larvae and indoor residual spraying (IRS) with insecticides.

Initial WHO program (1955–1969)

1962 Pakistani postage stamp promoting malaria eradication program

In 1955 the WHO launched the Global Malaria Eradication Program (GMEP).[271] The program relied largely on DDT for mosquito control and rapid diagnosis and treatment to break the transmission cycle.[272] The program eliminated the disease in "North America, Europe, the former Soviet Union",[273] and in "Taiwan, much of the Caribbean, the Balkans, parts of northern Africa, the northern region of Australia, and a large swath of the South Pacific"[269] and dramatically reduced mortality in Sri Lanka and India.[274]

However, failure to sustain the program, increasing mosquito tolerance to DDT, and increasing parasite tolerance led to a resurgence. In many areas early successes partially or completely reversed, and in some cases rates of transmission increased.[275] Experts tie malarial resurgence to multiple factors, including poor leadership, management and funding of malaria control programs; poverty; civil unrest; and increased irrigation. The evolution of resistance to first-generation drugs (e.g. chloroquine) and to insecticides exacerbated the situation.[276][277] The program succeeded in eliminating malaria only in areas with "high socio-economic status, well-organized healthcare systems, and relatively less intensive or seasonal malaria transmission".[273]

For example, in Sri Lanka, the program reduced cases from about one million per year before spraying to just 18 in 1963[278][279] and 29 in 1964. Thereafter the program was halted to save money and malaria rebounded to 600,000 cases in 1968 and the first quarter of 1969. The country resumed DDT vector control but the mosquitoes had evolved resistance in the interim, presumably because of continued agricultural use. The program switched to malathion, but despite initial successes, malaria continued its resurgence into the 1980s.[274][280]

Due to vector and parasite resistance and other factors, the feasibility of eradicating malaria with the strategy used at the time and resources available led to waning support for the program.[281] WHO suspended the program in 1969[271][281] and attention instead focused on controlling and treating the disease. Spraying programs (especially using DDT) were curtailed due to concerns over safety and environmental effects, as well as problems in administrative, managerial and financial implementation.[275] Efforts shifted from spraying to the use of bednets impregnated with insecticides and other interventions.[273][282]

After 1969

Regions where malaria has been eliminated as of 2009

Target 6C of the Millennium Development Goals included reversal of the global increase in malaria incidence by 2015, with specific targets for children under five years old.[283] Since 2000, support for malaria eradication increased, although some actors in the global health community (including voices within the WHO) view malaria eradication as a premature goal and suggest that the establishment of strict deadlines for malaria eradication may be counterproductive as they are likely to be missed.[284] One of the targets of Goal 3 of the UN's Sustainable Development Goals is to end the malaria epidemic in all countries by 2030.

In 2006, the organization Malaria No More set a public goal of eliminating malaria from Africa by 2015, and the organization claimed they planned to dissolve if that goal was accomplished. In 2007, World Malaria Day was established by the 60th session of the World Health Assembly. As of 2018, they are still functioning.[285]

Video recording of a set of presentations given in 2010 about humanity's efforts towards malaria eradication

As of 2012, The Global Fund to Fight AIDS, Tuberculosis, and Malaria has distributed 230 million insecticide-treated nets intended to stop mosquito-borne transmission of malaria.[286] The U.S.-based Clinton Foundation has worked to manage demand and stabilize prices in the artemisinin market.[287] Other efforts, such as the Malaria Atlas Project, focus on analysing climate and weather information required to accurately predict malaria spread based on the availability of habitat of malaria-carrying parasites.[218] The Malaria Policy Advisory Committee (MPAC) of the World Health Organization (WHO) was formed in 2012, "to provide strategic advice and technical input to WHO on all aspects of malaria control and elimination".[288]

In 2015 the WHO targeted a 90% reduction in malaria deaths by 2030,[289] and Bill Gates said in 2016 that he thought global eradication would be possible by 2040.[290] According to the WHO's World Malaria Report 2015, the global mortality rate for malaria fell by 60% between 2000 and 2015. The WHO targeted a further 90% reduction between 2015 and 2030,[291] with a 40% reduction and eradication in 10 countries by 2020.[129] However, the 2020 goal was missed with a slight increase in cases compared to 2015.[292] Additionally, UNICEF reported that the number of malaria deaths for all ages increased by 10% between 2019 and 2020, in part due to service disruptions related to the COVID-19 pandemic, before experiencing a minor decline in 2021.[21]

Before 2016, the Global Fund against HIV/AIDS, Tuberculosis and Malaria had provided 659 million ITN (insecticide treated bed nets), organise support and education to prevents malaria. The challenges are high due to the lack of funds, the fragile health structure and the remote indigenous population that could be hard to reach and educate. Most of indigenous population rely on self-diagnosis, self-treatment, healer, and traditional medicine. The WHO applied for fund to the Gates Foundation which favour the action of malaria eradication in 2007.[293] Six countries, the United Arab Emirates, Morocco, Armenia, Turkmenistan, Kyrgyzstan, and Sri Lanka managed to have no endemic cases of malaria for three consecutive years and certified malaria-free by the WHO despite the stagnation of the funding in 2010.[283] The funding is essential to finance the cost of medication and hospitalisation cannot be supported by the poor countries where the disease is widely spread. The goal of eradication has not been met; nevertheless, the decrease rate of the disease is considerable.

While 31 out of 92 endemic countries were estimated to be on track with the WHO goals for 2020, 15 countries reported an increase of 40% or more between 2015 and 2020.[292] Between 2000 and 30 June 2021, twelve countries were certified by the WHO as being malaria-free. Argentina and Algeria were declared free of malaria in 2019.[292][294] El Salvador and China were declared malaria-free in the first half of 2021.[295][296]

Regional disparities were evident: Southeast Asia was on track to meet WHO's 2020 goals, while Africa, Americas, Eastern Mediterranean and West Pacific regions were off-track.[292] The six Greater Mekong Subregion countries aim for elimination of P. falciparum transmitted malaria by 2025 and elimination of all malaria by 2030, having achieved a 97% and 90% reduction of cases respectively since 2000.[292] Ahead of World Malaria Day, 25 April 2021, WHO named 25 countries in which it is working to eliminate malaria by 2025 as part of its E-2025 initiative.[297]

A major challenge to malaria elimination is the persistence of malaria in border regions, making international cooperation crucial.[298]

In 2018, WHO announced that Paraguay was free of malaria, after a national malaria eradication effort that began in 1950.[299]

In March 2023, the WHO certified Azerbaijan and Tajikistan as malaria-free,[300] and Belize in June 2023.[301] Cabo Verde, the latest country to eradicate Malaria, was certified in January 2024, bringing the total number of countries and territories certified malaria-free to 44.[302]

Potential eradication of malaria by year 2050

Experts say that malaria could be eliminated as wild disease of humans by the year 2050. World class experts (41 of them) in fields such as malariology, biomedicine, economics and health policy advocated more funding, a central data repository for dealing with local outbreaks of malaria, and training the workers needed to carry out the plan. Details are published in The Lancet. The report refers to current knowledge, recent research and financial matters to describe a respectable plan.[303]

The number of countries in which malaria was endemic was reduced from 200 to 86 in the years from 1900 to 2017. A further reduction by another 20 countries occurred by 2020. In light of the indication of possible practical accomplishment, countries and regions are planning further progress. Through the use of top notch diagnostic technique, effective treatment and vector reduction the world should be nearly free of malaria by 2050. This will require technical improvements in organizational efficiency and more monetary outlays.[304]

Society and culture

Economic impact

Malaria clinic in Tanzania

Malaria is not just a disease commonly associated with poverty; some evidence suggests that it is also a cause of poverty and a major hindrance to economic development.[23][24] Although tropical regions are most affected, malaria's furthest influence reaches into some temperate zones that have extreme seasonal changes. The disease has been associated with major negative economic effects on regions where it is widespread. During the late 19th and early 20th centuries, it was a major factor in the slow economic development of the American southern states.[305]

A comparison of average per capita GDP in 1995, adjusted for parity of purchasing power, between countries with malaria and countries without malaria gives a fivefold difference (US$1,526 versus US$8,268). In the period 1965 to 1990, countries where malaria was common had an average per capita GDP that increased only 0.4% per year, compared to 2.4% per year in other countries.[306]

Poverty can increase the risk of malaria since those in poverty do not have the financial capacities to prevent or treat the disease. In its entirety, the economic impact of malaria has been estimated to cost Africa US$12 billion every year. The economic impact includes costs of health care, working days lost due to sickness, days lost in education, decreased productivity due to brain damage from cerebral malaria, and loss of investment and tourism.[25] The disease has a heavy burden in some countries, where it may be responsible for 30–50% of hospital admissions, up to 50% of outpatient visits, and up to 40% of public health spending.[307]

Child with malaria in Ethiopia

Cerebral malaria is one of the leading causes of neurological disabilities in African children.[208] Studies comparing cognitive functions before and after treatment for severe malarial illness continued to show significantly impaired school performance and cognitive abilities even after recovery.[206] Consequently, severe and cerebral malaria have far-reaching socioeconomic consequences that extend beyond the immediate effects of the disease.[308]

Counterfeit and substandard drugs

Sophisticated counterfeits have been found in several Asian countries such as Cambodia,[309] China,[310] Indonesia, Laos, Thailand, and Vietnam, and are a major cause of avoidable death in those countries.[311] The WHO said that studies indicate that up to 40% of artesunate-based malaria medications are counterfeit, especially in the Greater Mekong region. They have established a rapid alert system to rapidly report information about counterfeit drugs to relevant authorities in participating countries.[312] There is no reliable way for doctors or lay people to detect counterfeit drugs without help from a laboratory. Companies are attempting to combat the persistence of counterfeit drugs by using new technology to provide security from source to distribution.[313]

Another clinical and public health concern is the proliferation of substandard antimalarial medicines resulting from inappropriate concentration of ingredients, contamination with other drugs or toxic impurities, poor quality ingredients, poor stability and inadequate packaging.[314] A 2012 study demonstrated that roughly one-third of antimalarial medications in Southeast Asia and Sub-Saharan Africa failed chemical analysis, packaging analysis, or were falsified.[315]

War

World War II poster

Throughout history, the contraction of malaria has played a prominent role in the fates of government rulers, nation-states, military personnel, and military actions.[316] In 1910, Nobel Prize in Medicine-winner Ronald Ross (himself a malaria survivor), published a book titled The Prevention of Malaria that included a chapter titled "The Prevention of Malaria in War". The chapter's author, Colonel C. H. Melville, Professor of Hygiene at Royal Army Medical College in London, addressed the prominent role that malaria has historically played during wars: "The history of malaria in war might almost be taken to be the history of war itself, certainly the history of war in the Christian era. ... It is probably the case that many of the so-called camp fevers, and probably also a considerable proportion of the camp dysentery, of the wars of the sixteenth, seventeenth and eighteenth centuries were malarial in origin."[317] In British-occupied India the cocktail gin and tonic may have come about as a way of taking quinine, known for its antimalarial properties.[318]

Malaria was the most significant health hazard encountered by U.S. troops in the South Pacific during World War II, where about 500,000 men were infected.[319] According to Joseph Patrick Byrne, "Sixty thousand American soldiers died of malaria during the African and South Pacific campaigns."[320]

Significant financial investments have been made to procure existing and create new antimalarial agents. During World War I and World War II, inconsistent supplies of the natural antimalaria drugs cinchona bark and quinine prompted substantial funding into research and development of other drugs and vaccines. American military organisations conducting such research initiatives include the Navy Medical Research Center, Walter Reed Army Institute of Research, and the U.S. Army Medical Research Institute of Infectious Diseases of the US Armed Forces.[321]

Additionally, initiatives have been founded such as Malaria Control in War Areas (MCWA), established in 1942, and its successor, the Communicable Disease Center (now known as the Centers for Disease Control and Prevention, or CDC) established in 1946. According to the CDC, MCWA "was established to control malaria around military training bases in the southern United States and its territories, where malaria was still problematic".[322]

Research

The Malaria Eradication Research Agenda (malERA) initiative was a consultative process to identify which areas of research and development (R&D) must be addressed for worldwide eradication of malaria.[323][324]

Medications

Malaria parasites contain apicoplasts, organelles related to the plastids found in plants, complete with their own genomes. These apicoplasts are thought to have originated through the endosymbiosis of algae and play a crucial role in various aspects of parasite metabolism, such as fatty acid biosynthesis. Over 400 proteins have been found to be produced by apicoplasts and these are now being investigated as possible targets for novel antimalarial drugs.[325]

With the onset of drug-resistant Plasmodium parasites, new strategies are being developed to combat the widespread disease. One such approach lies in the introduction of synthetic pyridoxal-amino acid adducts, which are taken up by the parasite and ultimately interfere with its ability to create several essential B vitamins.[326][327] Antimalarial drugs using synthetic metal-based complexes are attracting research interest.[328][329]

On the basis of molecular docking outcomes, compounds 3j, 4b, 4h, 4m were exhibited selectivity towards PfLDH. The post docking analysis displayed stable dynamic behavior of all the selected compounds compared to Chloroquine. The end state thermodynamics analysis stated 3j compound as a selective and potent PfLDH inhibitor.[331]

New targets

Targeting Plasmodium liver-stage parasites selectively is emerging as an alternative strategy in the face of resistance to the latest frontline combination therapies against blood stages of the parasite.[332]

