stringtranslate.com

Углекислый газ

Углекислый газ — это химическое соединение с химической формулой CO2 . Он состоит из молекул , каждая из которых имеет один атом углерода , ковалентно связанный двойной связью с двумя атомами кислорода . Он находится в газообразном состоянии при комнатной температуре, и как источник доступного углерода в углеродном цикле , атмосферный CO2 является основным источником углерода для жизни на Земле. В воздухе углекислый газ прозрачен для видимого света, но поглощает инфракрасное излучение , действуя как парниковый газ . Углекислый газ растворяется в воде и содержится в грунтовых водах , озерах , ледяных шапках и морской воде . Когда углекислый газ растворяется в воде, он образует карбонат и в основном бикарбонат ( HCO3), что приводит к закислению океана по мере увеличения уровня CO 2 в атмосфере . [9]

Это следовой газ в атмосфере Земли в концентрации 421  частей на миллион (ppm) [a] , или около 0,04% (по состоянию на май 2022 года), увеличившийся с доиндустриального уровня в 280 ppm или около 0,025%. [11] [12] Сжигание ископаемого топлива является основной причиной этих повышенных концентраций CO2 , а также основной причиной изменения климата . [13]

Его концентрация в доиндустриальной атмосфере Земли с конца докембрия регулировалась организмами и геологическими явлениями. Растения , водоросли и цианобактерии используют энергию солнечного света для синтеза углеводов из углекислого газа и воды в процессе, называемом фотосинтезом , который производит кислород в качестве побочного продукта. [14] В свою очередь, кислород потребляется, а CO 2 выделяется в качестве отходов всеми аэробными организмами , когда они метаболизируют органические соединения для производства энергии путем дыхания . [15] CO 2 выделяется из органических материалов, когда они разлагаются или сгорают, например, при лесных пожарах.

Углекислый газ на 53% плотнее сухого воздуха, но он долгоживущий и тщательно перемешивается в атмосфере. Около половины избыточных выбросов CO2 в атмосферу поглощается поглотителями углерода на суше и в океане . [16] Эти поглотители могут насыщаться и быть нестабильными, поскольку распад и лесные пожары приводят к тому, что CO2 выбрасывается обратно в атмосферу. [17] CO2 в конечном итоге изолируется (хранится в течение длительного времени) в горных породах и органических отложениях, таких как уголь , нефть и природный газ . Изолированный CO2 выбрасывается в атмосферу при сжигании ископаемого топлива или естественным образом вулканами , горячими источниками , гейзерами и при растворении карбонатных пород в воде или в реакции с кислотами.

CO 2 — универсальный промышленный материал, используемый, например, в качестве инертного газа при сварке и огнетушителях , в качестве нагнетательного газа в пневматических пушках и при добыче нефти, а также в качестве сверхкритического флюидного растворителя при декофеинизации и сверхкритической сушке . [18] Он является побочным продуктом ферментации сахаров в хлебопечении , пивоварении и виноделии и добавляется в газированные напитки, такие как сельтерская вода и пиво, для шипучести. Он имеет резкий и кислый запах и создает привкус газированной воды во рту, но при обычных концентрациях не имеет запаха. [1]

Химические и физические свойства

Углекислый газ не может быть сжижен при атмосферном давлении. Низкотемпературный углекислый газ используется в коммерческих целях в твердой форме, обычно известной как « сухой лед ». Фазовый переход из твердого состояния в газообразное происходит при 194,7 Кельвина и называется сублимацией .

Структура, связь и молекулярные колебания

Симметрия молекулы диоксида углерода линейна и центросимметрична в ее равновесной геометрии. Длина связи углерод-кислород в диоксиде углерода составляет 116,3  пм , что заметно короче, чем длина типичной одинарной связи C–O, составляющая примерно 140 пм, и короче, чем у большинства других функциональных групп с множественными связями C–O, таких как карбонилы . [19] Поскольку молекула центросимметрична, она не имеет электрического дипольного момента .

Растяжение и изгибные колебания молекулы CO 2. Вверху слева: симметричное растяжение. Вверху справа: антисимметричное растяжение. Нижняя линия: вырожденная пара изгибных мод.

Как линейная трехатомная молекула, CO2 имеет четыре колебательных режима , как показано на схеме. В симметричных и антисимметричных режимах растяжения атомы движутся вдоль оси молекулы. Существуют два изгибных режима, которые являются вырожденными , что означает, что они имеют одинаковую частоту и одинаковую энергию из-за симметрии молекулы. Когда молекула касается поверхности или касается другой молекулы, два изгибных режима могут отличаться по частоте, поскольку взаимодействие для двух режимов различно. Некоторые из колебательных режимов наблюдаются в инфракрасном (ИК) спектре : антисимметричный режим растяжения при волновом числе 2349 см −1 (длина волны 4,25 мкм) и вырожденная пара изгибных режимов при 667 см −1 (длина волны 15 мкм). Симметричная мода растяжения не создает электрический диполь, поэтому не наблюдается в ИК-спектроскопии, но обнаруживается в рамановской спектроскопии при 1388 см −1 (длина волны 7,2 мкм). [20]

В газовой фазе молекулы углекислого газа совершают значительные колебательные движения и не сохраняют фиксированную структуру. Однако в эксперименте по визуализации кулоновского взрыва можно получить мгновенное изображение молекулярной структуры. Такой эксперимент [21] был проведен для углекислого газа. Результат этого эксперимента и вывод теоретических расчетов [22], основанных на ab initio поверхности потенциальной энергии молекулы, заключается в том, что ни одна из молекул в газовой фазе никогда не является точно линейной. Этот противоречащий интуиции результат тривиально обусловлен тем фактом, что элемент объема ядерного движения исчезает для линейных геометрий. [22] Это так для всех молекул, за исключением двухатомных молекул .

В водном растворе

Углекислый газ растворяется в воде, где он обратимо образует H2CO3 ( угольную кислоту ), которая является слабой кислотой , поскольку ее ионизация в воде неполная.

CO2 + H2OH2CO3

Константа равновесия гидратации угольной кислоты при 25 °C составляет:

Таким образом, большая часть углекислого газа не преобразуется в угольную кислоту, а остается в виде молекул CO2 , не влияя на pH.

Относительные концентрации CO 2 , H 2 CO 3 и депротонированных форм HCO3( бикарбонат ) и CO2−3( карбонат ) зависят от pH . Как показано на графике Бьеррума , в нейтральной или слабощелочной воде (pH > 6,5) преобладает форма бикарбоната (>50%), становясь наиболее распространенной (>95%) при pH морской воды. В очень щелочной воде (pH > 10,4) преобладающей (>50%) формой является карбонат. Океаны, будучи слабощелочными с типичным pH = 8,2–8,5, содержат около 120 мг бикарбоната на литр.

Будучи дипротонной , угольная кислота имеет две константы кислотной диссоциации , первая из которых относится к диссоциации на ион бикарбоната (также называемый гидрокарбонатом) ( HCO3):

Н2СО3 ⇌ НСО3+ Н +
K a1 = 2,5 × 10 −4 моль/л; p K a1 = 3,6 при 25 °С. [19]

Это истинная константа диссоциации первой кислоты, определяемая как

где знаменатель включает только ковалентно связанный H 2 CO 3 и не включает гидратированный CO 2 (водн.). Гораздо меньшее и часто цитируемое значение около 4,16 × 10 −7 (или pK a1 = 6,38) является кажущимся значением, рассчитанным на основе (неверного) предположения, что весь растворенный CO 2 присутствует в виде угольной кислоты, так что

Поскольку большая часть растворенного CO 2 остается в виде молекул CO 2 , K a1 (кажущийся) имеет гораздо больший знаменатель и гораздо меньшее значение, чем истинный K a1 . [23]

Бикарбонатный ион является амфотерным видом, который может действовать как кислота или как основание, в зависимости от pH раствора. При высоком pH он значительно диссоциирует в карбонатный ион ( CO2−3):

ХКО3⇌ КО2−3+ Н +
К а2 = 4,69 × 10–11 моль /л; р К а2 = 10,329


В организмах образование угольной кислоты катализируется ферментом, известным как карбоангидраза .

Помимо изменения кислотности, присутствие углекислого газа в воде также влияет на ее электрические свойства.

Электропроводность опресненной воды, насыщенной углекислым газом, при нагревании от 20 до 98 °C. Затененные области указывают на погрешности, связанные с измерениями. Данные на github. Сравнение с температурной зависимостью сбрасываемой опресненной воды можно найти здесь.

При растворении углекислого газа в опресненной воде электропроводность значительно увеличивается от менее 1 мкСм/см до почти 30 мкСм/см. При нагревании вода начинает постепенно терять проводимость, вызванную присутствием , что особенно заметно при температурах выше 30 °C.

Температурная зависимость электропроводности полностью деионизированной воды без насыщения сравнительно низкая по сравнению с этими данными.

Химические реакции

CO 2 является мощным электрофилом, имеющим электрофильную реакционную способность, сравнимую с бензальдегидом или сильно электрофильными α,β-ненасыщенными карбонильными соединениями . Однако, в отличие от электрофилов с аналогичной реакционной способностью, реакции нуклеофилов с CO 2 термодинамически менее предпочтительны и часто оказываются весьма обратимыми. [24] Обратимая реакция диоксида углерода с аминами для получения карбаматов используется в скрубберах CO 2 и была предложена в качестве возможной отправной точки для улавливания и хранения углерода путем очистки газа аминами . Только очень сильные нуклеофилы, такие как карбанионы, предоставляемые реагентами Гриньяра и литийорганическими соединениями, реагируют с CO 2 с образованием карбоксилатов :

МР + СО2РСО2М
где M = Li или MgBr и R = алкил или арил .

В комплексах металлов с диоксидом углерода CO 2 служит лигандом , который может способствовать превращению CO 2 в другие химические вещества. [25]

Восстановление CO2 до CO обычно представляет собой сложную и медленную реакцию:

CO 2 + 2 е + 2 H + → CO + H 2 O

Окислительно-восстановительный потенциал этой реакции около pH 7 составляет около −0,53 В по сравнению со стандартным водородным электродом . Никельсодержащий фермент дегидрогеназа оксида углерода катализирует этот процесс. [26]

Фотоавтотрофы (т.е. растения и цианобактерии ) используют энергию, содержащуюся в солнечном свете, для фотосинтеза простых сахаров из CO2 , поглощенного из воздуха и воды:

n CO 2 + n H 2 O → (CH 2 O) n + n O 2

Физические свойства

Гранулы «сухого льда», распространенная форма твердого диоксида углерода.

Углекислый газ бесцветен. При низких концентрациях газ не имеет запаха; однако при достаточно высоких концентрациях он имеет резкий, кислый запах. [1] При стандартной температуре и давлении плотность углекислого газа составляет около 1,98 кг/м3 , что примерно в 1,53 раза больше плотности воздуха . [27]

Углекислый газ не имеет жидкого состояния при давлении ниже 0,51795(10) МПа [2] (5,11177(99) атм ). При давлении 1 атм (0,101325 МПа) газ осаждается непосредственно в твердое вещество при температуре ниже 194,6855(30) К [2] (−78,4645(30) °C), а твердое вещество сублимируется непосредственно в газ выше этой температуры. В твердом состоянии углекислый газ обычно называют сухим льдом .

Фазовая диаграмма давление-температура углекислого газа. Обратите внимание, что это логарифмическая линейная диаграмма.

Жидкий диоксид углерода образуется только при давлениях выше 0,51795(10) МПа [2] (5,11177(99) атм); тройная точка диоксида углерода составляет 216,592(3) К [2] (−56,558(3) °C) при 0,51795(10) МПа [2] (5,11177(99) атм) (см. фазовую диаграмму). Критическая точка составляет 304,128(15) К [2] (30,978(15) °C) при 7,3773(30) МПа [2] (72,808(30) атм). Другая форма твердого диоксида углерода, наблюдаемая при высоком давлении, — аморфное стеклообразное твердое вещество. [28] Эта форма стекла, называемая карбония , производится путем переохлаждения нагретого CO2 при экстремальных давлениях (40–48  ГПа , или около 400 000 атмосфер) в алмазной наковальне . Это открытие подтвердило теорию о том, что диоксид углерода может существовать в стеклянном состоянии, подобно другим членам его элементарного семейства, таким как диоксид кремния (силикатное стекло) и диоксид германия . Однако, в отличие от силикатных и германиевых стекол, карбония нестабильна при нормальном давлении и возвращается в газообразное состояние при сбросе давления.

При температурах и давлениях выше критической точки углекислый газ ведет себя как сверхкритическая жидкость, известная как сверхкритический углекислый газ .

Таблица теплофизических свойств насыщенного жидкого диоксида углерода: [29] [30]

Таблица тепловых и физических свойств диоксида углерода (CO 2 ) при атмосферном давлении: [29] [30]

Биологическая роль

Углекислый газ является конечным продуктом клеточного дыхания в организмах, которые получают энергию путем расщепления сахаров, жиров и аминокислот с помощью кислорода как части своего метаболизма . Сюда входят все растения, водоросли и животные, а также аэробные грибы и бактерии. У позвоночных углекислый газ перемещается в крови из тканей тела в кожу (например, амфибии ) или жабры (например, рыбы ), откуда он растворяется в воде, или в легкие, откуда он выдыхается. Во время активного фотосинтеза растения могут поглощать больше углекислого газа из атмосферы, чем они выделяют при дыхании.

Фотосинтез и фиксация углерода

Обзор цикла Кальвина и фиксации углерода

Фиксация углерода — это биохимический процесс, при котором атмосферный углекислый газ включается растениями, водорослями и цианобактериями в богатые энергией органические молекулы, такие как глюкоза , таким образом создавая свою собственную пищу посредством фотосинтеза. Фотосинтез использует углекислый газ и воду для производства сахаров, из которых могут быть построены другие органические соединения , а кислород производится как побочный продукт.

Рибулозо-1,5-бисфосфаткарбоксилаза оксигеназа , обычно сокращенно называемая RuBisCO, представляет собой фермент, участвующий в первом важном этапе фиксации углерода — образовании двух молекул 3-фосфоглицерата из CO2 и рибулозобисфосфата , как показано на схеме слева.

Считается, что RuBisCO является самым распространенным белком на Земле. [31]

Фототрофы используют продукты своего фотосинтеза в качестве внутренних источников пищи и в качестве сырья для биосинтеза более сложных органических молекул, таких как полисахариды , нуклеиновые кислоты и белки. Они используются для их собственного роста, а также в качестве основы пищевых цепей и сетей, которые питают другие организмы, включая животных, таких как мы. Некоторые важные фототрофы, кокколитофориды, синтезируют твердые чешуйки карбоната кальция . [32] Глобально значимым видом кокколитофорид является Emiliania huxleyi , чьи кальцитовые чешуйки сформировали основу многих осадочных пород, таких как известняк , где то, что ранее было атмосферным углеродом, может оставаться фиксированным в течение геологических временных масштабов.

Обзор фотосинтеза и дыхания. Углекислый газ (справа) вместе с водой образуют кислород и органические соединения (слева) в процессе фотосинтеза (зеленый), которые могут быть преобразованы в дыхание (красный) в воду и CO2 .

Растения могут расти на 50% быстрее при концентрации 1000 ppm CO 2 по сравнению с условиями окружающей среды, хотя это не предполагает никаких изменений климата и ограничений на другие питательные вещества. [33] Повышенные уровни CO 2 вызывают ускоренный рост, что отражается на урожайности сельскохозяйственных культур: пшеница, рис и соя показывают увеличение урожайности на 12–14% при повышенном уровне CO 2 в экспериментах FACE. [34] [35]

Повышенная концентрация CO2 в атмосфере приводит к уменьшению количества устьиц, развивающихся на растениях [36] , что приводит к снижению потребления воды и повышению эффективности ее использования . [37] Исследования с использованием FACE показали, что обогащение CO2 приводит к снижению концентрации микроэлементов в сельскохозяйственных культурах. [38] Это может иметь косвенные последствия для других частей экосистем , поскольку травоядным животным нужно будет потреблять больше пищи, чтобы получить то же количество белка. [39]

Концентрация вторичных метаболитов, таких как фенилпропаноиды и флавоноиды, также может изменяться в растениях, подвергающихся воздействию высоких концентраций CO 2 . [40] [41]

Растения также выделяют CO2 во время дыхания, и поэтому большинство растений и водорослей, которые используют фотосинтез C3 , являются только чистыми поглотителями в течение дня. Хотя растущий лес будет поглощать много тонн CO2 каждый год, зрелый лес будет производить столько же CO2 от дыхания и разложения мертвых образцов (например, упавших ветвей), сколько используется в фотосинтезе растущими растениями. [42] Вопреки давнему мнению, что они углеродно-нейтральны, зрелые леса могут продолжать накапливать углерод [43] и оставаться ценными поглотителями углерода , помогая поддерживать углеродный баланс атмосферы Земли. Кроме того, и что крайне важно для жизни на Земле, фотосинтез фитопланктона потребляет растворенный CO2 в верхних слоях океана и тем самым способствует поглощению CO2 из атмосферы. [44]

Токсичность

Симптомы отравления углекислым газом, проявляющиеся в увеличении объемного процента в воздухе [45]

Содержание углекислого газа в свежем воздухе (усредненное между уровнем моря и уровнем 10 кПа, т.е. около 30 км (19 миль) над уровнем моря) варьируется от 0,036% (360 частей на миллион) до 0,041% (412 частей на миллион) в зависимости от местоположения. [46]

CO 2 является удушающим газом и не классифицируется как токсичный или вредный в соответствии со стандартами Глобальной гармонизированной системы классификации и маркировки химических веществ Европейской экономической комиссии Организации Объединенных Наций с использованием Руководящих принципов ОЭСР по испытанию химических веществ . В концентрациях до 1% (10 000 ppm) он вызывает у некоторых людей сонливость и ощущение заложенности легких. [45] Концентрации от 7% до 10% (от 70 000 до 100 000 ppm) могут вызвать удушье даже при наличии достаточного количества кислорода, проявляющееся в виде головокружения, головной боли, нарушения зрения и слуха и потери сознания в течение нескольких минут или часа. [47] Физиологические эффекты острого воздействия углекислого газа объединены под термином гиперкапния , подвидом асфиксии .

Поскольку он тяжелее воздуха, в местах, где газ просачивается из-под земли (из-за подземной вулканической или геотермальной активности) в относительно высоких концентрациях, без рассеивающего воздействия ветра, он может собираться в защищенных/карманных местах ниже среднего уровня земли, в результате чего находящиеся там животные задыхаются. Питающиеся падалью животные, привлеченные тушами, затем также погибают. Дети были убиты таким же образом недалеко от города Гома выбросами CO2 из близлежащего вулкана Ньирагонго . [48] Суахилийское название этого явления — mazuku .

Повышение уровня CO2 представляло угрозу для астронавтов «Аполлона-13» , которым пришлось адаптировать картриджи из командного модуля для подачи углекислого газа в очиститель углекислого газа в лунном модуле «Аполлона» , который они использовали в качестве спасательной шлюпки.

Адаптация к повышенным концентрациям CO 2 происходит у людей, включая изменение дыхания и выработку бикарбоната почками, чтобы сбалансировать эффекты закисления крови ( ацидоз ). Несколько исследований показали, что 2,0-процентные вдыхаемые концентрации могут использоваться для закрытых воздушных пространств (например, подводной лодки ), поскольку адаптация является физиологической и обратимой, поскольку ухудшение работоспособности или нормальной физической активности не происходит при этом уровне воздействия в течение пяти дней. [49] [50] Тем не менее, другие исследования показывают снижение когнитивной функции даже при гораздо более низких уровнях. [51] [52] Кроме того, при продолжающемся респираторном ацидозе адаптационные или компенсаторные механизмы не смогут обратить это состояние вспять.

Менее 1%

Существует несколько исследований о влиянии на здоровье долгосрочного непрерывного воздействия CO 2 на людей и животных при уровнях ниже 1%. Пределы профессионального воздействия CO 2 были установлены в Соединенных Штатах на уровне 0,5% (5000 ppm) в течение восьмичасового периода. [53] При этой концентрации CO 2 экипаж Международной космической станции испытывал головные боли, летаргию, умственную заторможенность, эмоциональное раздражение и нарушение сна. [54] Исследования на животных при 0,5% CO 2 продемонстрировали кальцификацию почек и потерю костной массы после восьми недель воздействия. [55] Исследование людей, подвергавшихся воздействию в течение 2,5-часовых сеансов, продемонстрировало значительные негативные эффекты на когнитивные способности при концентрациях всего 0,1% (1000  ppm) CO 2 , вероятно, из-за вызванного CO 2 увеличения мозгового кровотока. [51] Другое исследование наблюдало снижение уровня базовой активности и использования информации при 1000 ppm по сравнению с 500 ppm. [52]

Однако обзор литературы показал, что надежная подгруппа исследований феномена углекислого газа, вызывающего когнитивные нарушения, показала лишь небольшое влияние на принятие решений высокого уровня (для концентраций ниже 5000 ppm). Большинство исследований были озадачены неадекватными планами исследований, комфортом окружающей среды, неопределенностями в дозах воздействия и различными используемыми когнитивными оценками. [56] Аналогичным образом исследование эффектов концентрации CO 2 в мотоциклетных шлемах подверглось критике за сомнительную методологию, заключающуюся в том, что оно не учитывало самоотчеты мотоциклистов и проводило измерения с использованием манекенов. Кроме того, когда достигались нормальные условия езды на мотоцикле (например, скорость на шоссе или в городе) или поднимался козырек, концентрация CO 2 снижалась до безопасного уровня (0,2%). [57] [58]

Вентиляция

Датчик углекислого газа , измеряющий концентрацию CO2 с помощью недисперсионного инфракрасного датчика.