In research conducted in 2019, using experimental analysis with knockout (KO) mutants of Plasmodium berghei, the authors were able to identify genes that are potentially essential in the liver stage. Moreover, they generated a computational model to analyse pre–erytrocytic development and liver–stage metabolism. Combining both methods they identified seven metabolic subsystems that become essential compared to the blood stage. Some of these metabolic pathways are fatty acid synthesis and elongation, tricarboxylic acid, amino acid and heme metabolism among others.[332]

Specifically, they studied three subsystems: fatty acid synthesis and elongation, and amino sugar biosynthesis. For the first two pathways they demonstrated a clear dependence of the liver stage on its own fatty acid metabolism.[332]

They proved for the first time the critical role of amino sugar biosynthesis in the liver stage of P. berghei. The uptake of N–acetyl–glucosamine appears to be limited in the liver stage, being its synthesis needed for the parasite development.[332]

These findings and the computational model provide a basis for the design of antimalarial therapies targeting metabolic proteins.[332][333]

Genomic research

The genome of Plasmodium falciparum was sequenced and published in the year 2002.[334]

A species of malaria plasmodium tends to have rather polymorphic antigens which can serve as immune system targets. Some searches of P. falciparum genes for hotspots of encoded variations found sections of genes that when tested proved to encode for antigens. When such antigens are use for vaccine targets a strain of plasmodium with a different allele for the antigen can sometimes escape the immune response stimulated by the vaccine.[335]

Two related viruses, MaRNAV-1 and MaRNAV-2 in Plasmodium vivax and in avian Leucocytozoon respectively, were found through RNA-Sequencing of blood. The finding of a virus infecting a human malaria plasmodium is a first discovery of its kind. It should lead to better understanding of malaria biology.[336]

Other

A non-chemical vector control strategy involves genetic manipulation of malaria mosquitoes. Advances in genetic engineering technologies make it possible to introduce foreign DNA into the mosquito genome and either decrease the lifespan of the mosquito, or make it more resistant to the malaria parasite. Sterile insect technique is a genetic control method whereby large numbers of sterile male mosquitoes are reared and released. Mating with wild females reduces the wild population in the subsequent generation; repeated releases eventually eliminate the target population.[89]

Genomics is central to malaria research. With the sequencing of P. falciparum, one of its vectors Anopheles gambiae, and the human genome, the genetics of all three organisms in the malaria life cycle can be studied.[337] Another new application of genetic technology is the ability to produce genetically modified mosquitoes that do not transmit malaria, potentially allowing biological control of malaria transmission.[338]

In one study, a genetically modified strain of Anopheles stephensi was created that no longer supported malaria transmission, and this resistance was passed down to mosquito offspring.[339]

Gene drive is a technique for changing wild populations, for instance to combat or eliminate insects so they cannot transmit diseases (in particular mosquitoes in the cases of malaria,[340] zika,[341] dengue and yellow fever).[289]

In a study conducted in 2015, researchers observed a specific interaction between malaria and co-infection with the nematode Nippostrongylus brasiliensis, a pulmonary migrating helminth, in mice.[342] The co-infection was found to reduce the virulence of the Plasmodium parasite, the causative agent of malaria. This reduction was attributed to the nematode infection causing increased destruction of erythrocytes, or red blood cells. Given that Plasmodium has a predilection for older host erythrocytes, the increased erythrocyte destruction and ensuing erythropoiesis result in a predominantly younger erythrocyte population, which in turn leads to a decrease in Plasmodium population.[342] Notably, this effect appears to be largely independent of the host's immune control of Plasmodium.

Finally, a review article published in December 2020 noted a correlation between malaria-endemic regions and COVID-19 case fatality rates.[343] The study found that, on average, regions where malaria is endemic reported lower COVID-19 case fatality rates compared to regions without endemic malaria.

In 2017, a bacterial strain of the genus Serratia was genetically modified to prevent malaria in mosquitos[344][345] and in 2023, it has been reported that the bacterium Delftia tsuruhatensis naturally prevents the development of malaria by secreting a molecule called Harmane.[346][347][348]

Other avenue that can contribute to understanding of malaria transmission, is the source of meal for the vector when they have the parasites. Its known that plant sugars are the primary source of nutrients for survival of adult mosquitoes,[349] therefore utilising this link for management of the vector will contribute in mitigating malaria transmission.[350][351]

Other animals

While none of the main four species of malaria parasite that cause human infections are known to have animal reservoirs,[352] P. knowlesi is known to regularly infect both humans and non-human primates.[49] Other non-human primate malarias (particularly P. cynomolgi and P. simium) have also been found to have spilled over into humans.[353] Nearly 200 Plasmodium species have been identified that infect birds, reptiles, and other mammals,[354] and about 30 of them naturally infect non-human primates.[355] Some malaria parasites of non-human primates (NHP) serve as model organisms for human malarial parasites, such as P. coatneyi (a model for P. falciparum) and P. cynomolgi (a model for P. vivax). Diagnostic techniques used to detect parasites in NHP are similar to those employed for humans.[356] Malaria parasites that infect rodents are widely used as models in research, such as P. berghei.[357] Avian malaria primarily affects species of the order Passeriformes, and poses a substantial threat to birds of Hawaii, the Galapagos, and other archipelagoes. The parasite P. relictum is known to play a role in limiting the distribution and abundance of endemic Hawaiian birds. Global warming is expected to increase the prevalence and global distribution of avian malaria, as elevated temperatures provide optimal conditions for parasite reproduction.[358]