Плохая вентиляция является одной из основных причин чрезмерной концентрации CO2 в закрытых помещениях, что приводит к плохому качеству воздуха в помещении . Разница в концентрации углекислого газа над наружной концентрацией в условиях устойчивого состояния (когда пребывание и работа системы вентиляции достаточно длительны, чтобы концентрация CO2 стабилизировалась ) иногда используется для оценки скорости вентиляции на человека. [60] Более высокие концентрации CO2 связаны со здоровьем, комфортом и ухудшением производительности пользователей. [61] [62] Стандарт ASHRAE 62.1–2007 может привести к концентрации в помещении до 2100 ppm выше условий окружающей среды на открытом воздухе. Таким образом, если наружная концентрация составляет 400 ppm, концентрация в помещении может достичь 2500 ppm при скорости вентиляции, которая соответствует этому отраслевому консенсусному стандарту. Концентрации в плохо вентилируемых помещениях могут быть даже выше этой (диапазон 3000 или 4000 ppm).

Шахтеры, которые особенно уязвимы к воздействию газа из-за недостаточной вентиляции, называли смеси углекислого газа и азота « черной гнилью », «удушливой гнилью» или «удушливым дымом». До того, как были разработаны более эффективные технологии, шахтеры часто следили за опасными уровнями черной гнилости и других газов в шахтных стволах, принося с собой во время работы канарейку в клетке . Канарейка более чувствительна к удушающим газам, чем люди, и, теряя сознание, прекращала петь и падала со своего насеста. Лампа Дэви также могла обнаруживать высокие уровни черной гнилости (которая опускается и собирается у пола), горя менее ярко, в то время как метан , другой удушающий газ и взрывоопасный газ, заставлял лампу гореть ярче.

В феврале 2020 года три человека погибли от удушья на вечеринке в Москве, когда в бассейн добавили сухой лед (замороженный CO2) для его охлаждения. [ 63] Похожая авария произошла в 2018 году, когда женщина погибла от паров CO2 , исходивших от большого количества сухого льда, который она перевозила в своей машине. [64]

Воздух в помещении

Люди проводят все больше времени в замкнутой атмосфере (около 80-90% времени в здании или транспортном средстве). По данным Французского агентства по продовольствию, окружающей среде и охране труда (ANSES) и различных субъектов во Франции, уровень CO 2 в воздухе внутри зданий (связанный с пребыванием людей или животных и наличием установок для сжигания ), взвешенный по обновлению воздуха, «обычно составляет от 350 до 2500 ppm». [65]

В домах, школах, детских садах и офисах нет систематических связей между уровнями CO 2 и другими загрязняющими веществами, а внутренний CO 2 статистически не является хорошим предиктором загрязняющих веществ, связанных с уличным дорожным (или воздушным и т. д.) движением. [66] CO 2 является параметром, который изменяется быстрее всего (с учетом гигрометрии и уровня кислорода, когда люди или животные собираются в закрытом или плохо проветриваемом помещении). В бедных странах многие открытые очаги являются источниками CO 2 и CO, выбрасываемых непосредственно в жилую среду. [67]

Открытые территории с повышенными концентрациями

Локальные концентрации углекислого газа могут достигать высоких значений вблизи мощных источников, особенно тех, которые изолированы окружающей местностью. В горячем источнике Боссолето около Раполано-Терме в Тоскане , Италия, расположенном в чашеобразной впадине диаметром около 100 м (330 футов), концентрация CO 2 за ночь поднимается до более чем 75%, что достаточно для уничтожения насекомых и мелких животных. После восхода солнца газ рассеивается конвекцией. [68] Высокие концентрации CO 2, образующиеся в результате возмущения глубокой озерной воды, насыщенной CO 2 , как полагают, стали причиной 37 смертельных случаев в озере Монун , Камерун, в 1984 году и 1700 жертв в озере Ниос , Камерун, в 1986 году. [69]

Физиология человека

Содержание

Организм человека вырабатывает около 2,3 фунта (1,0 кг) углекислого газа в день [71] , что содержит 0,63 фунта (290 г) углерода.У людей этот углекислый газ переносится через венозную систему и выдыхается через легкие, что приводит к снижению его концентрации в артериях . Содержание углекислого газа в крови часто указывается как парциальное давление , которое представляет собой давление, которое имел бы углекислый газ, если бы он один занимал объем. [72] У людей содержание углекислого газа в крови показано в соседней таблице.

Транспорт в крови

CO 2 переносится в крови тремя различными способами. Точные проценты варьируются между артериальной и венозной кровью.

CO 2 + H 2 O → H 2 CO 3 → H + + HCO3

Гемоглобин , основная молекула, переносящая кислород в эритроцитах , переносит как кислород, так и углекислый газ. Однако CO2, связанный с гемоглобином, не связывается с тем же местом, что и кислород. Вместо этого он объединяется с N-концевыми группами на четырех цепях глобина. Однако из-за аллостерических эффектов на молекулу гемоглобина связывание CO2 уменьшает количество кислорода, которое связывается при данном парциальном давлении кислорода. Это известно как эффект Холдейна и важно для транспортировки углекислого газа из тканей в легкие. И наоборот, повышение парциального давления CO2 или более низкий pH вызовут разгрузку кислорода из гемоглобина, что известно как эффект Бора .

Регуляция дыхания

Углекислый газ является одним из медиаторов локальной ауторегуляции кровоснабжения. Если его концентрация высока, капилляры расширяются, чтобы обеспечить больший приток крови к этой ткани. [74]

Ионы бикарбоната имеют решающее значение для регулирования pH крови. Частота дыхания человека влияет на уровень CO2 в его крови. Слишком медленное или поверхностное дыхание вызывает респираторный ацидоз , в то время как слишком быстрое дыхание приводит к гипервентиляции , которая может вызвать респираторный алкалоз . [75]

Хотя организму требуется кислород для метаболизма, низкий уровень кислорода обычно не стимулирует дыхание. Скорее, дыхание стимулируется более высоким уровнем углекислого газа. В результате вдыхание воздуха низкого давления или газовой смеси без кислорода (например, чистого азота) может привести к потере сознания без ощущения кислородного голодания . Это особенно опасно для летчиков-истребителей на большой высоте. Именно поэтому бортпроводники инструктируют пассажиров, в случае потери давления в салоне, сначала надеть кислородную маску на себя, прежде чем помогать другим; в противном случае можно потерять сознание. [73]

Дыхательные центры пытаются поддерживать артериальное давление CO2 на уровне 40  мм рт. ст . При преднамеренной гипервентиляции содержание CO2 в артериальной крови может быть снижено до 10–20 мм рт. ст. (содержание кислорода в крови мало затронуто), а дыхательный двигатель ослаблен. Вот почему после гипервентиляции можно задерживать дыхание дольше, чем без нее. Это несет риск того, что потеря сознания может произойти до того, как потребность в дыхании станет непреодолимой, поэтому гипервентиляция особенно опасна перед фридайвингом. [76]

Концентрации и роль в окружающей среде

Атмосфера

Концентрация CO 2 в атмосфере , измеренная в обсерватории Мауна-Лоа на Гавайях с 1958 по 2023 год (также называется кривой Килинга ). Рост CO 2 за этот период времени отчетливо виден. Концентрация выражается в мкмоль на моль, или ppm .

В атмосфере Земли углекислый газ является следовым газом , который играет неотъемлемую роль в парниковом эффекте , углеродном цикле , фотосинтезе и океаническом углеродном цикле . Это один из трех основных парниковых газов в атмосфере Земли . Водяной пар является основным парниковым газом , по состоянию на 2010 год, внося 50% парникового эффекта, за ним следует углекислый газ с 20%. [77] Текущая глобальная средняя концентрация углекислого газа (CO2 ) в атмосфере составляет 421 ppm (0,04%) по состоянию на май 2022 года. [78] Это увеличение на 50% с начала промышленной революции , по сравнению с 280 ppm в течение 10 000 лет до середины 18 века. [79] [78] [80] Увеличение обусловлено деятельностью человека . [81]

По состоянию на март 2024 года среднемесячная концентрация CO 2 достигла нового рекордного максимума в 425,22 частей на миллион (ppm), что на 4,7 ppm больше, чем в марте 2023 года. Согласно последним измерениям, уровни еще больше возросли до 427,48 ppm. [82] Этот непрерывный рост концентрации CO 2 является явным индикатором продолжающегося глобального экологического стресса, в первую очередь обусловленного сжиганием ископаемого топлива , что является основной причиной этого роста, а также основным фактором изменения климата . [83] Другие важные виды деятельности человека, которые приводят к выбросам CO 2 , включают производство цемента , вырубку лесов и сжигание биомассы .

Углекислый газ является парниковым газом. Он поглощает и испускает инфракрасное излучение на своих двух инфракрасно-активных колебательных частотах. Две длины волн составляют 4,26  мкм (2347 см −1 ) (асимметричная растягивающая колебательная мода ) и 14,99 мкм (667 см −1 ) (изгибная колебательная мода). CO2 играет важную роль в воздействии на температуру поверхности Земли посредством парникового эффекта. [84] Излучение света с поверхности Земли наиболее интенсивно в инфракрасном диапазоне между 200 и 2500 см −1 , [85] в отличие от излучения света от гораздо более горячего Солнца , которое наиболее интенсивно в видимом диапазоне. Поглощение инфракрасного света на колебательных частотах атмосферного CO2 задерживает энергию вблизи поверхности, нагревая поверхность Земли и ее нижнюю атмосферу. Меньше энергии достигает верхней атмосферы, которая, следовательно, холоднее из-за этого поглощения. [86]

Увеличение концентрации CO 2 и других долгоживущих парниковых газов, таких как метан, в атмосфере увеличивает поглощение и испускание инфракрасного излучения атмосферой. Это привело к повышению средней глобальной температуры и закислению океана . Другим прямым эффектом является эффект удобрения CO 2 . Увеличение концентрации CO 2 в атмосфере вызывает ряд дополнительных последствий изменения климата для окружающей среды и условий жизни человека.

Современная концентрация CO 2 в атмосфере является самой высокой за 14 миллионов лет. [87] Концентрация CO 2 в атмосфере достигала 4000 ppm в кембрийский период около 500 миллионов лет назад и всего 180 ppm во время четвертичного оледенения последних двух миллионов лет. [79] Реконструированные температурные записи за последние 420 миллионов лет показывают, что концентрация CO 2 в атмосфере достигла пика примерно в 2000 ppm. Этот пик произошел в девонский период (400 миллионов лет назад). Другой пик произошел в триасовый период (220–200 миллионов лет назад). [88]
Ежегодные потоки CO 2 из антропогенных источников (слева) в атмосферу Земли, сушу и океанские стоки (справа) с 1960-х годов. Единицы в эквивалентных гигатоннах углерода в год. [89]

Океаны

Закисление океана

Углекислый газ растворяется в океане, образуя угольную кислоту ( H2CO3 ) , бикарбонат ( HCO3) и карбонат ( CO2−3). В океанах растворено примерно в пятьдесят раз больше углекислого газа, чем в атмосфере. Океаны действуют как огромный поглотитель углерода и поглощают около трети CO 2 , выбрасываемого в результате деятельности человека. [90]

Закисление океана — это продолжающееся снижение pH океана Земли . В период с 1950 по 2020 год средний pH поверхности океана снизился примерно с 8,15 до 8,05. [91] Выбросы углекислого газа в результате деятельности человека являются основной причиной закисления океана, при этом уровень углекислого газа (CO2) в атмосфере превышает 422 ppm ( по состоянию на 2024 год ). [92] CO2 из атмосферы поглощается океанами. В результате этой химической реакции образуется угольная кислота ( H2CO3 ), которая диссоциирует на ион бикарбоната ( HCO3) и ион водорода ( H + ). Присутствие свободных ионов водорода ( H + ) снижает pH океана, увеличивая кислотность (это не означает, что морская вода уже кислая; она все еще щелочная , с pH выше 8). Морские кальцифицирующие организмы , такие как моллюски и кораллы , особенно уязвимы, поскольку они используют карбонат кальция для построения раковин и скелетов. [93]

Изменение pH на 0,1 представляет собой 26%-ное увеличение концентрации ионов водорода в мировых океанах (шкала pH является логарифмической, поэтому изменение единицы pH на единицу эквивалентно десятикратному изменению концентрации ионов водорода). Уровень pH морской поверхности и насыщенность карбонатами различаются в зависимости от глубины и местоположения океана. Более холодные и высокоширотные воды способны поглощать больше CO2 . Это может привести к повышению кислотности, снижению уровней pH и насыщенности карбонатами в этих областях. Существует несколько других факторов, которые влияют на обмен CO2 между атмосферой и океаном и , таким образом, на локальное закисление океана. К ним относятся океанские течения и зоны апвеллинга , близость к крупным континентальным рекам, покрытие морского льда и атмосферный обмен азотом и серой от сжигания ископаемого топлива и сельского хозяйства . [94] [95] [96]
Раковина птерапода растворилась в морской воде, скорректированной в соответствии с прогнозируемым химическим составом океана к 2100 году

Изменения в химии океана могут иметь обширные прямые и косвенные эффекты на организмы и их среду обитания. Одно из самых важных последствий повышения кислотности океана связано с образованием раковин из карбоната кальция ( CaCO 3 ). [93] Этот процесс называется кальцификацией и важен для биологии и выживания широкого спектра морских организмов. Кальцификация включает осаждение растворенных ионов в твердые структуры CaCO 3 , структуры для многих морских организмов, таких как кокколитофориды , фораминиферы , ракообразные , моллюски и т. д. После того, как они сформированы, эти структуры CaCO 3 уязвимы для растворения , если окружающая морская вода не содержит насыщающих концентраций карбонатных ионов ( CO2−3).

Очень мало дополнительного углекислого газа, который добавляется в океан, остается в виде растворенного углекислого газа. Большая часть распадается на дополнительный бикарбонат и свободные ионы водорода. Увеличение водорода больше, чем увеличение бикарбоната, [97] создавая дисбаланс в реакции:

ХКО3⇌ КО2−3+ Н +

Для поддержания химического равновесия некоторые из карбонатных ионов, уже находящихся в океане, объединяются с некоторыми ионами водорода, чтобы создать дополнительный бикарбонат. Таким образом, концентрация карбонатных ионов в океане снижается, удаляя важный строительный блок для морских организмов, чтобы строить раковины или кальцинировать:

Са2 + + СО22−3CaCO3

Гидротермальные источники

Углекислый газ также попадает в океаны через гидротермальные источники. Гидротермальный источник Шампань , обнаруженный на северо-западе вулкана Эйфуку в Марианской впадине , производит почти чистый жидкий углекислый газ, одно из двух известных мест в мире по состоянию на 2004 год, другое находится в Окинавском желобе . [98] Об обнаружении подводного озера жидкого углекислого газа в Окинавском желобе сообщалось в 2006 году. [99]

Производство

Биологические процессы

Углекислый газ является побочным продуктом ферментации сахара при варке пива , виски и других алкогольных напитков , а также при производстве биоэтанола . Дрожжи метаболизируют сахар , производя CO2 и этанол , также известный как спирт, следующим образом:

С6Н12О6 → 2СО2 + 2СН3СН2ОН

Все аэробные организмы производят CO 2 при окислении углеводов , жирных кислот и белков . Большое количество вовлеченных реакций чрезвычайно сложны и не поддаются простому описанию. См. клеточное дыхание , анаэробное дыхание и фотосинтез . Уравнение дыхания глюкозы и других моносахаридов :

С 6 Н 12 О 6 + 6 О 2 → 6 СО 2 + 6 Н 2 О

Анаэробные организмы разлагают органический материал, производя метан и углекислый газ вместе со следами других соединений. [100] Независимо от типа органического материала, производство газов следует четко определенной кинетической схеме . Углекислый газ составляет около 40–45% газа, который выделяется при разложении на свалках (называемого « свалочным газом »). Большая часть оставшихся 50–55% — это метан. [101]

Промышленные процессы

Углекислый газ можно получить путем перегонки из воздуха, но этот метод неэффективен. В промышленности углекислый газ в основном является неутилизированным отходом, производимым несколькими методами, которые могут применяться в различных масштабах. [102]

Сгорание

Сгорание всех видов углеродного топлива , таких как метан ( природный газ ), нефтяные дистилляты ( бензин , дизельное топливо , керосин , пропан ), уголь, древесина и органические вещества общего назначения, производит углекислый газ и, за исключением чистого углерода, воду. Например, химическая реакция между метаном и кислородом :

СН 4 + 2 О 2 → СО 2 + 2 Н 2 О

Железо восстанавливается из его оксидов коксом в доменной печи , в результате чего получается чугун и диоксид углерода: [103]

Fe 2 O 3 + 3 CO → 3 CO 2 + 2 Fe

Побочный продукт производства водорода

Углекислый газ является побочным продуктом промышленного производства водорода методом паровой конверсии и реакции конверсии водяного газа при производстве аммиака . Эти процессы начинаются с реакции воды и природного газа (в основном метана). [104] Это основной источник пищевого углекислого газа для использования при карбонизации пива и безалкогольных напитков , а также используется для оглушения животных, таких как птица . Летом 2018 года в Европе возникла нехватка углекислого газа для этих целей из-за временной остановки нескольких аммиачных заводов на техническое обслуживание. [105]

Термическое разложение известняка

Его получают путем термического разложения известняка CaCO3 путем нагревания ( кальцинирования ) при температуре около 850 °C ( 1560 °F) при производстве негашеной извести ( оксида кальция , CaO), соединения, которое имеет множество промышленных применений:

СаСО3 → СаО + СО2

Кислоты высвобождают CO2 из большинства карбонатов металлов. Следовательно, его можно получить непосредственно из природных источников углекислого газа , где он производится путем воздействия подкисленной воды на известняк или доломит . Реакция между соляной кислотой и карбонатом кальция (известняком или мелом) показана ниже:

CaCO3 + 2HCl → CaCl2 + H2CO3

Угольная кислота ( H 2 CO 3 ) затем разлагается на воду и CO 2 :

Н2СО3 → СО2 + Н2О

Такие реакции сопровождаются пенообразованием или пузырением, или и тем, и другим, по мере высвобождения газа. Они широко используются в промышленности, поскольку их можно использовать для нейтрализации отработанных кислотных потоков.

Коммерческое использование

Углекислый газ используется в пищевой, нефтяной и химической промышленности. [102] Это соединение имеет различные коммерческие применения, но одно из его самых больших применений в качестве химиката — производство газированных напитков; он обеспечивает игристость газированных напитков, таких как газированная вода, пиво и игристое вино.

Прекурсор химикатов

В химической промышленности углекислый газ в основном потребляется как ингредиент при производстве мочевины , а меньшая его часть используется для производства метанола и ряда других продуктов. [106] Некоторые производные карбоновых кислот, такие как салицилат натрия, получают с использованием CO2 по реакции Кольбе-Шмитта . [107]

В дополнение к обычным процессам, использующим CO 2 для химического производства, электрохимические методы также изучаются на исследовательском уровне. В частности, использование возобновляемой энергии для производства топлива из CO 2 (например, метанола) является привлекательным, поскольку это может привести к топливу, которое можно было бы легко транспортировать и использовать в обычных технологиях сжигания, но не иметь чистых выбросов CO 2. [108]

Сельское хозяйство

Растениям требуется углекислый газ для проведения фотосинтеза. Атмосфера теплиц может (если она большого размера, то должна) быть обогащена дополнительным CO 2 для поддержания и увеличения скорости роста растений. [109] [110] При очень высоких концентрациях (в 100 раз превышающих концентрацию в атмосфере или больше) углекислый газ может быть токсичным для животных, поэтому повышение концентрации до 10 000 ppm (1%) или выше в течение нескольких часов уничтожит вредителей, таких как белокрылки и паутинные клещи в теплице. [111] Некоторые растения более благосклонно реагируют на повышение концентрации углекислого газа, чем другие, что может привести к сдвигам вегетационного режима, таким как вторжение древесных растений . [112]

Еда

Пузырьки углекислого газа в безалкогольном напитке

Углекислый газ — пищевая добавка , используемая в качестве пропеллента и регулятора кислотности в пищевой промышленности. Он одобрен для использования в ЕС [113] (указан под номером E290), США [114] , Австралии и Новой Зеландии [115] (указан под номером INS 290).

Конфета под названием Pop Rocks находится под давлением углекислого газа [116] около 4000  кПа (40  бар ; 580  фунтов на квадратный дюйм ). Когда ее кладут в рот, она растворяется (как и другие твердые конфеты) и выпускает пузырьки газа со слышимым хлопком.

Разрыхлители заставляют тесто подниматься, выделяя углекислый газ. [117] Пекарские дрожжи выделяют углекислый газ путем ферментации сахаров в тесте, в то время как химические разрыхлители, такие как разрыхлитель и пищевая сода, выделяют углекислый газ при нагревании или при воздействии кислот .

Напитки

Углекислый газ используется для производства газированных безалкогольных напитков и содовой воды . Традиционно газирование пива и игристого вина происходило путем естественного брожения, но многие производители газируют эти напитки углекислым газом, полученным в процессе брожения. В случае с бутылочным и кеговым пивом наиболее распространенным методом является карбонизация переработанным углекислым газом. За исключением британского настоящего эля , разливное пиво обычно перекачивают из кег в холодном помещении или подвале в раздаточные краны на барной стойке с использованием сжатого углекислого газа, иногда смешанного с азотом.

Вкус газированной воды (и связанные с ним вкусовые ощущения в других газированных напитках) является эффектом растворенного углекислого газа, а не лопающихся пузырьков газа. Карбоангидраза 4 преобразует углекислый газ в угольную кислоту, что приводит к кислому вкусу, а также растворенный углекислый газ вызывает соматосенсорную реакцию. [118]

Виноделие

Сухой лед используется для сохранения винограда после сбора урожая

Углекислый газ в виде сухого льда часто используется во время фазы холодного замачивания в виноделии для быстрого охлаждения гроздей винограда после сбора, чтобы помочь предотвратить спонтанное брожение дикими дрожжами . Главное преимущество использования сухого льда перед водяным льдом заключается в том, что он охлаждает виноград без добавления какой-либо дополнительной воды, которая могла бы снизить концентрацию сахара в виноградном сусле и, таким образом, концентрацию алкоголя в готовом вине. Углекислый газ также используется для создания гипоксической среды для углекислой мацерации , процесса, используемого для производства вина Божоле .