References

  1. ^ a b c d e f g h i j k l m n o Caraballo H, King K (May 2014). "Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus". Emergency Medicine Practice. 16 (5): 1–23, quiz 23–24. PMID 25207355. S2CID 23716674. Archived from the original on 2016-08-01.
  2. ^ "Malaria". Mayo Clinic. Archived from the original on 2022-07-02. Retrieved 2022-06-04.
  3. ^ a b c d e f g h i j k "Malaria Fact sheet N°94". WHO. March 2014. Archived from the original on 3 September 2014. Retrieved 28 August 2014.
  4. ^ a b "CDC - Malaria - FAQs". 28 June 2023. Archived from the original on 13 May 2012. Retrieved 9 September 2017.
  5. ^ a b WHO (2023). World Malaria Report 2023. Switzerland: World Health Organization. ISBN 978-92-4-008617-3. Archived from the original on 2024-07-18. Retrieved 2024-07-22.
  6. ^ "Vector-borne diseases". www.who.int. Archived from the original on 2023-01-04. Retrieved 2022-04-24.
  7. ^ Dahalan FA, Churcher TS, Windbichler N, Lawniczak MK (November 2019). "The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites". PLOS Pathogens. 15 (11): e1008063. doi:10.1371/journal.ppat.1008063. PMC 6837289. PMID 31697788.
  8. ^ Basu S, Sahi PK (July 2017). "Malaria: An Update". Indian Journal of Pediatrics. 84 (7): 521–528. doi:10.1007/s12098-017-2332-2. PMID 28357581. S2CID 11461451.
  9. ^ "Fact sheet about malaria". www.who.int. Archived from the original on 2020-05-02. Retrieved 2024-05-10.
  10. ^ a b c d e "Fact sheet about malaria". www.who.int. Archived from the original on 2 May 2020. Retrieved 28 September 2023.
  11. ^ Walter K, John CC (February 2022). "Malaria". JAMA. 327 (6): 597. doi:10.1001/jama.2021.21468. PMID 35133414. S2CID 246651569.
  12. ^ "Fact sheet about malaria". www.who.int. Archived from the original on 2020-05-02. Retrieved 2024-02-19.
  13. ^ World Health Organization. "Global Technical Strategy for Malaria 2016-2030" (PDF). Archived (PDF) from the original on 2024-02-22. Retrieved 2024-02-19.
  14. ^ a b c d e f Nadjm B, Behrens RH (June 2012). "Malaria: an update for physicians". Infectious Disease Clinics of North America. 26 (2): 243–259. doi:10.1016/j.idc.2012.03.010. PMID 22632637.
  15. ^ a b c "WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization". 2 October 2023. Archived from the original on 3 October 2023. Retrieved 8 December 2023.
  16. ^ Rawat A, Roy M, Jyoti A, Kaushik S, Verma K, Srivastava VK (August 2021). "Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes". Microbiological Research. 249: 126784. doi:10.1016/j.micres.2021.126784. PMID 33989978. S2CID 234597200.
  17. ^ a b c d e WHO 2022, p. [page needed].
  18. ^ a b Guidelines for the treatment of malaria (2nd ed.). Geneva: World Health Organization. 2010. p. ix. ISBN 978-92-4-154792-5.
  19. ^ Baiden F, Malm KL, Binka F (2021). "Malaria". In Detels R, Karim QA, Baum F, Li L, Leyland AH (eds.). Oxford Textbook of Global Public Health. pp. 227–248. doi:10.1093/med/9780198816805.003.0073. ISBN 978-0-19-881680-5.
  20. ^ "World malaria report 2022". www.who.int. Archived from the original on 2024-01-30. Retrieved 2024-01-30.
  21. ^ a b c d e f g "Malaria in Africa". UNICEF DATA. Archived from the original on 2023-11-05. Retrieved 2023-11-02.
  22. ^ a b c d "Nearly every minute, a child under 5 dies of malaria". UNICEF. February 2023. Archived from the original on 2023-09-21. Retrieved 2023-09-10.
  23. ^ a b Gollin D, Zimmermann C (August 2007). Malaria: Disease Impacts and Long-Run Income Differences (PDF) (Report). Institute for the Study of Labor. Archived (PDF) from the original on 2016-03-18.
  24. ^ a b Worrall E, Basu S, Hanson K (October 2005). "Is malaria a disease of poverty? A review of the literature". Tropical Medicine & International Health. 10 (10): 1047–1059. doi:10.1111/j.1365-3156.2005.01476.x. PMID 16185240.
  25. ^ a b Greenwood BM, Bojang K, Whitty CJ, Targett GA (2005). "Malaria". The Lancet. 365 (9469): 1487–1498. doi:10.1016/S0140-6736(05)66420-3. PMID 15850634. S2CID 208987634.
  26. ^ Reiter P (1999). "From Shakespeare to Defoe: malaria in England in the Little Ice Age". Emerging Infectious Diseases. 6 (1): 1–11. doi:10.3201/eid0601.000101. PMC 2627969. PMID 10653562.
  27. ^ Sharpe S (1768). A view of the customs, manners, drama, &c. of Italy, as they are described in the Frusta letteraria; and in the Account of Italy in English, written by Mr. Baretti; compared with the Letters from Italy, written by Mr. Sharp. London: W. Nicoll.
  28. ^ Lindemann M (1999). Medicine and Society in Early Modern Europe. Cambridge University Press. p. 62. ISBN 978-0-521-42354-0. Archived from the original on 2023-01-13. Retrieved 2015-10-27.
  29. ^ Gratz NG (2006). The Vector- and Rodent-borne Diseases of Europe and North America: Their Distribution and Public Health Burden. Cambridge University Press. p. 33. ISBN 978-0-521-85447-4. Archived from the original on 2023-01-13. Retrieved 2015-10-27.
  30. ^ Webb 2008, p. [page needed].
  31. ^ Fairhurst RM, Wellems TE (2015). "Malaria (Plasmodium Species)". Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. pp. 3070–3090.e9. doi:10.1016/B978-1-4557-4801-3.00276-9. ISBN 978-1-4557-4801-3.
  32. ^ a b c d Despommier DD, Griffin DO, Gwadz RW, Hotez PJ, Knirsch CA (2019). "9. The Malarias". Parasitic Diseases (PDF) (7 ed.). New York: Parasites Without Borders. pp. 110–115. Archived (PDF) from the original on November 24, 2021. Retrieved November 24, 2021.
  33. ^ a b c d e Bartoloni A, Zammarchi L (2012). "Clinical aspects of uncomplicated and severe malaria". Mediterranean Journal of Hematology and Infectious Diseases. 4 (1): e2012026. doi:10.4084/MJHID.2012.026. PMC 3375727. PMID 22708041.
  34. ^ Beare NA, Taylor TE, Harding SP, Lewallen S, Molyneux ME (November 2006). "Malarial retinopathy: a newly established diagnostic sign in severe malaria". The American Journal of Tropical Medicine and Hygiene. 75 (5): 790–797. doi:10.4269/ajtmh.2006.75.790. PMC 2367432. PMID 17123967.
  35. ^ Ferri FF (2009). "Chapter 332. Protozoal infections". Ferri's Color Atlas and Text of Clinical Medicine. Elsevier Health Sciences. p. 1159. ISBN 978-1-4160-4919-7. Archived from the original on 2023-01-10. Retrieved 2015-10-27.
  36. ^ Khanna K (30 December 2021). "Microbial Origins of Body Odor". American Society for Microbiology.
  37. ^ a b Dormont L, Mulatier M, Carrasco D, Cohuet A (May 2021). "Mosquito Attractants". Journal of Chemical Ecology. 47 (4–5): 351–393. Bibcode:2021JCEco..47..351D. doi:10.1007/s10886-021-01261-2. PMID 33725235.
  38. ^ a b Taylor WR, Hanson J, Turner GD, White NJ, Dondorp AM (August 2012). "Respiratory manifestations of malaria". Chest. 142 (2): 492–505. doi:10.1378/chest.11-2655. PMID 22871759.
  39. ^ Korenromp EL, Williams BG, de Vlas SJ, Gouws E, Gilks CF, Ghys PD, et al. (September 2005). "Malaria attributable to the HIV-1 epidemic, sub-Saharan Africa". Emerging Infectious Diseases. 11 (9): 1410–1419. doi:10.3201/eid1109.050337. PMC 3310631. PMID 16229771.
  40. ^ Beare NA, Lewallen S, Taylor TE, Molyneux ME (March 2011). "Redefining cerebral malaria by including malaria retinopathy". Future Microbiology. 6 (3): 349–355. doi:10.2217/fmb.11.3. PMC 3139111. PMID 21449844.
  41. ^ Davidson's Principles and Practice of Medicine/21st/351
  42. ^ a b Hartman TK, Rogerson SJ, Fischer PR (2010). "The impact of maternal malaria on newborns". Annals of Tropical Paediatrics. 30 (4): 271–282. doi:10.1179/146532810X12858955921032. PMID 21118620. S2CID 25560090.
  43. ^ Rijken MJ, McGready R, Boel ME, Poespoprodjo R, Singh N, Syafruddin D, et al. (January 2012). "Malaria in pregnancy in the Asia-Pacific region". The Lancet Infectious Diseases. 12 (1): 75–88. doi:10.1016/S1473-3099(11)70315-2. PMID 22192132. Archived from the original on 2020-01-23. Retrieved 2019-07-05.
  44. ^ a b "Malaria - About Malaria - Disease". CDC-Centers for Disease Control and Prevention. 2022-03-22. Archived from the original on 2023-05-24. Retrieved 2022-04-28.
  45. ^ a b c d e f g h Ashley EA, Pyae Phyo A, Woodrow CJ (April 2018). "Malaria". The Lancet. 391 (10130): 1608–1621. doi:10.1016/S0140-6736(18)30324-6. PMID 29631781. S2CID 208791451.
  46. ^ a b Sarkar PK, Ahluwalia G, Vijayan VK, Talwar A (2009). "Critical care aspects of malaria". Journal of Intensive Care Medicine. 25 (2): 93–103. doi:10.1177/0885066609356052. PMID 20018606. S2CID 20941166.
  47. ^ Baird JK (January 2013). "Evidence and implications of mortality associated with acute Plasmodium vivax malaria". Clinical Microbiology Reviews. 26 (1): 36–57. doi:10.1128/CMR.00074-12. PMC 3553673. PMID 23297258.
  48. ^ Arnott A, Barry AE, Reeder JC (January 2012). "Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination". Malaria Journal. 11: 14. doi:10.1186/1475-2875-11-14. PMC 3298510. PMID 22233585.
  49. ^ a b Collins WE (2012). "Plasmodium knowlesi: a malaria parasite of monkeys and humans". Annual Review of Entomology. 57: 107–121. doi:10.1146/annurev-ento-121510-133540. PMID 22149265. Archived from the original on 2020-09-23. Retrieved 2019-07-05.
  50. ^ Collins WE, Barnwell JW (April 2009). "Plasmodium knowlesi: finally being recognized". The Journal of Infectious Diseases. 199 (8): 1107–1108. doi:10.1086/597415. PMID 19284287.
  51. ^ "CDC - Malaria - FAQs". www.cdc.gov. 2023-06-28. Archived from the original on 2012-05-13. Retrieved 2023-10-30. Only Anopheles mosquitoes can transmit malaria and they must have been infected through a previous blood meal taken from an infected person. When a mosquito bites an infected person, a small amount of blood is taken in which contains microscopic malaria parasites. About 1 week later, when the mosquito takes its next blood meal, these parasites mix with the mosquito's saliva and are injected into the person being bitten.
  52. ^ "CDC - Malaria - About Malaria - Biology". www.cdc.gov. 2020-07-16. Archived from the original on 2021-01-27. Retrieved 2023-10-30. Thus the infected mosquito carries the disease from one human to another (acting as a "vector"), while infected humans transmit the parasite to the mosquito, In contrast to the human host, the mosquito vector does not suffer from the presence of the parasites.
  53. ^ Ménard R, Tavares J, Cockburn I, Markus M, Zavala F, Amino R (October 2013). "Looking under the skin: the first steps in malarial infection and immunity". Nature Reviews. Microbiology. 11 (10): 701–712. doi:10.1038/nrmicro3111. PMID 24037451.
  54. ^ a b c d e f Cowman AF, Healer J, Marapana D, Marsh K (October 2016). "Malaria: Biology and Disease". Cell. 167 (3): 610–624. doi:10.1016/j.cell.2016.07.055. PMID 27768886. S2CID 2524633.
  55. ^ Arrow KJ, Panosian C, Gelband H (2004). Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance. National Academies Press. p. 141. ISBN 978-0-309-09218-0.
  56. ^ Goldman JG. "Malaria Mosquitoes Are Biting before Bed-Net Time". Scientific American. Archived from the original on 2023-05-29. Retrieved 2023-05-29.
  57. ^ Owusu-Ofori AK, Parry C, Bates I (November 2010). "Transfusion-transmitted malaria in countries where malaria is endemic: a review of the literature from sub-Saharan Africa". Clinical Infectious Diseases. 51 (10): 1192–1198. doi:10.1086/656806. PMID 20929356.
  58. ^ WHO 2015, p. 4.
  59. ^ Markus MB (2011). "Malaria: origin of the term 'hypnozoite'". Journal of the History of Biology. 44 (4): 781–786. doi:10.1007/s10739-010-9239-3. PMID 20665090. S2CID 1727294.
  60. ^ a b c White NJ (October 2011). "Determinants of relapse periodicity in Plasmodium vivax malaria". Malaria Journal. 10: 297. doi:10.1186/1475-2875-10-297. PMC 3228849. PMID 21989376.
  61. ^ WHO 2015, p. 41.
  62. ^ a b Tran TM, Samal B, Kirkness E, Crompton PD (June 2012). "Systems immunology of human malaria". Trends in Parasitology. 28 (6): 248–257. doi:10.1016/j.pt.2012.03.006. PMC 3361535. PMID 22592005.
  63. ^ a b c Bledsoe GH (December 2005). "Malaria primer for clinicians in the United States". Southern Medical Journal. 98 (12): 1197–204, quiz 1205, 1230. doi:10.1097/01.smj.0000189904.50838.eb. PMID 16440920. S2CID 30660702.
  64. ^ Vaughan AM, Aly AS, Kappe SH (September 2008). "Malaria parasite pre-erythrocytic stage infection: gliding and hiding". Cell Host & Microbe. 4 (3): 209–218. doi:10.1016/j.chom.2008.08.010. PMC 2610487. PMID 18779047.
  65. ^ Richter J, Franken G, Mehlhorn H, Labisch A, Häussinger D (November 2010). "What is the evidence for the existence of Plasmodium ovale hypnozoites?". Parasitology Research. 107 (6): 1285–1290. doi:10.1007/s00436-010-2071-z. PMID 20922429. S2CID 2044783.