Углекислый газ иногда используется для долива в бутылки с вином или другие емкости для хранения , такие как бочки, чтобы предотвратить окисление, хотя у него есть проблема, заключающаяся в том, что он может растворяться в вине, делая ранее негазированное вино слегка шипучим. По этой причине профессиональные виноделы предпочитают для этого процесса другие газы, такие как азот или аргон .

Потрясающие животные

Углекислый газ часто используется для «оглушения» животных перед убоем. [119] «Оглушение» может быть неточным термином, поскольку животные не оглушаются немедленно и могут испытывать стресс. [120] [121]

Инертный газ

Углекислый газ является одним из наиболее часто используемых сжатых газов для пневматических (сжатый газ) систем в переносных инструментах давления. Углекислый газ также используется в качестве атмосферы для сварки , хотя в сварочной дуге он реагирует, окисляя большинство металлов. Использование в автомобильной промышленности является обычным, несмотря на существенные доказательства того, что сварные швы, выполненные в углекислом газе, более хрупкие , чем те, которые выполнены в более инертных атмосферах. [122] При использовании для сварки MIG использование CO2 иногда называют сваркой MAG, для Metal Active Gas, поскольку CO2 может реагировать при этих высоких температурах. Он имеет тенденцию создавать более горячую ванну, чем действительно инертные атмосферы, улучшая характеристики потока. Хотя это может быть связано с атмосферными реакциями, происходящими в месте ванны. Это обычно противоположно желаемому эффекту при сварке, так как он имеет тенденцию охрупчивать место, но может не быть проблемой для общей сварки мягкой стали, где конечная пластичность не является серьезной проблемой.

Углекислый газ используется во многих потребительских товарах, которым требуется сжатый газ, потому что он недорогой и негорючий, и потому что он претерпевает фазовый переход из газа в жидкость при комнатной температуре при достижимом давлении приблизительно 60  бар (870  фунтов на кв. дюйм ; 59  атм ), что позволяет поместить в данный контейнер гораздо больше углекислого газа, чем в противном случае. Спасательные жилеты часто содержат баллоны с сжатым углекислым газом для быстрого надувания. Алюминиевые капсулы с CO2 также продаются в качестве запасов сжатого газа для пневматических пистолетов , маркеров/ружей для пейнтбола , накачивания велосипедных шин и для приготовления газированной воды . Высокие концентрации углекислого газа также могут использоваться для уничтожения вредителей. Жидкий углекислый газ используется при сверхкритической сушке некоторых пищевых продуктов и технологических материалов, при подготовке образцов для сканирующей электронной микроскопии [123] и при декофеинизации кофейных зерен .

Огнетушитель

Использование огнетушителя CO2

Углекислый газ можно использовать для тушения пламени, заполняя им окружающую среду вокруг пламени. Сам по себе он не реагирует на тушение пламени, а лишает пламя кислорода, вытесняя его. Некоторые огнетушители , особенно те, которые предназначены для электрических пожаров , содержат жидкий углекислый газ под давлением. Углекислотные огнетушители хорошо работают при небольших возгораниях горючих жидкостей и электрических пожарах, но не при обычных возгораниях горючих веществ, потому что они не охлаждают горящие вещества в значительной степени, и когда углекислый газ рассеивается, они могут загореться при воздействии атмосферного кислорода . Они в основном используются в серверных комнатах. [124]

Углекислый газ также широко использовался в качестве огнетушащего вещества в стационарных системах противопожарной защиты для локального применения конкретных опасностей и полного затопления защищенного пространства. [125] Стандарты Международной морской организации признают системы с углекислым газом для противопожарной защиты трюмов и машинных отделений судов. Системы противопожарной защиты на основе углекислого газа были связаны с несколькими смертельными случаями, поскольку он может вызывать удушье при достаточно высоких концентрациях. Обзор систем с CO2 выявил 51 инцидент между 1975 годом и датой отчета (2000 год), в результате которых погибло 72 человека и 145 человек получили ранения. [126]

Сверхкритический CO2как растворитель

Жидкий диоксид углерода является хорошим растворителем для многих липофильных органических соединений и используется для декофеинизации кофе . [18] Диоксид углерода привлек внимание в фармацевтической и других отраслях химической обработки как менее токсичная альтернатива более традиционным растворителям, таким как органохлориды . По этой причине его также используют некоторые химчистки . Он используется при приготовлении некоторых аэрогелей из-за свойств сверхкритического диоксида углерода.

Медицинское и фармакологическое применение

В медицине к кислороду добавляют до 5% углекислого газа (в 130 раз больше атмосферной концентрации) для стимуляции дыхания после апноэ и стабилизации баланса O2 /CO2 в крови.

Углекислый газ можно смешивать с 50% кислорода, образуя вдыхаемый газ; он известен как карбоген и имеет множество медицинских и исследовательских применений.

Другим медицинским применением являются мофетте — сухие спа, в которых в терапевтических целях используется углекислый газ из поствулканических выбросов.

Энергия

В качестве рабочего тела в двигателе с энергетическим циклом Аллама используется сверхкритический CO2 .

Извлечение ископаемого топлива

Углекислый газ используется в улучшенной нефтеотдаче , где он впрыскивается в добывающие нефтяные скважины или рядом с ними, обычно в сверхкритических условиях, когда он становится смешивающимся с нефтью. Этот подход может увеличить первоначальную нефтеотдачу за счет снижения остаточной нефтенасыщенности на 7–23% дополнительно к первичной добыче . [127] Он действует как агент давления и, растворяясь в подземной сырой нефти , значительно снижает ее вязкость и изменяет химию поверхности, позволяя нефти быстрее течь через резервуар к скважине для удаления. [128] На зрелых нефтяных месторождениях используются обширные сети трубопроводов для транспортировки углекислого газа к точкам впрыска.

При улучшенном извлечении метана из угольных пластов углекислый газ будет закачиваться в угольный пласт для вытеснения метана, в отличие от существующих методов, которые в первую очередь полагаются на удаление воды (для снижения давления), чтобы заставить угольный пласт высвободить захваченный им метан. [129]

Биопревращение в топливо

Было предложено, чтобы CO2 , образующийся при производстве электроэнергии, барботировался в прудах для стимуляции роста водорослей , которые затем можно было бы преобразовать в биодизельное топливо. [130] Штамм цианобактерии Synechococcus elongatus был генетически модифицирован для производства топлива изомасляного альдегида и изобутанола из CO2 с использованием фотосинтеза. [131]

Исследователи разработали электрокаталитическую технологию, используя ферменты, выделенные из бактерий, для питания химических реакций, которые преобразуют CO2 в топливо. [132] [133] [134]

Хладагент
Сравнение фазовых диаграмм давление-температура углекислого газа (красный) и воды (синий) в виде логарифмически-линейной диаграммы с точками фазовых переходов при 1 атмосфере

Жидкий и твердый диоксид углерода являются важными хладагентами , особенно в пищевой промышленности, где они используются при транспортировке и хранении мороженого и других замороженных продуктов. Твердый диоксид углерода называется «сухим льдом» и используется для небольших партий, где холодильное оборудование непрактично. Твердый диоксид углерода всегда ниже −78,5 °C (−109,3 °F) при обычном атмосферном давлении, независимо от температуры воздуха.

Жидкий диоксид углерода (отраслевая номенклатура R744 или R-744) использовался в качестве хладагента до использования дихлордифторметана ( R12, соединение хлорфторуглерода (ХФУ)). [135] CO 2 может пережить возрождение, поскольку один из основных заменителей ХФУ, 1,1,1,2-тетрафторэтан ( R134a , соединение гидрофторуглерода (ГФУ)), вносит больший вклад в изменение климата , чем CO 2. Физические свойства CO 2 весьма благоприятны для охлаждения, заморозки и нагрева, имея высокую объемную охлаждающую способность. Из-за необходимости работать при давлении до 130 бар (1900 фунтов на кв. дюйм; 13 000 кПа), системы CO 2 требуют высокомеханически прочных резервуаров и компонентов, которые уже были разработаны для массового производства во многих секторах. В автомобильном кондиционировании воздуха, в более чем 90% всех условий вождения для широт выше 50°, CO 2 (R744) работает более эффективно, чем системы, использующие ГФУ (например, R134a). Его экологические преимущества ( GWP 1, не разрушает озоновый слой, нетоксичен, не воспламеняется) могут сделать его будущей рабочей жидкостью для замены текущих ГФУ в автомобилях, супермаркетах и ​​водонагревателях с тепловыми насосами, среди прочего. Coca-Cola выставила на рынок охладители напитков на основе CO 2 , а армия США заинтересована в технологии охлаждения и отопления на основе CO 2 . [136] [137]

Незначительное использование

Лазер на углекислом газе

Диоксид углерода является рабочей средой в лазере на углекислом газе , который является одним из самых ранних типов лазеров.

Углекислый газ можно использовать в качестве средства контроля pH в плавательных бассейнах [138] путем постоянного добавления газа в воду, тем самым предотвращая повышение pH. Среди преимуществ этого является избежание работы с (более опасными) кислотами. Аналогичным образом, он также используется в рифовых аквариумах , где он обычно используется в кальциевых реакторах для временного снижения pH воды, проходящей через карбонат кальция , чтобы позволить карбонату кальция более свободно растворяться в воде, где он используется некоторыми кораллами для построения своего скелета.

Используется в качестве основного теплоносителя в британском усовершенствованном газоохлаждаемом реакторе для производства ядерной энергии.

Carbon dioxide induction is commonly used for the euthanasia of laboratory research animals. Methods to administer CO2 include placing animals directly into a closed, prefilled chamber containing CO2, or exposure to a gradually increasing concentration of CO2. The American Veterinary Medical Association's 2020 guidelines for carbon dioxide induction state that a displacement rate of 30–70% of the chamber or cage volume per minute is optimal for the humane euthanasia of small rodents.[139]: 5, 31  Percentages of CO2 vary for different species, based on identified optimal percentages to minimize distress.[139]: 22 

Carbon dioxide is also used in several related cleaning and surface-preparation techniques.

History of discovery

Crystal structure of dry ice

Carbon dioxide was the first gas to be described as a discrete substance. In about 1640,[140] the Flemish chemist Jan Baptist van Helmont observed that when he burned charcoal in a closed vessel, the mass of the resulting ash was much less than that of the original charcoal. His interpretation was that the rest of the charcoal had been transmuted into an invisible substance he termed a "gas" (from Greek "chaos") or "wild spirit" (spiritus sylvestris).[141]

The properties of carbon dioxide were further studied in the 1750s by the Scottish physician Joseph Black. He found that limestone (calcium carbonate) could be heated or treated with acids to yield a gas he called "fixed air". He observed that the fixed air was denser than air and supported neither flame nor animal life. Black also found that when bubbled through limewater (a saturated aqueous solution of calcium hydroxide), it would precipitate calcium carbonate. He used this phenomenon to illustrate that carbon dioxide is produced by animal respiration and microbial fermentation. In 1772, English chemist Joseph Priestley published a paper entitled Impregnating Water with Fixed Air in which he described a process of dripping sulfuric acid (or oil of vitriol as Priestley knew it) on chalk in order to produce carbon dioxide, and forcing the gas to dissolve by agitating a bowl of water in contact with the gas.[142]

Carbon dioxide was first liquefied (at elevated pressures) in 1823 by Humphry Davy and Michael Faraday.[143] The earliest description of solid carbon dioxide (dry ice) was given by the French inventor Adrien-Jean-Pierre Thilorier, who in 1835 opened a pressurized container of liquid carbon dioxide, only to find that the cooling produced by the rapid evaporation of the liquid yielded a "snow" of solid CO2.[144][145]

Carbon dioxide in combination with nitrogen was known from earlier times as Blackdamp, stythe or choke damp.[b] Along with the other types of damp it was encountered in mining operations and well sinking. Slow oxidation of coal and biological processes replaced the oxygen to create a suffocating mixture of nitrogen and carbon dioxide.[146]

See also

Notes

  1. ^ where "part" here means per molecule[10]
  2. ^ Sometimes spelt "choak-damp" in 19th Century texts.