  66. ^ Tilley L, Dixon MW, Kirk K (June 2011). "The Plasmodium falciparum-infected red blood cell". The International Journal of Biochemistry & Cell Biology. 43 (6): 839–842. doi:10.1016/j.biocel.2011.03.012. PMID 21458590.
  67. ^ Mens PF, Bojtor EC, Schallig HD (October 2010). "Molecular interactions in the placenta during malaria infection". European Journal of Obstetrics, Gynecology, and Reproductive Biology. 152 (2): 126–132. doi:10.1016/j.ejogrb.2010.05.013. PMID 20933151.
  68. ^ Rénia L, Howland SW, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, et al. (2012). "Cerebral malaria: mysteries at the blood-brain barrier". Virulence. 3 (2): 193–201. doi:10.4161/viru.19013. PMC 3396698. PMID 22460644.
  69. ^ Pierron D, Heiske M, Razafindrazaka H, Pereda-Loth V, Sanchez J, Alva O, et al. (March 2018). "Strong selection during the last millennium for African ancestry in the admixed population of Madagascar". Nature Communications. 9 (1): 932. Bibcode:2018NatCo...9..932P. doi:10.1038/s41467-018-03342-5. PMC 5834599. PMID 29500350.
  70. ^ Kwiatkowski DP (August 2005). "How malaria has affected the human genome and what human genetics can teach us about malaria". American Journal of Human Genetics. 77 (2): 171–192. doi:10.1086/432519. PMC 1224522. PMID 16001361.
  71. ^ a b Hedrick PW (October 2011). "Population genetics of malaria resistance in humans". Heredity. 107 (4): 283–304. doi:10.1038/hdy.2011.16. PMC 3182497. PMID 21427751.
  72. ^ Weatherall DJ (May 2008). "Genetic variation and susceptibility to infection: the red cell and malaria". British Journal of Haematology. 141 (3): 276–286. doi:10.1111/j.1365-2141.2008.07085.x. PMID 18410566.
  73. ^ a b Bhalla A, Suri V, Singh V (2006). "Malarial hepatopathy". Journal of Postgraduate Medicine. 52 (4): 315–320. PMID 17102560. Archived from the original on 2013-09-21.
  74. ^ Cunnington AJ, Riley EM (April 2010). "Suppression of vaccine responses by malaria: insignificant or overlooked?". Expert Review of Vaccines. 9 (4): 409–429. doi:10.1586/erv.10.16. PMID 20370551.
  75. ^ a b c d e f g h i j k l "5.1 Diagnosing Malaria (2015)". WHO Guidelines for Malaria. World Health Organization. 13 July 2021. Archived from the original on 18 March 2023. Retrieved 28 November 2021.
  76. ^ WHO 2015, p. 73.
  77. ^ WHO 2015, p. 3.
  78. ^ a b "Fact sheet about Malaria". www.who.int. Archived from the original on 2 May 2020. Retrieved 6 May 2020.
  79. ^ World Health Organization (1958). "Malaria" (PDF). The First Ten Years of the World Health Organization. World Health Organization. pp. 172–87. Archived (PDF) from the original on 2011-07-08.
  80. ^ Sabot O, Cohen JM, Hsiang MS, Kahn JG, Basu S, Tang L, et al. (November 2010). "Costs and financial feasibility of malaria elimination". The Lancet. 376 (9752): 1604–1615. doi:10.1016/S0140-6736(10)61355-4. PMC 3044845. PMID 21035839.
  81. ^ "From 30 million cases to zero: China is certified malaria-free by WHO". www.who.int. Archived from the original on 2023-03-14. Retrieved 2022-08-11.
  82. ^ "Countries and territories certified malaria-free by WHO". www.who.int. Archived from the original on 2024-01-30. Retrieved 2024-01-30.
  83. ^ Athuman M, Kabanywanyi AM, Rohwer AC (January 2015). "Intermittent preventive antimalarial treatment for children with anaemia". The Cochrane Database of Systematic Reviews. 1 (1): CD010767. doi:10.1002/14651858.CD010767.pub2. PMC 4447115. PMID 25582096.
  84. ^ a b Kajfasz P (2009). "Malaria prevention". International Maritime Health. 60 (1–2): 67–70. PMID 20205131. Archived from the original on 2017-08-30.
  85. ^ Maia MF, Kliner M, Richardson M, Lengeler C, Moore SJ, et al. (Cochrane Infectious Diseases Group) (February 2018). "Mosquito repellents for malaria prevention". The Cochrane Database of Systematic Reviews. 2018 (2): CD011595. doi:10.1002/14651858.CD011595.pub2. PMC 5815492. PMID 29405263.
  86. ^ a b c d e Fox T, Furnival-Adams J, Chaplin M, Napier M, Olanga EA (October 2022). "House modifications for preventing malaria". The Cochrane Database of Systematic Reviews. 2022 (10): CD013398. doi:10.1002/14651858.CD013398.pub4. PMC 9536247. PMID 36200610.
  87. ^ Pryce J, Richardson M, Lengeler C (November 2018). "Insecticide-treated nets for preventing malaria". The Cochrane Database of Systematic Reviews. 11 (11): CD000363. doi:10.1002/14651858.CD000363.pub3. PMC 6418392. PMID 30398672.
  88. ^ Pluess B, Tanser FC, Lengeler C, Sharp BL (April 2010). Lengeler C (ed.). "Indoor residual spraying for preventing malaria". The Cochrane Database of Systematic Reviews. 2010 (4): CD006657. doi:10.1002/14651858.CD006657.pub2. PMC 6532743. PMID 20393950.
  89. ^ a b Raghavendra K, Barik TK, Reddy BP, Sharma P, Dash AP (April 2011). "Malaria vector control: from past to future". Parasitology Research. 108 (4): 757–779. doi:10.1007/s00436-010-2232-0. PMID 21229263. S2CID 1422449.
  90. ^ a b c Howitt P, Darzi A, Yang GZ, Ashrafian H, Atun R, Barlow J, et al. (August 2012). "Technologies for global health". The Lancet. 380 (9840): 507–535. doi:10.1016/S0140-6736(12)61127-1. PMID 22857974. S2CID 15311210.
  91. ^ a b "Malaria in Africa". UNICEF DATA. Archived from the original on 2023-11-05. Retrieved 2023-10-31.
  92. ^ Noor AM, Mutheu JJ, Tatem AJ, Hay SI, Snow RW (January 2009). "Insecticide-treated net coverage in Africa: mapping progress in 2000-07". The Lancet. 373 (9657): 58–67. doi:10.1016/S0140-6736(08)61596-2. PMC 2652031. PMID 19019422.
  93. ^ a b UNICEF (September 2015). Achieving the malaria MDG target: reversing the incidence of malaria 2000–2015 (PDF). WHO. ISBN 978-92-4-150944-2. Archived (PDF) from the original on 5 January 2016. Retrieved 26 December 2015.
  94. ^ Schlagenhauf-Lawlor 2008, p. 215
  95. ^ Instructions for treatment and use of insecticide-treated mosquito nets. World Health Organization. 2002. p. 34. hdl:10665/67573.
  96. ^ Gamble C, Ekwaru JP, ter Kuile FO, et al. (Cochrane Infectious Diseases Group) (April 2006). "Insecticide-treated nets for preventing malaria in pregnancy". The Cochrane Database of Systematic Reviews. 2006 (2): CD003755. doi:10.1002/14651858.CD003755.pub2. PMC 6532581. PMID 16625591.
  97. ^ a b Gleave K, Lissenden N, Chaplin M, Choi L, Ranson H (May 2021). "Piperonyl butoxide (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria in Africa". The Cochrane Database of Systematic Reviews. 5 (5): CD012776. doi:10.1002/14651858.CD012776.pub3. PMC 8142305. PMID 34027998.
  98. ^ Enayati A, Hemingway J (2010). "Malaria management: past, present, and future". Annual Review of Entomology. 55: 569–591. doi:10.1146/annurev-ento-112408-085423. PMID 19754246.
  99. ^ Indoor residual spraying : use of indoor residual spraying for scaling up global malaria control and elimination : WHO position statement. World Health Organization. 2006. hdl:10665/69386.
  100. ^ a b van den Berg H (November 2009). "Global status of DDT and its alternatives for use in vector control to prevent disease". Environmental Health Perspectives. 117 (11): 1656–1663. doi:10.1289/ehp.0900785. PMC 2801202. PMID 20049114.
  101. ^ Pates H, Curtis C (2005). "Mosquito behavior and vector control". Annual Review of Entomology. 50: 53–70. doi:10.1146/annurev.ento.50.071803.130439. PMID 15355233.
  102. ^ a b Pryce J, Medley N, Choi L (January 2022). "Indoor residual spraying for preventing malaria in communities using insecticide-treated nets". The Cochrane Database of Systematic Reviews. 1 (1): CD012688. doi:10.1002/14651858.CD012688.pub3. PMC 8763033. PMID 35038163.
  103. ^ Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, et al. (June 2015). "The evidence for improving housing to reduce malaria: a systematic review and meta-analysis". Malaria Journal. 14 (1): 209. doi:10.1186/s12936-015-0724-1. PMC 4460721. PMID 26055986.
  104. ^ a b "WHO Guidelines for Malaria" (PDF). WHO Guidelines for Malaria. October 16, 2023. Retrieved August 1, 2024.
  105. ^ a b c Nalinya S, Musoke D, Deane K (2022-02-02). "Malaria prevention interventions beyond long-lasting insecticidal nets and indoor residual spraying in low- and middle-income countries: a scoping review". Malaria Journal. 21 (1): 31. doi:10.1186/s12936-022-04052-6. ISSN 1475-2875. PMC 8812253. PMID 35109848.
  106. ^ a b "Grant: In2Care EaveTubes". USAID DIV Impacts. August 1, 2024. Retrieved August 1, 2024.
  107. ^ "Lethal house lures". www.who.int. Retrieved 2024-08-01.
  108. ^ Webster JP, Molyneux DH, Hotez PJ, Fenwick A (2014). "The contribution of mass drug administration to global health: past, present and future". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 369 (1645): 20130434. doi:10.1098/rstb.2013.0434. PMC 4024227. PMID 24821920.
  109. ^ de Souza DK, Thomas R, Bradley J, Leyrat C, Boakye DA, Okebe J, et al. (Cochrane Infectious Diseases Group) (June 2021). "Ivermectin treatment in humans for reducing malaria transmission". The Cochrane Database of Systematic Reviews. 2021 (6): CD013117. doi:10.1002/14651858.CD013117.pub2. PMC 8240090. PMID 34184757.
  110. ^ Martello E, Yogeswaran G, Reithinger R, Leonardi-Bee J (November 2022). "Mosquito aquatic habitat modification and manipulation interventions to control malaria". The Cochrane Database of Systematic Reviews. 2022 (11): CD008923. doi:10.1002/14651858.CD008923.pub3. PMC 9651131. PMID 36367444.
  111. ^ Enayati AA, Hemingway J, Garner P (April 2007). Enayati A (ed.). "Electronic mosquito repellents for preventing mosquito bites and malaria infection". The Cochrane Database of Systematic Reviews. 2007 (2): CD005434. doi:10.1002/14651858.CD005434.pub2. PMC 6532582. PMID 17443590.
  112. ^ Pryce J, Choi L, Richardson M, Malone D, et al. (Cochrane Infectious Diseases Group) (November 2018). "Insecticide space spraying for preventing malaria transmission". The Cochrane Database of Systematic Reviews. 11 (11): CD012689. doi:10.1002/14651858.CD012689.pub2. PMC 6516806. PMID 30388303.
  113. ^ Choi L, Majambere S, Wilson AL, et al. (Cochrane Infectious Diseases Group) (August 2019). "Larviciding to prevent malaria transmission". The Cochrane Database of Systematic Reviews. 8 (8): CD012736. doi:10.1002/14651858.CD012736.pub2. PMC 6699674. PMID 31425624.
  114. ^ Walshe DP, Garner P, Adeel AA, Pyke GH, Burkot TR, et al. (Cochrane Infectious Diseases Group) (December 2017). "Larvivorous fish for preventing malaria transmission". The Cochrane Database of Systematic Reviews. 2017 (12): CD008090. doi:10.1002/14651858.CD008090.pub3. PMC 5741835. PMID 29226959.
  115. ^ a b Tickell-Painter M, Maayan N, Saunders R, Pace C, Sinclair D (October 2017). "Mefloquine for preventing malaria during travel to endemic areas". The Cochrane Database of Systematic Reviews. 2017 (10): CD006491. doi:10.1002/14651858.CD006491.pub4. PMC 5686653. PMID 29083100.
  116. ^ "Drug resistance in the Malaria Endemic World". Centers for Disease Control and Prevention. Archived from the original on 9 December 2017. Retrieved 4 January 2018.
  117. ^ a b Shah MP, Hwang J, Choi L, Lindblade KA, Kachur SP, Desai M (September 2021). "Mass drug administration for malaria". The Cochrane Database of Systematic Reviews. 2021 (9): CD008846. doi:10.1002/14651858.CD008846.pub3. PMC 8479726. PMID 34585740.
  118. ^ Freedman DO (August 2008). "Clinical practice. Malaria prevention in short-term travelers". The New England Journal of Medicine. 359 (6): 603–612. doi:10.1056/NEJMcp0803572. PMID 18687641.
  119. ^ Fernando SD, Rodrigo C, Rajapakse S (April 2011). "Chemoprophylaxis in malaria: drugs, evidence of efficacy and costs". Asian Pacific Journal of Tropical Medicine. 4 (4): 330–336. doi:10.1016/S1995-7645(11)60098-9. PMID 21771482.
  120. ^ Radeva-Petrova D, Kayentao K, ter Kuile FO, Sinclair D, Garner P (October 2014). "Drugs for preventing malaria in pregnant women in endemic areas: any drug regimen versus placebo or no treatment". The Cochrane Database of Systematic Reviews. 2014 (10): CD000169. doi:10.1002/14651858.CD000169.pub3. PMC 4498495. PMID 25300703.
  121. ^ Turschner S, Efferth T (February 2009). "Drug resistance in Plasmodium: natural products in the fight against malaria". Mini Reviews in Medicinal Chemistry. 9 (2): 206–2124. doi:10.2174/138955709787316074. PMID 19200025.
  122. ^ Esu EB, Oringanje C, Meremikwu MM (July 2021). "Intermittent preventive treatment for malaria in infants". The Cochrane Database of Systematic Reviews. 2021 (7): CD011525. doi:10.1002/14651858.CD011525.pub3. PMC 8406727. PMID 34273901.
  123. ^ González R, Pons-Duran C, Piqueras M, Aponte JJ, Ter Kuile FO, Menéndez C, et al. (Cochrane Infectious Diseases Group) (November 2018). "Mefloquine for preventing malaria in pregnant women". The Cochrane Database of Systematic Reviews. 11 (11): CD011444. doi:10.1002/14651858.CD011444.pub3. PMC 6517148. PMID 30480761.
  124. ^ Mathanga DP, Uthman OA, Chinkhumba J, et al. (Cochrane Infectious Diseases Group) (October 2011). "Intermittent preventive treatment regimens for malaria in HIV-positive pregnant women". The Cochrane Database of Systematic Reviews. 2011 (10): CD006689. doi:10.1002/14651858.CD006689.pub2. PMC 6532702. PMID 21975756.
  125. ^ Palmer J. "WHO gives indoor use of DDT a clean bill of health for controlling malaria". WHO. Archived from the original on 2012-10-22.
  126. ^ Vanderberg JP (January 2009). "Reflections on early malaria vaccine studies, the first successful human malaria vaccination, and beyond". Vaccine. 27 (1): 2–9. doi:10.1016/j.vaccine.2008.10.028. PMC 2637529. PMID 18973784.
  127. ^ "World Malaria Report 2013" (PDF). World Health Organization. Retrieved 13 February 2014.
  128. ^ Walsh F (24 July 2015). "Malaria vaccine gets 'green light'". BBC News Online. Archived from the original on 21 December 2016.
  129. ^ a b WHO 2020, p. [page needed].
  130. ^ Mendis K (September 2019). "Eliminating malaria should not be the end of vigilance". Nature. 573 (7772): 7. Bibcode:2019Natur.573....7M. doi:10.1038/d41586-019-02598-1. PMID 31485061.
  131. ^ World Health Organization (March 2020). "Q&A on the malaria vaccine implementation programme (MVIP)". WHO. Archived from the original on 13 May 2020. Retrieved 6 May 2020.
  132. ^ Abuga KM, Jones-Warner W, Hafalla JC (February 2021). "Immune responses to malaria pre-erythrocytic stages: Implications for vaccine development". Parasite Immunology. 43 (2): e12795. doi:10.1111/pim.12795. PMC 7612353. PMID 32981095.
  133. ^ Hill AV (October 2011). "Vaccines against malaria". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 366 (1579): 2806–2814. doi:10.1098/rstb.2011.0091. PMC 3146776. PMID 21893544.
  134. ^ Crompton PD, Pierce SK, Miller LH (December 2010). "Advances and challenges in malaria vaccine development". The Journal of Clinical Investigation. 120 (12): 4168–4178. doi:10.1172/JCI44423. PMC 2994342. PMID 21123952.
  135. ^ Graves P, Gelband H (October 2006). Graves PM (ed.). "Vaccines for preventing malaria (blood-stage)". The Cochrane Database of Systematic Reviews. 2006 (4): CD006199. doi:10.1002/14651858.CD006199. PMC 6532641. PMID 17054281.
  136. ^ Graves P, Gelband H (April 2006). Graves PM (ed.). "Vaccines for preventing malaria (SPf66)". The Cochrane Database of Systematic Reviews. 2006 (2): CD005966. doi:10.1002/14651858.CD005966. PMC 6532709. PMID 16625647.
  137. ^ "Malaria vaccine: WHO position paper-January 2016" (PDF). Relevé Épidémiologique Hebdomadaire. 91 (4): 33–51. January 2016. PMID 26829826. Archived from the original (PDF) on 2020-04-23.
  138. ^ Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. (May 2021). "Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial". The Lancet. 397 (10287): 1809–1818. doi:10.1016/S0140-6736(21)00943-0. PMC 8121760. PMID 33964223. SSRN 3830681.
  139. ^ Malaria vaccine becomes first to achieve WHO-specified 75% efficacy goal Archived 2021-04-23 at the Wayback Machine, News Release 23 April 2021, University of Oxford
  140. ^ "Home". Archived from the original on 2023-08-03. Retrieved 2023-08-03.
  141. ^ "VacZine Analytics | Our products - MarketVIEW: Travel vaccines segment report". Archived from the original on 2023-08-03. Retrieved 2023-08-03.
  142. ^ Lalloo DG, Olukoya P, Olliaro P (December 2006). "Malaria in adolescence: burden of disease, consequences, and opportunities for intervention". The Lancet Infectious Diseases. 6 (12): 780–793. doi:10.1016/S1473-3099(06)70655-7. PMID 17123898.
  143. ^ Mehlhorn H, ed. (2016). "Disease Control, Methods". Encyclopedia of Parasitology. pp. 740–745. doi:10.1007/978-3-662-43978-4_921. ISBN 978-3-662-43977-7.
  144. ^ Bardají A, Bassat Q, Alonso PL, Menéndez C (August 2012). "Intermittent preventive treatment of malaria in pregnant women and infants: making best use of the available evidence". Expert Opinion on Pharmacotherapy. 13 (12): 1719–1736. doi:10.1517/14656566.2012.703651. PMID 22775553. S2CID 25024561.
  145. ^ Meremikwu MM, Donegan S, Sinclair D, Esu E, Oringanje C (February 2012). Meremikwu MM (ed.). "Intermittent preventive treatment for malaria in children living in areas with seasonal transmission". The Cochrane Database of Systematic Reviews. 2012 (2): CD003756. doi:10.1002/14651858.CD003756.pub4. PMC 6532713. PMID 22336792.
  146. ^ Hanboonkunupakarn B, White NJ (February 2022). "Advances and roadblocks in the treatment of malaria". British Journal of Clinical Pharmacology. 88 (2): 374–382. doi:10.1111/bcp.14474. PMC 9437935. PMID 32656850. S2CID 220502723.
  147. ^ Greenwood B (January 2004). "The use of anti-malarial drugs to prevent malaria in the population of malaria-endemic areas". The American Journal of Tropical Medicine and Hygiene. 70 (1): 1–7. doi:10.4269/ajtmh.2004.70.1. PMID 14971690.
  148. ^ Meremikwu MM, Odigwe CC, Akudo Nwagbara B, Udoh EE (September 2012). Meremikwu MM (ed.). "Antipyretic measures for treating fever in malaria". The Cochrane Database of Systematic Reviews. 2012 (9): CD002151. doi:10.1002/14651858.CD002151.pub2. PMC 6532580. PMID 22972057.
  149. ^ Okwundu CI, Nagpal S, Musekiwa A, Sinclair D (May 2013). "Home- or community-based programmes for treating malaria". The Cochrane Database of Systematic Reviews. 2013 (5): CD009527. doi:10.1002/14651858.CD009527.pub2. PMC 6532579. PMID 23728693.
  150. ^ "Malaria-Malaria - Diagnosis & treatment". Mayo Clinic. 9 February 2023.
  151. ^ McIntosh HM, Olliaro P, et al. (Cochrane Infectious Diseases Group) (1999-04-26). "Artemisinin derivatives for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 1999 (2): CD000256. doi:10.1002/14651858.CD000256. PMC 6532741. PMID 10796519.
  152. ^ Pousibet-Puerto J, Salas-Coronas J, Sánchez-Crespo A, Molina-Arrebola MA, Soriano-Pérez MJ, Giménez-López MJ, et al. (July 2016). "Impact of using artemisinin-based combination therapy (ACT) in the treatment of uncomplicated malaria from Plasmodium falciparum in a non-endemic zone". Malaria Journal. 15 (1): 339. doi:10.1186/s12936-016-1408-1. PMC 4930579. PMID 27368160. S2CID 18043747.
  153. ^ Kokwaro G (October 2009). "Ongoing challenges in the management of malaria". Malaria Journal. 8 (Suppl 1): S2. doi:10.1186/1475-2875-8-S1-S2. PMC 2760237. PMID 19818169.
  154. ^ Omari AA, Gamble C, Garner P, et al. (Cochrane Infectious Diseases Group) (April 2006). "Artemether-lumefantrine (four-dose regimen) for treating uncomplicated falciparum malaria". The Cochrane Database of Systematic Reviews. 2006 (2): CD005965. doi:10.1002/14651858.CD005965. PMC 6532603. PMID 16625646.
  155. ^ Omari AA, Gamble C, Garner P, et al. (Cochrane Infectious Diseases Group) (October 2005). "Artemether-lumefantrine (six-dose regimen) for treating uncomplicated falciparum malaria". The Cochrane Database of Systematic Reviews. 2005 (4): CD005564. doi:10.1002/14651858.CD005564. PMC 6532733. PMID 16235412.
  156. ^ WHO 2015, p. 9.
  157. ^ Keating GM (May 2012). "Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria". Drugs. 72 (7): 937–961. doi:10.2165/11203910-000000000-00000. PMID 22515619. S2CID 209172100.
  158. ^ Sinclair D, Zani B, Donegan S, Olliaro P, Garner P, et al. (Cochrane Infectious Diseases Group) (July 2009). "Artemisinin-based combination therapy for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 2009 (3): CD007483. doi:10.1002/14651858.CD007483.pub2. PMC 6532584. PMID 19588433.
  159. ^ Isba R, Zani B, Gathu M, Sinclair D, et al. (Cochrane Infectious Diseases Group) (February 2015). "Artemisinin-naphthoquine for treating uncomplicated Plasmodium falciparum malaria". The Cochrane Database of Systematic Reviews. 2015 (2): CD011547. doi:10.1002/14651858.CD011547. PMC 4453860. PMID 25702785.
  160. ^ Bukirwa H, Orton L, et al. (Cochrane Infectious Diseases Group) (October 2005). "Artesunate plus mefloquine versus mefloquine for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 2005 (4): CD004531. doi:10.1002/14651858.CD004531.pub2. PMC 6532646. PMID 16235367.
  161. ^ Blanshard A, Hine P (January 2021). "Atovaquone-proguanil for treating uncomplicated Plasmodium falciparum malaria". The Cochrane Database of Systematic Reviews. 1 (1): CD004529. doi:10.1002/14651858.CD004529.pub3. PMC 8094970. PMID 33459345.
  162. ^ van Eijk AM, Terlouw DJ, et al. (Cochrane Infectious Diseases Group) (February 2011). "Azithromycin for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 2011 (2): CD006688. doi:10.1002/14651858.CD006688.pub2. PMC 6532599. PMID 21328286.
  163. ^ McIntosh HM, Jones KL, et al. (Cochrane Infectious Diseases Group) (October 2005). "Chloroquine or amodiaquine combined with sulfadoxine-pyrimethamine for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 2005 (4): CD000386. doi:10.1002/14651858.CD000386.pub2. PMC 6532604. PMID 16235276.
  164. ^ Amukoye E, Winstanley PA, Watkins WM, Snow RW, Hatcher J, Mosobo M, et al. (October 1997). "Chlorproguanil-dapsone: effective treatment for uncomplicated falciparum malaria". Antimicrobial Agents and Chemotherapy. 41 (10): 2261–2264. doi:10.1128/AAC.41.10.2261. PMC 164103. PMID 9333058.
  165. ^ Bukirwa H, Garner P, Critchley J, et al. (Cochrane Infectious Diseases Group) (October 2004). "Chlorproguanil-dapsone for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 2004 (4): CD004387. doi:10.1002/14651858.CD004387.pub2. PMC 6532720. PMID 15495106.
  166. ^ Graves PM, Choi L, Gelband H, Garner P, et al. (Cochrane Infectious Diseases Group) (February 2018). "Primaquine or other 8-aminoquinolines for reducing Plasmodium falciparum transmission". The Cochrane Database of Systematic Reviews. 2018 (2): CD008152. doi:10.1002/14651858.CD008152.pub5. PMC 5815493. PMID 29393511.
  167. ^ Bukirwa H, Critchley J, et al. (Cochrane Infectious Diseases Group) (January 2006). "Sulfadoxine-pyrimethamine plus artesunate versus sulfadoxine-pyrimethamine plus amodiaquine for treating uncomplicated malaria". The Cochrane Database of Systematic Reviews. 2006 (1): CD004966. doi:10.1002/14651858.CD004966.pub2. PMC 6532706. PMID 16437507.
  168. ^ Waters NC, Edstein MD (2011). "8-Aminoquinolines: Primaquine and Tafenoquine". Treatment and Prevention of Malaria. pp. 69–94. doi:10.1007/978-3-0346-0480-2_4. ISBN 978-3-0346-0479-6.
  169. ^ Rodrigo C, Rajapakse S, Fernando D (September 2020). "Tafenoquine for preventing relapse in people with Plasmodium vivax malaria". The Cochrane Database of Systematic Reviews. 9 (9): CD010458. doi:10.1002/14651858.CD010458.pub3. PMC 8094590. PMID 32892362.
  170. ^ Markus MB (May 2023). "Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria". Tropical Medicine and Infectious Disease. 8 (5): 278. doi:10.3390/tropicalmed8050278. PMC 10223033. PMID 37235326.
  171. ^ Tarning J (March 2016). "Treatment of Malaria in Pregnancy". The New England Journal of Medicine. 374 (10): 981–982. doi:10.1056/NEJMe1601193. PMID 26962733. Archived from the original on 2023-04-26. Retrieved 2023-01-15.
  172. ^ Manyando C, Kayentao K, D'Alessandro U, Okafor HU, Juma E, Hamed K (May 2012). "A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy". Malaria Journal. 11: 141. doi:10.1186/1475-2875-11-141. PMC 3405476. PMID 22548983.
  173. ^ Orton LC, Omari AA, et al. (Cochrane Infectious Diseases Group) (October 2008). "Drugs for treating uncomplicated malaria in pregnant women". The Cochrane Database of Systematic Reviews. 2008 (4): CD004912. doi:10.1002/14651858.CD004912.pub3. PMC 6532683. PMID 18843672.
  174. ^ Kochar DK, Saxena V, Singh N, Kochar SK, Kumar SV, Das A (January 2005). "Plasmodium vivax malaria". Emerging Infectious Diseases. 11 (1): 132–134. doi:10.3201/eid1101.040519. PMC 3294370. PMID 15705338.
  175. ^ Pasvol G (2005). "The treatment of complicated and severe malaria". British Medical Bulletin. 75–76: 29–47. doi:10.1093/bmb/ldh059. PMID 16495509.
  176. ^ "CDC - Malaria - Diagnosis & Treatment (United States) - Treatment (U.S.) - Artesunate dose 400 mg oral". CDC-Centers for Disease Control and Prevention. 2022-04-11. Archived from the original on 2016-10-29. Retrieved 2022-04-25.
  177. ^ Sinclair D, Donegan S, Isba R, Lalloo DG (June 2012). Sinclair D (ed.). "Artesunate versus quinine for treating severe malaria". The Cochrane Database of Systematic Reviews. 2012 (6): CD005967. doi:10.1002/14651858.CD005967.pub4. PMC 6532684. PMID 22696354.
  178. ^ Kyu HH, Fernández E (December 2009). "Artemisinin derivatives versus quinine for cerebral malaria in African children: a systematic review". Bulletin of the World Health Organization. 87 (12): 896–904. doi:10.2471/BLT.08.060327. PMC 2789363. PMID 20454480. Archived from the original on 2016-03-04.