References

  1. ^ a b c "Carbon Dioxide" (PDF). Air Products. Archived from the original (PDF) on 29 July 2020. Retrieved 28 April 2017.
  2. ^ a b c d e f g h i Span R, Wagner W (1 November 1996). "A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa". Journal of Physical and Chemical Reference Data. 25 (6): 1519. Bibcode:1996JPCRD..25.1509S. doi:10.1063/1.555991.
  3. ^ Touloukian YS, Liley PE, Saxena SC (1970). "Thermophysical properties of matter - the TPRC data series". Thermal Conductivity - Nonmetallic Liquids and Gases. 3. Data book.
  4. ^ Schäfer M, Richter M, Span R (2015). "Measurements of the viscosity of carbon dioxide at temperatures from (253.15 to 473.15) K with pressures up to 1.2 MPa". The Journal of Chemical Thermodynamics. 89: 7–15. Bibcode:2015JChTh..89....7S. doi:10.1016/j.jct.2015.04.015. ISSN 0021-9614.
  5. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0103". National Institute for Occupational Safety and Health (NIOSH).
  6. ^ "Carbon dioxide". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  7. ^ "Safety Data Sheet – Carbon Dioxide Gas – version 0.03 11/11" (PDF). AirGas.com. 12 February 2018. Archived (PDF) from the original on 4 August 2018. Retrieved 4 August 2018.
  8. ^ "Carbon dioxide, refrigerated liquid" (PDF). Praxair. p. 9. Archived from the original (PDF) on 29 July 2018. Retrieved 26 July 2018.
  9. ^ Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean. Washington, DC: National Academies Press. 22 April 2010. pp. 23–24. doi:10.17226/12904. ISBN 978-0-309-15359-1. Archived from the original on 5 February 2016. Retrieved 29 February 2016.
  10. ^ "CO2 Gas Concentration Defined". CO2 Meter. 18 November 2022. Retrieved 5 September 2023.
  11. ^ Eggleton T (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763. Retrieved 9 November 2020.
  12. ^ "Carbon dioxide now more than 50% higher than pre-industrial levels | National Oceanic and Atmospheric Administration". www.noaa.gov. 3 June 2022. Retrieved 14 June 2022.
  13. ^ IPCC (2022) Summary for policy makers in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, US
  14. ^ Kaufman DG, Franz CM (1996). Biosphere 2000: protecting our global environment. Kendall/Hunt Pub. Co. ISBN 978-0-7872-0460-0.
  15. ^ "Food Factories". www.legacyproject.org. Archived from the original on 12 August 2017. Retrieved 10 October 2011.
  16. ^ IPCC (2021). "Summary for Policymakers" (PDF). Climate Change 2021: The Physical Science Basis. p. 20. Archived (PDF) from the original on 10 October 2022.
  17. ^ Myles, Allen (September 2020). "The Oxford Principles for Net Zero Aligned Carbon Offsetting" (PDF). Archived (PDF) from the original on 2 October 2020. Retrieved 10 December 2021.
  18. ^ a b Tsotsas E, Mujumdar AS (2011). Modern drying technology. Vol. 3: Product quality and formulation. John Wiley & Sons. ISBN 978-3-527-31558-1. Archived from the original on 21 March 2020. Retrieved 3 December 2019.
  19. ^ a b Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 305–314. ISBN 978-0-08-037941-8.
  20. ^ Atkins P, de Paula J (2006). Physical Chemistry (8th ed.). W.H. Freeman. pp. 461, 464. ISBN 978-0-7167-8759-4.
  21. ^ Siegmann B, Werner U, Lutz HO, Mann R (2002). "Complete Coulomb fragmentation of CO2 in collisions with 5.9 MeV u−1 Xe18+ and Xe43+". J Phys B Atom Mol Opt Phys. 35 (17): 3755. Bibcode:2002JPhB...35.3755S. doi:10.1088/0953-4075/35/17/311. S2CID 250782825.
  22. ^ a b Jensen P, Spanner M, Bunker PR (2020). "The CO2 molecule is never linear−". J Mol Struct. 1212: 128087. Bibcode:2020JMoSt121228087J. doi:10.1016/j.molstruc.2020.128087. hdl:2142/107329.
  23. ^ Jolly WL (1984). Modern Inorganic Chemistry. McGraw-Hill. p. 196. ISBN 978-0-07-032760-3.
  24. ^ Li Z, Mayer RJ, Ofial AR, Mayr H (May 2020). "From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes". Journal of the American Chemical Society. 142 (18): 8383–8402. doi:10.1021/jacs.0c01960. PMID 32338511. S2CID 216557447.
  25. ^ Aresta M, ed. (2010). Carbon Dioxide as a Chemical Feedstock. Weinheim: Wiley-VCH. ISBN 978-3-527-32475-0.
  26. ^ Finn C, Schnittger S, Yellowlees LJ, Love JB (February 2012). "Molecular approaches to the electrochemical reduction of carbon dioxide" (PDF). Chemical Communications. 48 (10): 1392–1399. doi:10.1039/c1cc15393e. hdl:20.500.11820/b530915d-451c-493c-8251-da2ea2f50912. PMID 22116300. S2CID 14356014. Archived (PDF) from the original on 19 April 2021. Retrieved 6 December 2019.
  27. ^ "Gases – Densities". Engineering Toolbox. Archived from the original on 2 March 2006. Retrieved 21 November 2020.
  28. ^ Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA (June 2006). "Amorphous silica-like carbon dioxide". Nature. 441 (7095): 857–860. Bibcode:2006Natur.441..857S. doi:10.1038/nature04879. PMID 16778885. S2CID 4363092.
  29. ^ a b Holman, Jack P. (2002). Heat Transfer (9th ed.). New York, NY: McGraw-Hill Companies, Inc. pp. 600–606. ISBN 9780072406559.
  30. ^ a b Incropera, Frank P.; Dewitt, David P.; Bergman, Theodore L.; Lavigne, Adrienne S. (2007). Fundamentals of Heat and Mass Transfer (6th ed.). Hoboken, NJ: John Wiley and Sons, Inc. pp. 941–950. ISBN 9780471457282.
  31. ^ Dhingra A, Portis AR, Daniell H (April 2004). "Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants". Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 6315–6320. Bibcode:2004PNAS..101.6315D. doi:10.1073/pnas.0400981101. PMC 395966. PMID 15067115. (Rubisco) is the most prevalent enzyme on this planet, accounting for 30–50% of total soluble protein in the chloroplast
  32. ^ Falkowski P, Knoll AH (1 January 2007). Evolution of primary producers in the sea. Elsevier, Academic Press. ISBN 978-0-12-370518-1. OCLC 845654016.
  33. ^ Blom TJ, Straver WA, Ingratta FJ, Khosla S, Brown W (December 2002). "Carbon Dioxide In Greenhouses". Archived from the original on 29 April 2019. Retrieved 12 June 2007.
  34. ^ Ainsworth EA (2008). "Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration" (PDF). Global Change Biology. 14 (7): 1642–1650. Bibcode:2008GCBio..14.1642A. doi:10.1111/j.1365-2486.2008.01594.x. S2CID 19200429. Archived from the original (PDF) on 19 July 2011.
  35. ^ Long SP, Ainsworth EA, Leakey AD, Nösberger J, Ort DR (June 2006). "Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations" (PDF). Science. 312 (5782): 1918–1921. Bibcode:2006Sci...312.1918L. CiteSeerX 10.1.1.542.5784. doi:10.1126/science.1114722. PMID 16809532. S2CID 2232629. Archived (PDF) from the original on 20 October 2016. Retrieved 27 October 2017.
  36. ^ Woodward F, Kelly C (1995). "The influence of CO2 concentration on stomatal density". New Phytologist. 131 (3): 311–327. doi:10.1111/j.1469-8137.1995.tb03067.x.
  37. ^ Drake BG, Gonzalez-Meler MA, Long SP (June 1997). "More Efficient Plants: A Consequence of Rising Atmospheric CO2?". Annual Review of Plant Physiology and Plant Molecular Biology. 48 (1): 609–639. doi:10.1146/annurev.arplant.48.1.609. PMID 15012276. S2CID 33415877.
  38. ^ Loladze I (2002). "Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry?". Trends in Ecology & Evolution. 17 (10): 457–461. doi:10.1016/S0169-5347(02)02587-9. S2CID 16074723.
  39. ^ Coviella CE, Trumble JT (1999). "Effects of Elevated Atmospheric Carbon Dioxide on Insect-Plant Interactions". Conservation Biology. 13 (4): 700–712. Bibcode:1999ConBi..13..700C. doi:10.1046/j.1523-1739.1999.98267.x. JSTOR 2641685. S2CID 52262618.
  40. ^ Davey MP, Harmens H, Ashenden TW, Edwards R, Baxter R (2007). "Species-specific effects of elevated CO2 on resource allocation in Plantago maritima and Armeria maritima". Biochemical Systematics and Ecology. 35 (3): 121–129. doi:10.1016/j.bse.2006.09.004.
  41. ^ Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R, Edwards R (August 2004). "Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima". Phytochemistry. 65 (15): 2197–2204. Bibcode:2004PChem..65.2197D. doi:10.1016/j.phytochem.2004.06.016. PMID 15587703.
  42. ^ "Global Environment Division Greenhouse Gas Assessment Handbook – A Practical Guidance Document for the Assessment of Project-level Greenhouse Gas Emissions". World Bank. Archived from the original on 3 June 2016. Retrieved 10 November 2007.
  43. ^ Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, et al. (September 2008). "Old-growth forests as global carbon sinks" (PDF). Nature. 455 (7210): 213–215. Bibcode:2008Natur.455..213L. doi:10.1038/nature07276. PMID 18784722. S2CID 4424430.
  44. ^ Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, et al. (October 2000). "The global carbon cycle: a test of our knowledge of earth as a system". Science. 290 (5490): 291–296. Bibcode:2000Sci...290..291F. doi:10.1126/science.290.5490.291. PMID 11030643. S2CID 1779934.
  45. ^ a b c Friedman D. "Toxicity of Carbon Dioxide Gas Exposure, CO2 Poisoning Symptoms, Carbon Dioxide Exposure Limits, and Links to Toxic Gas Testing Procedures". InspectAPedia. Archived from the original on 28 September 2009.
  46. ^ "CarbonTracker CT2011_oi (Graphical map of CO2)". esrl.noaa.gov. Archived from the original on 13 February 2021. Retrieved 20 April 2007.
  47. ^ a b "Carbon Dioxide as a Fire Suppressant: Examining the Risks". U.S. Environmental Protection Agency. Archived from the original on 2 October 2015.
  48. ^ "Volcano Under the City". A NOVA Production by Bonne Pioche and Greenspace for WGBH/Boston. Public Broadcasting System. 1 November 2005. Archived from the original on 5 April 2011..
  49. ^ Glatte Jr HA, Motsay GJ, Welch BE (1967). Carbon Dioxide Tolerance Studies (Report). Brooks AFB, TX School of Aerospace Medicine Technical Report. SAM-TR-67-77. Archived from the original on 9 May 2008. Retrieved 2 May 2008.{{cite report}}: CS1 maint: unfit URL (link)
  50. ^ Lambertsen CJ (1971). Carbon Dioxide Tolerance and Toxicity (Report). IFEM Report. Environmental Biomedical Stress Data Center, Institute for Environmental Medicine, University of Pennsylvania Medical Center. No. 2-71. Archived from the original on 24 July 2011. Retrieved 2 May 2008.{{cite report}}: CS1 maint: unfit URL (link)
  51. ^ a b Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ (December 2012). "Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance" (PDF). Environmental Health Perspectives. 120 (12): 1671–1677. doi:10.1289/ehp.1104789. PMC 3548274. PMID 23008272. Archived from the original (PDF) on 5 March 2016. Retrieved 11 December 2014.
  52. ^ a b Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (June 2016). "Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments". Environmental Health Perspectives. 124 (6): 805–812. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459.
  53. ^ a b c "Exposure Limits for Carbon Dioxide Gas – CO2 Limits". InspectAPedia.com. Archived from the original on 16 September 2018. Retrieved 19 October 2014.
  54. ^ Law J, Watkins S, Alexander D (2010). In-Flight Carbon Dioxide Exposures and Related Symptoms: Associations, Susceptibility and Operational Implications (PDF) (Report). NASA Technical Report. TP–2010–216126. Archived from the original (PDF) on 27 June 2011. Retrieved 26 August 2014.
  55. ^ Schaefer KE, Douglas WH, Messier AA, Shea ML, Gohman PA (1979). "Effect of prolonged exposure to 0.5% CO2 on kidney calcification and ultrastructure of lungs". Undersea Biomedical Research. 6 (Suppl): S155–S161. PMID 505623. Archived from the original on 19 October 2014. Retrieved 19 October 2014.
  56. ^ Du B, Tandoc MC, Mack ML, Siegel JA (November 2020). "Indoor CO2 concentrations and cognitive function: A critical review". Indoor Air. 30 (6): 1067–1082. Bibcode:2020InAir..30.1067D. doi:10.1111/ina.12706. PMID 32557862. S2CID 219915861.
  57. ^ Kaplan L (4 June 2019). "Ask the doc: Does my helmet make me stupid? - RevZilla". www.revzilla.com. Archived from the original on 22 May 2021. Retrieved 22 May 2021.
  58. ^ Brühwiler PA, Stämpfli R, Huber R, Camenzind M (September 2005). "CO2 and O2 concentrations in integral motorcycle helmets". Applied Ergonomics. 36 (5): 625–633. doi:10.1016/j.apergo.2005.01.018. PMID 15893291.
  59. ^ "Ventilation for Acceptable Indoor Air Quality" (PDF). 2018. ISSN 1041-2336. Archived (PDF) from the original on 26 October 2022. Retrieved 10 August 2023.
  60. ^ "Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation". www.astm.org. Retrieved 12 June 2024.
  61. ^ Allen JG, MacNaughton P, Satish U, Santanam S, Vallarino J, Spengler JD (June 2016). "Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments". Environmental Health Perspectives. 124 (6): 805–812. doi:10.1289/ehp.1510037. PMC 4892924. PMID 26502459.
  62. ^ Romm J (26 October 2015). "Exclusive: Elevated CO2 Levels Directly Affect Human Cognition, New Harvard Study Shows". ThinkProgress. Archived from the original on 9 October 2019. Retrieved 14 October 2019.
  63. ^ "Three die in dry-ice incident at Moscow pool party". BBC News. 29 February 2020. Archived from the original on 29 February 2020. The victims were connected to Instagram influencer Yekaterina Didenko.
  64. ^ Rettner R (2 August 2018). "A Woman Died from Dry Ice Fumes. Here's How It Can Happen". Live Science. Archived from the original on 22 May 2021. Retrieved 22 May 2021.
  65. ^ Concentrations de CO2 dans l'air intérieur et effets sur la santé (PDF) (Report) (in French). ANSES. July 2013. p. 294.
  66. ^ Chatzidiakou, Lia; Mumovic, Dejan; Summerfield, Alex (March 2015). "Is CO 2 a good proxy for indoor air quality in classrooms? Part 1: The interrelationships between thermal conditions, CO 2 levels, ventilation rates and selected indoor pollutants". Building Services Engineering Research and Technology. 36 (2): 129–161. doi:10.1177/0143624414566244. ISSN 0143-6244. S2CID 111182451.
  67. ^ Cetin, Mehmet; Sevik, Hakan (2016). "INDOOR QUALITY ANALYSIS OF CO2 FOR KASTAMONU UNIVERSITY" (PDF). Conference of the International Journal of Arts & Sciences. 9 (3): 71.