  179. ^ McIntosh HM, Olliaro P, et al. (Cochrane Infectious Diseases Group) (1998-07-27). "Artemisinin derivatives for treating severe malaria". The Cochrane Database of Systematic Reviews. 1998 (2): CD000527. doi:10.1002/14651858.CD000527. PMC 6532607. PMID 10796551.
  180. ^ Lesi A, Meremikwu M, et al. (Cochrane Infectious Diseases Group) (2004-07-19). "High first dose quinine regimen for treating severe malaria". The Cochrane Database of Systematic Reviews. 2004 (3): CD003341. doi:10.1002/14651858.CD003341.pub2. PMC 6532696. PMID 15266481.
  181. ^ Eisenhut M, Omari AA, et al. (Cochrane Infectious Diseases Group) (January 2009). "Intrarectal quinine versus intravenous or intramuscular quinine for treating Plasmodium falciparum malaria". The Cochrane Database of Systematic Reviews. 2009 (1): CD004009. doi:10.1002/14651858.CD004009.pub3. PMC 6532585. PMID 19160229.
  182. ^ Afolabi BB, Okoromah CN, et al. (Cochrane Infectious Diseases Group) (October 2004). "Intramuscular arteether for treating severe malaria". The Cochrane Database of Systematic Reviews. 2004 (4): CD004391. doi:10.1002/14651858.CD004391.pub2. PMC 6532577. PMID 15495107.
  183. ^ Okebe J, Eisenhut M, et al. (Cochrane Infectious Diseases Group) (May 2014). "Pre-referral rectal artesunate for severe malaria". The Cochrane Database of Systematic Reviews. 2014 (5): CD009964. doi:10.1002/14651858.CD009964.pub2. PMC 4463986. PMID 24869943.
  184. ^ De Buck E, Borra V, Carlson JN, Zideman DA, Singletary EM, Djärv T, et al. (Cochrane Metabolic and Endocrine Disorders Group) (April 2019). "First aid glucose administration routes for symptomatic hypoglycaemia". The Cochrane Database of Systematic Reviews. 2019 (4): CD013283. doi:10.1002/14651858.CD013283.pub2. PMC 6459163. PMID 30973639.
  185. ^ Idro R, Marsh K, John CC, Newton CR (October 2010). "Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome". Pediatric Research. 68 (4): 267–274. doi:10.1203/pdr.0b013e3181eee738. PMC 3056312. PMID 20606600.
  186. ^ Okoromah CA, Afolabi BB, Wall EC, et al. (Cochrane Infectious Diseases Group) (April 2011). "Mannitol and other osmotic diuretics as adjuncts for treating cerebral malaria". The Cochrane Database of Systematic Reviews. 2011 (4): CD004615. doi:10.1002/14651858.CD004615.pub3. PMC 4018680. PMID 21491391.
  187. ^ Meremikwu M, Marson AG, et al. (Cochrane Infectious Diseases Group) (2002-04-22). "Routine anticonvulsants for treating cerebral malaria". The Cochrane Database of Systematic Reviews. 2002 (2): CD002152. doi:10.1002/14651858.CD002152. PMC 6532751. PMID 12076440.
  188. ^ Prasad K, Garner P, et al. (Cochrane Infectious Diseases Group) (1999-07-26). "Steroids for treating cerebral malaria". The Cochrane Database of Systematic Reviews. 1999 (2): CD000972. doi:10.1002/14651858.CD000972. PMC 6532619. PMID 10796562.
  189. ^ A Practical Handbook (third edition) Management Of Severe Malaria. World Health Organization. 2012. pp. 43–44. ISBN 9789241548526.
  190. ^ Meremikwu M, Smith HJ, et al. (Cochrane Infectious Diseases Group) (1999-10-25). "Blood transfusion for treating malarial anaemia". The Cochrane Database of Systematic Reviews. 1999 (2): CD001475. doi:10.1002/14651858.CD001475. PMC 6532690. PMID 10796646.
  191. ^ Smith HJ, Meremikwu M, et al. (Cochrane Infectious Diseases Group) (2003-04-22). "Iron chelating agents for treating malaria". The Cochrane Database of Systematic Reviews (2): CD001474. doi:10.1002/14651858.CD001474. PMC 6532667. PMID 12804409.
  192. ^ "Lab-made antibody stops malaria". Nature Biotechnology. 40 (9): 1304. September 2022. doi:10.1038/s41587-022-01480-2. PMID 36085505. S2CID 252181345.
  193. ^ Sinha S, Medhi B, Sehgal R (2014). "Challenges of drug-resistant malaria". Parasite. 21: 61. doi:10.1051/parasite/2014059. PMC 4234044. PMID 25402734.
  194. ^ O'Brien C, Henrich PP, Passi N, Fidock DA (December 2011). "Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum". Current Opinion in Infectious Diseases. 24 (6): 570–577. doi:10.1097/QCO.0b013e32834cd3ed. PMC 3268008. PMID 22001944.
  195. ^ Fairhurst RM, Nayyar GM, Breman JG, Hallett R, Vennerstrom JL, Duong S, et al. (August 2012). "Artemisinin-resistant malaria: research challenges, opportunities, and public health implications". The American Journal of Tropical Medicine and Hygiene. 87 (2): 231–241. doi:10.4269/ajtmh.2012.12-0025. PMC 3414557. PMID 22855752.
  196. ^ White NJ (April 2008). "Qinghaosu (artemisinin): the price of success". Science. 320 (5874): 330–334. Bibcode:2008Sci...320..330W. doi:10.1126/science.1155165. PMID 18420924. S2CID 39014319.
  197. ^ Wongsrichanalai C, Meshnick SR (May 2008). "Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border". Emerging Infectious Diseases. 14 (5): 716–719. doi:10.3201/eid1405.071601. PMC 2600243. PMID 18439351.
  198. ^ Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, et al. (April 2010). "Artemisinin resistance: current status and scenarios for containment". Nature Reviews. Microbiology. 8 (4): 272–280. doi:10.1038/nrmicro2331. PMID 20208550. S2CID 39148119.
  199. ^ World Health Organization (2013). "Q&A on artemisinin resistance". WHO Malaria Publications. Archived from the original on 2016-07-20.
  200. ^ Briggs H (2014-07-30). "Call for 'radical action' on drug-resistant malaria". BBC News. Archived from the original on 2023-02-23. Retrieved 2023-02-23.
  201. ^ Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. (July 2014). "Spread of artemisinin resistance in Plasmodium falciparum malaria". The New England Journal of Medicine. 371 (5): 411–423. doi:10.1056/NEJMoa1314981. PMC 4143591. PMID 25075834.
  202. ^ Gallagher J (2019-07-23). "Resistant malaria spreading in South East Asia". Archived from the original on 2019-07-24. Retrieved 2019-07-25.
  203. ^ Orton L, Barnish G, et al. (Cochrane Infectious Diseases Group) (April 2005). "Unit-dose packaged drugs for treating malaria". The Cochrane Database of Systematic Reviews. 2005 (2): CD004614. doi:10.1002/14651858.CD004614.pub2. PMC 6532754. PMID 15846723.
  204. ^ "Frequently Asked Questions (FAQs): If I get malaria, will I have it for the rest of my life?". US Centers for Disease Control and Prevention. February 8, 2010. Archived from the original on May 13, 2012. Retrieved 2012-05-14.
  205. ^ Trampuz A, Jereb M, Muzlovic I, Prabhu RM (August 2003). "Clinical review: Severe malaria". Critical Care. 7 (4): 315–323. doi:10.1186/cc2183. PMC 270697. PMID 12930555.
  206. ^ a b c d Fernando SD, Rodrigo C, Rajapakse S (December 2010). "The 'hidden' burden of malaria: cognitive impairment following infection". Malaria Journal. 9: 366. doi:10.1186/1475-2875-9-366. PMC 3018393. PMID 21171998.
  207. ^ Riley EM, Stewart VA (February 2013). "Immune mechanisms in malaria: new insights in vaccine development". Nature Medicine. 19 (2): 168–178. doi:10.1038/nm.3083. PMID 23389617. S2CID 8763732.
  208. ^ a b Idro R, Marsh K, John CC, Newton CR (October 2010). "Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome". Pediatric Research. 68 (4): 267–274. doi:10.1203/PDR.0b013e3181eee738. PMC 3056312. PMID 20606600.
  209. ^ Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, et al. (January 2017). "The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics". The Lancet Infectious Diseases. 17 (1): 98–107. doi:10.1016/S1473-3099(16)30326-7. PMC 5392593. PMID 27777030.
  210. ^ WHO (2021). World Malaria Report 2021. Switzerland: World Health Organization. ISBN 978-92-4-004049-6. Archived from the original on 2023-05-06. Retrieved 2022-01-24.
  211. ^ "CDC - Malaria - About Malaria - History - Elimination of Malaria in the United States (1947-1951)". CDC-Centers for Disease Control and Prevention. 28 January 2019. Archived from the original on 4 May 2012. Retrieved 17 January 2020.
  212. ^ "CDC - Malaria - About Malaria - Malaria Transmission in the United States". CDC-Centers for Disease Control and Prevention. 2019-01-28. Archived from the original on 2022-07-19. Retrieved 2021-09-03.
  213. ^ Health Alert Network (HAN) (2023-06-26). "Locally Acquired Malaria Cases Identified in the United States". emergency.cdc.gov. Archived from the original on 2023-06-26. Retrieved 2023-06-27.
  214. ^ "Important Updates on Locally Acquired Malaria Cases Identified in Florida, Texas, and Maryland". Health Alert Network (HAN) - 00496. 2023-08-28. Archived from the original on 2023-08-28. Retrieved 2023-08-28.
  215. ^ Layne SP. "Principles of Infectious Disease Epidemiology" (PDF). EPI 220. UCLA Department of Epidemiology. Archived from the original (PDF) on 2006-02-20. Retrieved 2007-06-15.
  216. ^ Provost C (April 25, 2011). "World Malaria Day: Which countries are the hardest hit? Get the full data". The Guardian. Archived from the original on August 1, 2013. Retrieved 2012-05-03.
  217. ^ Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. (February 2012). "Global malaria mortality between 1980 and 2010: a systematic analysis". The Lancet. 379 (9814): 413–431. doi:10.1016/S0140-6736(12)60034-8. PMID 22305225. S2CID 46171431.
  218. ^ a b Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, et al. (February 2007). "Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project". Malaria Journal. 6 (1): 17. doi:10.1186/1475-2875-6-17. PMC 1805762. PMID 17306022.
  219. ^ Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, et al. (June 2010). I (ed.). "Estimating the global clinical burden of Plasmodium falciparum malaria in 2007". PLOS Medicine. 7 (6): e1000290. doi:10.1371/journal.pmed.1000290. PMC 2885984. PMID 20563310.
  220. ^ Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, et al. (December 2011). "A new world malaria map: Plasmodium falciparum endemicity in 2010". Malaria Journal. 10 (1): 378. doi:10.1186/1475-2875-10-378. PMC 3274487. PMID 22185615.
  221. ^ Weiss DJ, Lucas TC, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. (July 2019). "Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study". The Lancet. 394 (10195): 322–331. doi:10.1016/S0140-6736(19)31097-9. PMC 6675740. PMID 31229234.
  222. ^ Battle KE, Lucas TC, Nguyen M, Howes RE, Nandi AK, Twohig KA, et al. (July 2019). "Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000-17: a spatial and temporal modelling study". The Lancet. 394 (10195): 332–343. doi:10.1016/S0140-6736(19)31096-7. PMC 6675736. PMID 31229233.
  223. ^ Greenwood B, Mutabingwa T (February 2002). "Malaria in 2002". Nature. 415 (6872): 670–672. doi:10.1038/415670a. PMID 11832954. S2CID 4394237.
  224. ^ Jamieson A, Toovey S, Maurel M (2006). Malaria: A Traveller's Guide. Struik. p. 30. ISBN 978-1-77007-353-1.
  225. ^ Abeku TA (May 2007). "Response to malaria epidemics in Africa". Emerging Infectious Diseases. 13 (5): 681–686. doi:10.3201/eid1305.061333. PMC 2738452. PMID 17553244.
  226. ^ Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, et al. (March 2012). "Malaria in the Greater Mekong Subregion: heterogeneity and complexity". Acta Tropica. 121 (3): 227–239. doi:10.1016/j.actatropica.2011.02.016. PMC 3132579. PMID 21382335.
  227. ^ Machault V, Vignolles C, Borchi F, Vounatsou P, Pages F, Briolant S, et al. (May 2011). "The use of remotely sensed environmental data in the study of malaria". Geospatial Health. 5 (2): 151–168. doi:10.4081/gh.2011.167. PMID 21590665.
  228. ^ "Climate Change And Infectious Diseases" (PDF). Climate Change and Human Health—Risk and Responses. World Health Organization. Archived (PDF) from the original on 2016-03-04.
  229. ^ "Climate change and human health—risks and responses. Summary". www.who.int. Archived from the original on December 25, 2003. Retrieved 29 October 2018.
  230. ^ Hulme M, Doherty R, Ngara T, New M, Lister D (August 2001). "African climate change: 1900-2100" (PDF). Climate Research. 17 (2): 145–68. Bibcode:2001ClRes..17..145H. doi:10.3354/cr017145. Archived (PDF) from the original on 2021-06-30. Retrieved 2020-09-08.
  231. ^ a b Smith MW, Willis T, Alfieri L, James WH, Trigg MA, Yamazaki D, et al. (August 2020). "Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa". Nature Communications. 11 (1): 4353. Bibcode:2020NatCo..11.4353S. doi:10.1038/s41467-020-18239-5. PMC 7455692. PMID 32859908.
  232. ^ Harper K, Armelagos G (February 2010). "The changing disease-scape in the third epidemiological transition". International Journal of Environmental Research and Public Health. 7 (2): 675–697. doi:10.3390/ijerph7020675. PMC 2872288. PMID 20616997.
  233. ^ Prugnolle F, Durand P, Ollomo B, Duval L, Ariey F, Arnathau C, et al. (February 2011). Manchester M (ed.). "A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent". PLOS Pathogens. 7 (2): e1001283. doi:10.1371/journal.ppat.1001283. PMC 3044689. PMID 21383971.
  234. ^ Cox FE (October 2002). "History of human parasitology". Clinical Microbiology Reviews. 15 (4): 595–612. doi:10.1128/CMR.15.4.595-612.2002. PMC 126866. PMID 12364371.
  235. ^ [1],Sushruta: The Father of Indian Surgical History PMID 38596573 PMC11000756 DOI: 10.1097/GOX.0000000000005715
  236. ^ a b Strong RP (1944). Stitt's Diagnosis, Prevention and Treatment of Tropical Diseases (Seventh ed.). York, PA: The Blakiston Company. p. 3.
  237. ^ "DNA clues to malaria in ancient Rome". BBC News. February 20, 2001. Archived from the original on November 2, 2010., in reference to Sallares R, Gomzi S (2001). "Biomolecular archaeology of malaria". Ancient Biomolecules. 3 (3): 195–213. OCLC 538284457.
  238. ^ Sallares R (2002). Malaria and Rome: A History of Malaria in Ancient Italy. Oxford University Press. doi:10.1093/acprof:oso/9780199248506.001.0001. ISBN 978-0-19-924850-6.
  239. ^ Hays JN (2005). Epidemics and Pandemics: Their Impacts on Human History. Santa Barbara, CA: ABC-CLIO. p. 11. ISBN 978-1-85109-658-9. Archived from the original on 2023-01-13. Retrieved 2015-10-27.
  240. ^ Rodrigues PT, Valdivia HO, de Oliveira TC, Alves JM, Duarte AM, Cerutti-Junior C, et al. (January 2018). "Human migration and the spread of malaria parasites to the New World". Scientific Reports. 8 (1): 1993. Bibcode:2018NatSR...8.1993R. doi:10.1038/s41598-018-19554-0. PMC 5792595. PMID 29386521.
  241. ^ De Castro MC, Singer BH (2005). "Was malaria present in the Amazon before the European conquest? Available evidence and future research agenda". J. Archaeol. Sci. 32 (3): 337–40. Bibcode:2005JArSc..32..337D. doi:10.1016/j.jas.2004.10.004.
  242. ^ Yalcindag E, Elguero E, Arnathau C, Durand P, Akiana J, Anderson TJ, et al. (January 2012). "Multiple independent introductions of Plasmodium falciparum in South America". Proceedings of the National Academy of Sciences of the United States of America. 109 (2): 511–516. Bibcode:2012PNAS..109..511Y. doi:10.1073/pnas.1119058109. PMC 3258587. PMID 22203975.
  243. ^ "Malarial organisms in the blood". Scientific American. 46 (3). Munn & Company: 37–38. 21 January 1882.
  244. ^ "The Nobel Prize in Physiology or Medicine 1907: Alphonse Laveran". The Nobel Foundation. Archived from the original on 2012-06-23. Retrieved 2012-05-14.
  245. ^ Tan SY, Sung H (May 2008). "Carlos Juan Finlay (1833-1915): of mosquitoes and yellow fever" (PDF). Singapore Medical Journal. 49 (5): 370–371. PMID 18465043. Archived (PDF) from the original on 2008-07-23.
  246. ^ Chernin E (November 1983). "Josiah Clark Nott, insects, and yellow fever". Bulletin of the New York Academy of Medicine. 59 (9): 790–802. PMC 1911699. PMID 6140039.
  247. ^ Chernin E (September 1977). "Patrick Manson (1844-1922) and the transmission of filariasis". The American Journal of Tropical Medicine and Hygiene. 26 (5 Pt 2 Suppl): 1065–1070. doi:10.4269/ajtmh.1977.26.1065. PMID 20786.
  248. ^ a b c Cox FE (February 2010). "History of the discovery of the malaria parasites and their vectors". Parasites & Vectors. 3 (1): 5. doi:10.1186/1756-3305-3-5. PMC 2825508. PMID 20205846.
  249. ^ "Ross and the Discovery that Mosquitoes Transmit Malaria Parasites". CDC Malaria website. Archived from the original on 2007-06-02. Retrieved 2012-06-14.
  250. ^ Simmons JS (1979). Malaria in Panama. Ayer Publishing. ISBN 978-0-405-10628-6. Archived from the original on 2023-01-13. Retrieved 2015-10-27.
  251. ^ "Amico Bignami". www.whonamedit.com. Archived from the original on 30 July 2019. Retrieved 30 July 2019.
  252. ^ Kaufman TS, Rúveda EA (January 2005). "The quest for quinine: those who won the battles and those who won the war". Angewandte Chemie. 44 (6): 854–885. doi:10.1002/anie.200400663. PMID 15669029.
  253. ^ Pelletier PJ, Caventou JB (1820). "Des recherches chimiques sur les Quinquinas" [Chemical research on quinquinas]. Annales de Chimie et de Physique (in French). 15: 337–65.
  254. ^ Kyle RA, Shampe MA (July 1974). "Discoverers of quinine". JAMA. 229 (4): 462. doi:10.1001/jama.229.4.462. PMID 4600403.
  255. ^ Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. (May 2011). "Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria". Malaria Journal. 10 (1): 144. doi:10.1186/1475-2875-10-144. PMC 3121651. PMID 21609473.
  256. ^ Ekiert H, Świątkowska J, Klin P, Rzepiela A, Szopa A (July 2021). "Artemisia annua—Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications". Planta Medica. 87 (8): 584–599. doi:10.1055/a-1345-9528. PMID 33482666.
  257. ^ Timóteo P, Wessels C, Righeschi C, Goris H, Bilia A (24 August 2010). "Evaluation of stability of constituents of herbal drug preparations from Artemisia annua L". Planta Medica. 76 (12). doi:10.1055/s-0030-1264749.
  258. ^ WHO monograph on good agricultural and collection practices (GACP) for Artemisia annua L. World Health Organization. 2006. hdl:10665/43509. ISBN 978-92-4-159443-1.[page needed]
  259. ^ van der Kooy F, Sullivan SE (October 2013). "The complexity of medicinal plants: the traditional Artemisia annua formulation, current status and future perspectives". Journal of Ethnopharmacology (Review). 150 (1): 1–13. doi:10.1016/j.jep.2013.08.021. PMID 23973523.
  260. ^ Hsu E (June 2006). "Reflections on the 'discovery' of the antimalarial qinghao". British Journal of Clinical Pharmacology. 61 (6): 666–670. doi:10.1111/j.1365-2125.2006.02673.x. PMC 1885105. PMID 16722826.
  261. ^ Hao C (29 September 2011). "Lasker Award Rekindles Debate Over Artemisinin's Discovery". News: ScienceInsider. Science/AAAS. Archived from the original on 4 January 2014.
  262. ^ "Nobel Prize announcement" (PDF). NobelPrize.org. Archived (PDF) from the original on 6 October 2015. Retrieved 5 October 2015.
  263. ^ Vogel G (November 2013). "The forgotten malaria". Science. 342 (6159): 684–687. Bibcode:2013Sci...342..684V. doi:10.1126/science.342.6159.684. PMID 24202156.
  264. ^ "Eradication of Malaria in the United States (1947–1951)". US Centers for Disease Control and Prevention. February 8, 2010. Archived from the original on May 4, 2012. Retrieved 2012-05-02.
  265. ^ Killeen GF, Fillinger U, Kiche I, Gouagna LC, Knols BG (October 2002). "Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa?". The Lancet Infectious Diseases. 2 (10): 618–627. doi:10.1016/S1473-3099(02)00397-3. PMID 12383612.
  266. ^ Meade MS, Emch M (2010). Medical Geography (3rd ed.). Guilford Press. pp. 120–23. ISBN 978-1-60623-016-9. Archived from the original on 2023-01-13. Retrieved 2015-10-27.
  267. ^ Williams LL (January 1963). "Malaria eradication in the United States". American Journal of Public Health and the Nation's Health. 53 (1): 17–21. doi:10.2105/AJPH.53.1.17. PMC 1253858. PMID 14000898.
  268. ^ "Malaria Elimination Group description and list of elimination countries". Archived from the original on 27 July 2011. Retrieved 2011-07-12.
  269. ^ a b Gladwell M (July 2, 2001). "The Mosquito Killer". The New Yorker. Archived from the original on April 16, 2016. Retrieved August 20, 2014.
  270. ^ "World Malaria Report" (PDF). World Health Organization. 2009. Archived (PDF) from the original on January 12, 2010. Retrieved December 17, 2009.
  271. ^ a b Duintjer Tebbens RJ, Thompson KM (2009). "Priority Shifting and the Dynamics of Managing Eradicable Infectious Diseases". Management Science. 55 (4): 650–663. doi:10.1287/mnsc.1080.0965.
  272. ^ Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH (July 2009). "From malaria control to eradication: The WHO perspective". Tropical Medicine & International Health. 14 (7): 802–809. doi:10.1111/j.1365-3156.2009.02287.x. PMID 19497083. S2CID 31335358.
  273. ^ a b c Sadasivaiah S, Tozan Y, Breman JG (December 2007). "Dichlorodiphenyltrichloroethane (DDT) for indoor residual spraying in Africa: how can it be used for malaria control?". The American Journal of Tropical Medicine and Hygiene. 77 (6 Suppl): 249–263. doi:10.4269/ajtmh.2007.77.249. PMID 18165500.
  274. ^ a b Harrison GA (1978). Mosquitoes, Malaria, and Man: A History of the Hostilities Since 1880. Dutton. ISBN 978-0-525-16025-0. Archived from the original on October 19, 2021. Retrieved August 29, 2022.
  275. ^ a b Chapin G, Wasserstrom R (1981). "Agricultural production and malaria resurgence in Central America and India". Nature. 293 (5829): 181–185. Bibcode:1981Natur.293..181C. doi:10.1038/293181a0. PMID 7278974. S2CID 4346743.
  276. ^ van den Berg H (October 23, 2008). "Global status of DDT and its alternatives for use in vector control to prevent disease" (PDF). Stockholm Convention on Persistent Organic Pollutants/United Nations Environment Programme. Archived from the original (PDF) on December 17, 2010. Retrieved November 22, 2008.
  277. ^ Feachem RG, Sabot OJ (May 2007). "Global malaria control in the 21st century: a historic but fleeting opportunity". JAMA. 297 (20): 2281–2284. doi:10.1001/jama.297.20.2281. PMID 17519417.
  278. ^ Garrett L (1994). The Coming Plague: Newly Emerging Diseases in a World Out of Balance. Farrar, Straus and Giroux. p. 51. ISBN 978-1-4299-5327-6. Archived from the original on October 19, 2021. Retrieved August 29, 2022.
  279. ^ McNeil Jr DG (December 27, 2010). "Malaria: A Disease Close to Eradication Grows, Aided by Political Tumult in Sri Lanka". The New York Times. Archived from the original on January 4, 2017. Retrieved February 7, 2017.
  280. ^ Karunaweera ND, Galappaththy GN, Wirth DF (February 2014). "On the road to eliminate malaria in Sri Lanka: lessons from history, challenges, gaps in knowledge and research needs". Malaria Journal. 13: 59. doi:10.1186/1475-2875-13-59. PMC 3943480. PMID 24548783.
  281. ^ a b Nájera JA, González-Silva M, Alonso PL (January 2011). "Some lessons for the future from the Global Malaria Eradication Programme (1955-1969)". PLOS Medicine. 8 (1): e1000412. doi:10.1371/journal.pmed.1000412. PMC 3026700. PMID 21311585.
  282. ^ Rogan WJ, Chen A (2005). "Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT)". The Lancet. 366 (9487): 763–773. doi:10.1016/S0140-6736(05)67182-6. PMID 16125595. S2CID 3762435. Archived from the original on October 17, 2019. Retrieved June 13, 2019.
  283. ^ a b Sato S (January 2021). "Plasmodium-a brief introduction to the parasites causing human malaria and their basic biology". Journal of Physiological Anthropology. 40 (1): 1. doi:10.1186/s40101-020-00251-9. PMC 7792015. PMID 33413683.
  284. ^ Enserink M (29 March 2021). "Is setting a deadline for eradicating malaria a good idea? Scientists are divided". Science. doi:10.1126/science.aaz2906.
  285. ^ Strom S (April 1, 2011). "Mission Accomplished, Nonprofits Go Out of Business". The New York Times. OCLC 292231852. Archived from the original on December 25, 2011. Retrieved 2012-05-09.
  286. ^ "Fighting AIDS, Tuberculosis and Malaria". The Global Fund. Archived from the original on 2012-05-05. Retrieved 2012-05-09.
  287. ^ Schoofs M (July 17, 2008). "Clinton foundation sets up malaria-drug price plan". The Wall Street Journal. Archived from the original on January 19, 2016. Retrieved 2012-05-14.
  288. ^ "Executive summary and key points" (PDF). World Malaria Report 2013. World Health Organization. Archived (PDF) from the original on 4 March 2016. Retrieved 13 February 2014.
  289. ^ a b Fletcher M (16 July 2019). "Mosquito gene-editing: can it wipe out malaria?". The Telegraph.
  290. ^ Radwick D (October 5, 2016). "Can Malaria Be Eradicated?". Council on Foreign Relations. Archived from the original on October 5, 2016.
  291. ^ "Fact Sheet: World Malaria Report 2015". 9 December 2015. Archived from the original on December 17, 2015.
  292. ^ a b c d e "World Malaria Report 2020". www.who.int. Archived from the original on 2022-03-25. Retrieved 2021-05-26.
  293. ^ Chandler CI, Beisel U (4 July 2017). "The Anthropology of Malaria: Locating the Social". Medical Anthropology. 36 (5): 411–421. doi:10.1080/01459740.2017.1306858. PMID 28318308.
  294. ^ "Algeria and Argentina certified malaria-free by WHO". www.who.int. Archived from the original on 2021-11-26. Retrieved 2021-11-26.
  295. ^ Eliminating malaria: 21 countries, a common goal, World Health Organization, Wikidata Q108595589
  296. ^ From 30 million cases to zero: China is certified malaria-free by WHO, World Health Organization, 30 June 2021, Wikidata Q108595181.
  297. ^ Zeroing in on Malaria Elimination: Final report of the E-2020 initiative, World Health Organization, 21 April 2021, Wikidata Q108595714
  298. ^ Ro C (26 September 2019). "The tiny kingdom fighting an epidemic". BBC Future. Archived from the original on 2019-10-08. Retrieved 2019-09-30.
  299. ^ "WHO certifies Paraguay malaria-free". World Health Organization. 11 June 2018. Archived from the original on 15 June 2018. Retrieved 17 June 2018.
  300. ^ "WHO certifies Azerbaijan and Tajikistan as malaria-free". World Health Organization. 2023-03-29. Archived from the original on 2023-06-21. Retrieved 2023-06-22.
  301. ^ "Belize certified malaria-free by WHO". World Health Organization. 2023-06-21. Archived from the original on 2023-06-21. Retrieved 2023-06-22.
  302. ^ "Who declares Cape Verde free of malaria". World Health Organization. 2024-01-12. Archived from the original on 2024-01-12. Retrieved 2024-01-13.
  303. ^ Malaria could be eradicated by 2050, say global experts| https://www.bmj.com/content/366/bmj.l5501
  304. ^ MALARIA ERADICATION WITHIN A GENERATION| https://live-malariaeradicationcommission.pantheonsite.io/sites/default/files/overview-brief-english.pdf
  305. ^ Humphreys M (2001). Malaria: Poverty, Race, and Public Health in the United States. Johns Hopkins University Press. p. 256. ISBN 0-8018-6637-5.
  306. ^ Sachs J, Malaney P (February 2002). "The economic and social burden of malaria". Nature. 415 (6872): 680–685. doi:10.1038/415680a. PMID 11832956. S2CID 618837.
  307. ^ Roll Back Malaria WHO partnership (2003). "Economic costs of malaria" (PDF). WHO. Archived from the original (PDF) on 2009-12-29.
  308. ^ Ricci F (2012). "Social implications of malaria and their relationships with poverty". Mediterranean Journal of Hematology and Infectious Diseases. 4 (1): e2012048. doi:10.4084/MJHID.2012.048. PMC 3435125. PMID 22973492.
  309. ^ Lon CT, Tsuyuoka R, Phanouvong S, Nivanna N, Socheat D, Sokhan C, et al. (November 2006). "Counterfeit and substandard antimalarial drugs in Cambodia". Transactions of the Royal Society of Tropical Medicine and Hygiene. 100 (11): 1019–1024. doi:10.1016/j.trstmh.2006.01.003. PMID 16765399.
  310. ^ Newton PN, Fernández FM, Plançon A, Mildenhall DC, Green MD, Ziyong L, et al. (February 2008). "A collaborative epidemiological investigation into the criminal fake artesunate trade in South East Asia". PLOS Medicine. 5 (2): e32. doi:10.1371/journal.pmed.0050032. PMC 2235893. PMID 18271620.
  311. ^ Newton PN, Green MD, Fernández FM, Day NP, White NJ (September 2006). "Counterfeit anti-infective drugs". The Lancet Infectious Diseases. 6 (9): 602–613. doi:10.1016/S1473-3099(06)70581-3. PMID 16931411.
  312. ^ Parry J (May 2005). "WHO combats counterfeit malaria drugs in Asia". BMJ. 330 (7499): 1044. doi:10.1136/bmj.330.7499.1044-d. PMC 557259. PMID 15879383.
  313. ^ Gautam CS, Utreja A, Singal GL (May 2009). "Spurious and counterfeit drugs: a growing industry in the developing world". Postgraduate Medical Journal. 85 (1003): 251–256. doi:10.1136/pgmj.2008.073213. PMID 19520877. S2CID 35470138.
  314. ^ Caudron JM, Ford N, Henkens M, Macé C, Kiddle-Monroe R, Pinel J (August 2008). "Substandard medicines in resource-poor settings: a problem that can no longer be ignored". Tropical Medicine & International Health. 13 (8): 1062–1072. doi:10.1111/j.1365-3156.2008.02106.x. hdl:10144/37334. PMID 18631318.
  315. ^ Nayyar GM, Breman JG, Newton PN, Herrington J (June 2012). "Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa". The Lancet Infectious Diseases. 12 (6): 488–496. doi:10.1016/S1473-3099(12)70064-6. PMID 22632187.
  316. ^ Russell PF (2009). "Communicable diseases Malaria". Medical Department of the United States Army in World War II. U.S. Army Medical Department. Office of Medical History. Archived from the original on October 9, 2012. Retrieved 2012-09-24.
  317. ^ Melville CH (1910). "The prevention of malaria in war". In Ross R (ed.). The Prevention of Malaria. New York: E.P. Dutton. p. 577. Archived from the original on 2016-03-12.
  318. ^ Bryant BJ, Knights KM (2011). Pharmacology for Health Professionals. Elsevier Australia. p. 895. ISBN 9780729539296.
  319. ^ Bray RS (2004). Armies of Pestilence: The Effects of Pandemics on History. James Clarke. p. 102. ISBN 978-0-227-17240-7. Archived from the original on 2023-01-12. Retrieved 2015-10-27.
  320. ^ Byrne JP (2008). Encyclopedia of Pestilence, Pandemics, and Plagues: A-M. ABC-CLIO. p. 383. ISBN 978-0-313-34102-1.[permanent dead link]
  321. ^ Kakkilaya BS (April 14, 2006). "History of Malaria During Wars". Malariasite.com. Archived from the original on April 3, 2012. Retrieved 2012-05-03.
  322. ^ "History | CDC Malaria". US Centers for Disease Control and Prevention. February 8, 2010. Archived from the original on August 28, 2010. Retrieved 2012-05-15.
  323. ^ Hall BF, Fauci AS (December 2009). "Malaria control, elimination, and eradication: the role of the evolving biomedical research agenda". The Journal of Infectious Diseases. 200 (11): 1639–1643. doi:10.1086/646611. PMID 19877843.
  324. ^ "WHO | A research agenda for malaria eradication". www.who.int. Archived from the original on 2016-03-07. Retrieved 2016-03-07.
  325. ^ Kalanon M, McFadden GI (June 2010). "Malaria, Plasmodium falciparum and its apicoplast". Biochemical Society Transactions. 38 (3): 775–782. doi:10.1042/BST0380775. PMID 20491664.
  326. ^ Müller IB, Hyde JE, Wrenger C (January 2010). "Vitamin B metabolism in Plasmodium falciparum as a source of drug targets". Trends in Parasitology. 26 (1): 35–43. doi:10.1016/j.pt.2009.10.006. PMID 19939733.
  327. ^ Du Q, Wang H, Xie J (January 2011). "Thiamin (vitamin B1) biosynthesis and regulation: a rich source of antimicrobial drug targets?". International Journal of Biological Sciences. 7 (1): 41–52. doi:10.7150/ijbs.7.41. PMC 3020362. PMID 21234302.
  328. ^ Biot C, Castro W, Botté CY, Navarro M (June 2012). "The therapeutic potential of metal-based antimalarial agents: implications for the mechanism of action". Dalton Transactions. 41 (21): 6335–6349. doi:10.1039/C2DT12247B. PMID 22362072.
  329. ^ Roux C, Biot C (April 2012). "Ferrocene-based antimalarials". Future Medicinal Chemistry. 4 (6): 783–797. doi:10.4155/fmc.12.26. PMID 22530641.
  330. ^ a b John C (8 December 2014). "New malaria drug unleashes an immune system assault on infected cells". fiercebiotechresearch.com. Archived from the original on 4 April 2016. Retrieved 16 December 2014.
  331. ^ Singh R, Bhardwaj V, Purohit R (2021). "Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum". Journal of Biomolecular Structure and Dynamics. 39 (1): 348–356. doi:10.1080/07391102.2020.1711809. PMID 31903852.
  332. ^ a b c d e Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, et al. (November 2019). "Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage". Cell. 179 (5): 1112–1128.e26. doi:10.1016/j.cell.2019.10.030. PMC 6904910. PMID 31730853.
  333. ^ Roy M, Rawat A, Kaushik S, Jyoti A, Srivastava VK (August 2022). "Endogenous cysteine protease inhibitors in upmost pathogenic parasitic protozoa". Microbiological Research. 261: 127061. doi:10.1016/j.micres.2022.127061. PMID 35605309. S2CID 248741177.
  334. ^ Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. (October 2002). "Genome sequence of the human malaria parasite Plasmodium falciparum". Nature. 419 (6906): 498–511. Bibcode:2002Natur.419..498G. doi:10.1038/nature01097. PMC 3836256. PMID 12368864.
  335. ^ Malaria Genomics, Vaccine Development, and Microbiome| https://www.mdpi.com/2076-0817/12/8/1061
  336. ^ Charon J, Grigg MJ, Eden JS, Piera KA, Rana H, William T, et al. (30 December 2019). "Novel RNA viruses associated with Plasmodium vivax in human malaria and Leucocytozoon parasites in avian disease". PLOS Pathogens. 15 (12): e1008216. doi:10.1371/journal.ppat.1008216. PMC 6953888. PMID 31887217.
  337. ^ Aultman KS, Gottlieb M, Giovanni MY, Fauci AS (October 2002). "Anopheles gambiae genome: completing the malaria triad". Science. 298 (5591): 13. doi:10.1126/science.298.5591.13. PMID 12364752.
  338. ^ Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M (May 2002). "Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite". Nature. 417 (6887): 452–455. Bibcode:2002Natur.417..452I. doi:10.1038/417452a. PMID 12024215. S2CID 4376984.
  339. ^ Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. (December 2015). "Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi". Proceedings of the National Academy of Sciences of the United States of America. 112 (49): E6736–E6743. Bibcode:2015PNAS..112E6736G. doi:10.1073/pnas.1521077112. PMC 4679060. PMID 26598698.
  340. ^ "Malarial mosquitoes suppressed in experiments that mimic natural environments". 28 July 2021. Archived from the original on 21 November 2021. Retrieved 21 November 2021.
  341. ^ Flam F (4 February 2016). "Fighting Zika Virus With Genetic Engineering". Bloomberg. Archived from the original on 6 June 2016.
  342. ^ a b Griffiths EC, Fairlie-Clarke K, Allen JE, Metcalf CJ, Graham AL (December 2015). "Bottom-up regulation of malaria population dynamics in mice co-infected with lung-migratory nematodes" (PDF). Ecology Letters. 18 (12): 1387–1396. Bibcode:2015EcolL..18.1387G. doi:10.1111/ele.12534. PMID 26477454.
  343. ^ Arshad AR, Bashir I, Ijaz F, Loh N, Shukla S, Rehman UU, et al. (December 2020). "Is COVID-19 Fatality Rate Associated with Malaria Endemicity?". Discoveries. 8 (4): e120. doi:10.15190/d.2020.17. PMC 7749783. PMID 33365386.
  344. ^ Wang S, Dos-Santos AL, Huang W, Liu KC, Oshaghi MA, Wei G, et al. (September 2017). "Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria". Science. 357 (6358): 1399–1402. Bibcode:2017Sci...357.1399W. doi:10.1126/science.aan5478. PMC 9793889. PMID 28963255.
  345. ^ Servick K (28 September 2017). "The microbes in a mosquito's gut may help fight malaria". Science. doi:10.1126/science.aaq0811.
  346. ^ Huang W, Rodrigues J, Bilgo E, Tormo JR, Challenger JD, De Cozar-Gallardo C, et al. (4 August 2023). "Delftia tsuruhatensis TC1 symbiont suppresses malaria transmission by anopheline mosquitoes". Science. 381 (6657): 533–540. Bibcode:2023Sci...381..533H. doi:10.1126/science.adf8141. PMID 37535741.
  347. ^ Offord C (3 August 2023). "Microbe stops mosquitoes from harboring malaria parasite". Science. doi:10.1126/science.adk1267.
  348. ^ "Chance discovery helps fight against malaria". BBC News. 2023-08-04. Archived from the original on 2023-08-04. Retrieved 2023-08-04.
  349. ^ Foster WA (January 1995). "Mosquito sugar feeding and reproductive energetics". Annual Review of Entomology. 40 (1): 443–474. doi:10.1146/annurev.en.40.010195.002303. PMID 7810991.
  350. ^ Gu W, Müller G, Schlein Y, Novak RJ, Beier JC (January 2011). "Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential". PLOS ONE. 6 (1): e15996. Bibcode:2011PLoSO...615996G. doi:10.1371/journal.pone.0015996. PMC 3024498. PMID 21283732.
  351. ^ Hien DF, Dabiré KR, Roche B, Diabaté A, Yerbanga RS, Cohuet A, et al. (August 2016). "Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria". PLOS Pathogens. 12 (8): e1005773. doi:10.1371/journal.ppat.1005773. PMC 4973987. PMID 27490374.
  352. ^ "Facts about malaria". European Centre for Disease Prevention and Control. 9 June 2017. Archived from the original on 6 July 2021. Retrieved 16 July 2021.
  353. ^ Brasil P, Zalis MG, de Pina-Costa A, Siqueira AM, Júnior CB, Silva S, et al. (October 2017). "Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation". The Lancet Global Health. 5 (10): e1038–e1046. doi:10.1016/S2214-109X(17)30333-9. PMID 28867401.
  354. ^ Rich SM, Ayala FJ (2006). "Evolutionary Origins of Human Malaria Parasites". Malaria: Genetic and Evolutionary Aspects. pp. 125–146. doi:10.1007/0-387-28295-5_6. ISBN 978-0-387-28294-7.
  355. ^ Baird JK (September 2009). "Malaria zoonoses". Travel Medicine and Infectious Disease. 7 (5): 269–277. doi:10.1016/j.tmaid.2009.06.004. PMID 19747661.
  356. ^ Ameri M (March 2010). "Laboratory diagnosis of malaria in nonhuman primates". Veterinary Clinical Pathology. 39 (1): 5–19. doi:10.1111/j.1939-165X.2010.00217.x. PMID 20456124.
  357. ^ Mlambo G, Kumar N (November 2008). "Transgenic rodent Plasmodium berghei parasites as tools for assessment of functional immunogenicity and optimization of human malaria vaccines". Eukaryotic Cell. 7 (11): 1875–1879. doi:10.1128/EC.00242-08. PMC 2583535. PMID 18806208.
  358. ^ LaPointe DA, Atkinson CT, Samuel MD (February 2012). "Ecology and conservation biology of avian malaria". Annals of the New York Academy of Sciences. 1249 (1): 211–226. Bibcode:2012NYASA1249..211L. doi:10.1111/j.1749-6632.2011.06431.x. PMID 22320256.

Sources

Further reading

External links

Wikipedia's health care articles can be viewed offline with the Medical Wikipedia app.