  68. ^ van Gardingen PR, Grace J, Jeffree CE, Byari SH, Miglietta F, Raschi A, Bettarini I (1997). "Long-term effects of enhanced CO2 concentrations on leaf gas exchange: research opportunities using CO2 springs". In Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds.). Plant responses to elevated CO2: Evidence from natural springs. Cambridge: Cambridge University Press. pp. 69–86. ISBN 978-0-521-58203-2.
  69. ^ Martini M (1997). "CO2 emissions in volcanic areas: case histories and hazards". In Raschi A, Miglietta F, Tognetti R, van Gardingen PR (eds.). Plant responses to elevated CO2: Evidence from natural springs. Cambridge: Cambridge University Press. pp. 69–86. ISBN 978-0-521-58203-2.
  70. ^ a b "ABG (Arterial Blood Gas)". Brookside Associates. Archived from the original on 12 August 2017. Retrieved 2 January 2017.
  71. ^ "How much carbon dioxide do humans contribute through breathing?". EPA.gov. Archived from the original on 2 February 2011. Retrieved 30 April 2009.
  72. ^ Henrickson C (2005). Chemistry. Cliffs Notes. ISBN 978-0-7645-7419-1.
  73. ^ a b c d "Carbon dioxide". solarnavigator.net. Archived from the original on 14 September 2008. Retrieved 12 October 2007.
  74. ^ Battisti-Charbonney, A.; Fisher, J.; Duffin, J. (15 June 2011). "The cerebrovascular response to carbon dioxide in humans". J. Physiol. 589 (12): 3039–3048. doi:10.1113/jphysiol.2011.206052. PMC 3139085. PMID 21521758.
  75. ^ Patel, S.; Miao, J.H.; Yetiskul, E.; Anokhin, A.; Majmunder, S.H. (2022). "Physiology, Carbon Dioxide Retention". National Library of Medicine. National Center for Biotechnology Information, NIH. PMID 29494063. Retrieved 20 August 2022.
  76. ^ Wilmshurst, Peter (1998). "ABC of oxygen". BMJ. 317 (7164): 996–999. doi:10.1136/bmj.317.7164.996. PMC 1114047. PMID 9765173.
  77. ^ Gavin, Schmidt (2010), Taking the Measure of the Greenhouse Effect, retrieved 24 August 2024
  78. ^ a b "Carbon dioxide now more than 50% higher than pre-industrial levels". National Oceanic and Atmospheric Administration. 3 June 2022. Archived from the original on 5 June 2022. Retrieved 14 June 2022.
  79. ^ a b Eggleton, Tony (2013). A Short Introduction to Climate Change. Cambridge University Press. p. 52. ISBN 9781107618763. Archived from the original on 14 March 2023. Retrieved 14 March 2023.
  80. ^ "The NOAA Annual Greenhouse Gas Index (AGGI) – An Introduction". NOAA Global Monitoring Laboratory/Earth System Research Laboratories. Archived from the original on 27 November 2020. Retrieved 18 December 2020.
  81. ^ Etheridge, D.M.; L.P. Steele; R.L. Langenfelds; R.J. Francey; J.-M. Barnola; V.I. Morgan (1996). "Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn". Journal of Geophysical Research. 101 (D2): 4115–28. Bibcode:1996JGR...101.4115E. doi:10.1029/95JD03410. ISSN 0148-0227. S2CID 19674607.
  82. ^ Pierre-Louis, Kendra (10 May 2024). "Carbon Dioxide Just Took an Ominous, Record-Breaking Jump". www.bloomberg.com. Retrieved 13 May 2024.
  83. ^ IPCC (2022) Summary for policy makers Archived 12 March 2023 at the Wayback Machine in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Archived 2 August 2022 at the Wayback Machine, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  84. ^ Petty, G.W. (2004). "A First Course in Atmospheric Radiation". Eos Transactions. 85 (36): 229–51. Bibcode:2004EOSTr..85..341P. doi:10.1029/2004EO360007.
  85. ^ Atkins, P.; de Paula, J. (2006). Atkins' Physical Chemistry (8th ed.). W.H. Freeman. p. 462. ISBN 978-0-7167-8759-4.
  86. ^ "Carbon Dioxide Absorbs and Re-emits Infrared Radiation". UCAR Center for Science Education. 2012. Archived from the original on 21 September 2017. Retrieved 9 September 2017.
  87. ^ Ahmed, Issam. "Current carbon dioxide levels last seen 14 million years ago". phys.org. Retrieved 8 February 2024.
  88. ^ "Climate and CO2 in the Atmosphere". Archived from the original on 6 October 2018. Retrieved 10 October 2007.
  89. ^ Friedlingstein P, Jones MW, O'sullivan M, Andrew RM, Hauck J, Peters GP, et al. (2019). "Global Carbon Budget 2019". Earth System Science Data. 11 (4): 1783–1838. Bibcode:2019ESSD...11.1783F. doi:10.5194/essd-11-1783-2019. hdl:20.500.11850/385668..
  90. ^ Doney SC, Levine NM (29 November 2006). "How Long Can the Ocean Slow Global Warming?". Oceanus. Archived from the original on 4 January 2008. Retrieved 21 November 2007.
  91. ^ Terhaar, Jens; Frölicher, Thomas L.; Joos, Fortunat (2023). "Ocean acidification in emission-driven temperature stabilization scenarios: the role of TCRE and non-CO2 greenhouse gases". Environmental Research Letters. 18 (2): 024033. Bibcode:2023ERL....18b4033T. doi:10.1088/1748-9326/acaf91. ISSN 1748-9326. S2CID 255431338. Figure 1f
  92. ^ Oxygen, Pro (21 September 2024). "Earth's CO2 Home Page". Retrieved 21 September 2024.
  93. ^ a b Ocean acidification due to increasing atmospheric carbon dioxide (PDF). Royal Society. 2005. ISBN 0-85403-617-2.
  94. ^ Jiang, Li-Qing; Carter, Brendan R.; Feely, Richard A.; Lauvset, Siv K.; Olsen, Are (2019). "Surface ocean pH and buffer capacity: past, present and future". Scientific Reports. 9 (1): 18624. Bibcode:2019NatSR...918624J. doi:10.1038/s41598-019-55039-4. PMC 6901524. PMID 31819102. Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 16 October 2017 at the Wayback Machine
  95. ^ Zhang, Y.; Yamamoto-Kawai, M.; Williams, W.J. (16 February 2020). "Two Decades of Ocean Acidification in the Surface Waters of the Beaufort Gyre, Arctic Ocean: Effects of Sea Ice Melt and Retreat From 1997–2016". Geophysical Research Letters. 47 (3). doi:10.1029/2019GL086421. S2CID 214271838.
  96. ^ Beaupré-Laperrière, Alexis; Mucci, Alfonso; Thomas, Helmuth (31 July 2020). "The recent state and variability of the carbonate system of the Canadian Arctic Archipelago and adjacent basins in the context of ocean acidification". Biogeosciences. 17 (14): 3923–3942. Bibcode:2020BGeo...17.3923B. doi:10.5194/bg-17-3923-2020. S2CID 221369828.
  97. ^ Mitchell, Mark J.; Jensen, Oliver E.; Cliffe, K. Andrew; Maroto-Valer, M. Mercedes (8 May 2010). "A model of carbon dioxide dissolution and mineral carbonation kinetics". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 466 (2117): 1265–1290. Bibcode:2010RSPSA.466.1265M. doi:10.1098/rspa.2009.0349.
  98. ^ Lupton J, Lilley M, Butterfield D, Evans L, Embley R, Olson E, et al. (2004). "Liquid Carbon Dioxide Venting at the Champagne Hydrothermal Site, NW Eifuku Volcano, Mariana Arc". American Geophysical Union. 2004 (Fall Meeting). V43F–08. Bibcode:2004AGUFM.V43F..08L.
  99. ^ Inagaki F, Kuypers MM, Tsunogai U, Ishibashi J, Nakamura K, Treude T, et al. (September 2006). "Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system". Proceedings of the National Academy of Sciences of the United States of America. 103 (38): 14164–14169. Bibcode:2006PNAS..10314164I. doi:10.1073/pnas.0606083103. PMC 1599929. PMID 16959888. Videos can be downloaded at "Supporting Information". Archived from the original on 19 October 2018.
  100. ^ "Collecting and using biogas from landfills". U.S. Energy Information Administration. 11 January 2017. Archived from the original on 11 July 2018. Retrieved 22 November 2015.
  101. ^ "Facts About Landfill Gas" (PDF). U.S. Environmental Protection Agency. January 2000. Archived (PDF) from the original on 23 September 2015. Retrieved 4 September 2015.
  102. ^ a b Pierantozzi R (2001). "Carbon Dioxide". Kirk-Othmer Encyclopedia of Chemical Technology. Wiley. doi:10.1002/0471238961.0301180216090518.a01.pub2. ISBN 978-0-471-23896-6.
  103. ^ Strassburger J (1969). Blast Furnace Theory and Practice. New York: American Institute of Mining, Metallurgical, and Petroleum Engineers. ISBN 978-0-677-10420-1.
  104. ^ Topham S (2000). "Carbon Dioxide". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a05_165. ISBN 3527306730.
  105. ^ "CO2 shortage: Food industry calls for government action". BBC. 21 June 2018. Archived from the original on 23 May 2021. Retrieved 24 June 2018.
  106. ^ "IPCC Special Report on Carbon dioxide Capture and Storage" (PDF). The Intergovernmental Panel on Climate Change. Archived from the original (PDF) on 24 September 2015. Retrieved 4 September 2015.
  107. ^ Morrison RT, Boyd RN (1983). Organic Chemistry (4th ed.). Allyn and Bacon. pp. 976–977. ISBN 978-0-205-05838-9.
  108. ^ Badwal SP, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (24 September 2014). "Emerging electrochemical energy conversion and storage technologies". Frontiers in Chemistry. 2: 79. Bibcode:2014FrCh....2...79B. doi:10.3389/fchem.2014.00079. PMC 4174133. PMID 25309898.
  109. ^ Whiting D, Roll M, Vickerman L (August 2010). "Plant Growth Factors: Photosynthesis, Respiration, and Transpiration". CMG GardenNotes. Colorado Master Gardener Program. Archived from the original on 2 September 2014. Retrieved 10 October 2011.
  110. ^ Waggoner PE (February 1994). "Carbon dioxide". How Much Land Can Ten Billion People Spare for Nature?. Archived from the original on 12 October 2011. Retrieved 10 October 2011.
  111. ^ Stafford N (August 2007). "Future crops: the other greenhouse effect". Nature. 448 (7153): 526–528. Bibcode:2007Natur.448..526S. doi:10.1038/448526a. PMID 17671477. S2CID 9845813.
  112. ^ Archer, Steven R.; Andersen, Erik M.; Predick, Katharine I.; Schwinning, Susanne; Steidl, Robert J.; Woods, Steven R. (2017), Briske, David D. (ed.), "Woody Plant Encroachment: Causes and Consequences", Rangeland Systems, Cham: Springer International Publishing, pp. 25–84, doi:10.1007/978-3-319-46709-2_2, ISBN 978-3-319-46707-8
  113. ^ UK Food Standards Agency: "Current EU approved additives and their E Numbers". Archived from the original on 7 October 2010. Retrieved 27 October 2011.
  114. ^ US Food and Drug Administration: "Food Additive Status List". Food and Drug Administration. Archived from the original on 4 November 2017. Retrieved 13 June 2015.
  115. ^ Australia New Zealand Food Standards Code"Standard 1.2.4 – Labelling of ingredients". 8 September 2011. Archived from the original on 19 January 2012. Retrieved 27 October 2011.
  116. ^ Futurific Leading Indicators Magazine. Vol. 1. CRAES LLC. ISBN 978-0-9847670-1-4. Archived from the original on 15 August 2021. Retrieved 9 November 2020.
  117. ^ Vijay GP (25 September 2015). Indian Breads: A Comprehensive Guide to Traditional and Innovative Indian Breads. Westland. ISBN 978-93-85724-46-6.[permanent dead link]
  118. ^ "Scientists Discover Protein Receptor For Carbonation Taste". ScienceDaily. 16 October 2009. Archived from the original on 29 March 2020. Retrieved 29 March 2020.
  119. ^ Coghlan A (3 February 2018). "A more humane way of slaughtering chickens might get EU approval". New Scientist. Archived from the original on 24 June 2018. Retrieved 24 June 2018.
  120. ^ "What is CO2 stunning?". RSPCA. Archived from the original on 9 April 2014.
  121. ^ Campbell A (10 March 2018). "Humane execution and the fear of the tumbril". New Scientist. Archived from the original on 24 June 2018. Retrieved 24 June 2018.
  122. ^ International, Petrogav. Production Course for Hiring on Offshore Oil and Gas Rigs. Petrogav International. p. 214.
  123. ^ Nordestgaard BG, Rostgaard J (February 1985). "Critical-point drying versus freeze drying for scanning electron microscopy: a quantitative and qualitative study on isolated hepatocytes". Journal of Microscopy. 137 (Pt 2): 189–207. doi:10.1111/j.1365-2818.1985.tb02577.x. PMID 3989858. S2CID 32065173.
  124. ^ "Types of Fire Extinguishers". The Fire Safety Advice Centre. Archived from the original on 28 June 2021. Retrieved 28 June 2021.
  125. ^ National Fire Protection Association Code 12.
  126. ^ Carbon Dioxide as a Fire Suppressant: Examining the Risks, US EPA. 2000.
  127. ^ "Appendix A: CO2 for use in enhanced oil recovery (EOR)". Accelerating the uptake of CCS: industrial use of captured carbon dioxide. 20 December 2011. Archived from the original on 28 April 2017. Retrieved 2 January 2017. {{cite book}}: |website= ignored (help)
  128. ^ Austell JM (2005). "CO2 for Enhanced Oil Recovery Needs – Enhanced Fiscal Incentives". Exploration & Production: The Oil & Gas Review. Archived from the original on 7 February 2012. Retrieved 28 September 2007.
  129. ^ "Enhanced coal bed methane recovery". ETH Zurich. 31 August 2006. Archived from the original on 6 July 2011.
  130. ^ Clayton M (11 January 2006). "Algae – like a breath mint for smokestacks". The Christian Science Monitor. Archived from the original on 14 September 2008. Retrieved 11 October 2007.
  131. ^ Atsumi S, Higashide W, Liao JC (December 2009). "Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde". Nature Biotechnology. 27 (12): 1177–1180. doi:10.1038/nbt.1586. PMID 19915552. S2CID 1492698.
  132. ^ Cobb S, Badiani V, Dharani A, Wagner A, Zacarias S, Oliveira AR, et al. (28 February 2022). "Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis". Nature Chemistry. 14 (4): 417–424. Bibcode:2022NatCh..14..417C. doi:10.1038/s41557-021-00880-2. ISSN 1755-4349. PMC 7612589. PMID 35228690. S2CID 247160910.
  133. ^ Edwardes Moore E, Cobb SJ, Coito AM, Oliveira AR, Pereira IA, Reisner E (January 2022). "Understanding the local chemical environment of bioelectrocatalysis". Proceedings of the National Academy of Sciences of the United States of America. 119 (4): e2114097119. Bibcode:2022PNAS..11914097E. doi:10.1073/pnas.2114097119. PMC 8795565. PMID 35058361.
  134. ^ "Clean Way To Turn CO2 Into Fuel Inspired by Nature". Applied Sciences from Technology Networks. 1 March 2022. Retrieved 2 March 2022.
  135. ^ Pearson, S. Forbes. "Refrigerants Past, Present and Future" (PDF). R744. Archived from the original (PDF) on 13 July 2018. Retrieved 30 March 2021.
  136. ^ "The Coca-Cola Company Announces Adoption of HFC-Free Insulation in Refrigeration Units to Combat Global Warming". The Coca-Cola Company. 5 June 2006. Archived from the original on 1 November 2013. Retrieved 11 October 2007.
  137. ^ "Modine reinforces its CO2 research efforts". R744.com. 28 June 2007. Archived from the original on 10 February 2008.
  138. ^ TCE, the Chemical Engineer. Institution of Chemical Engineers. 1990. Archived from the original on 17 August 2021. Retrieved 2 June 2020.
  139. ^ a b "AVMA guidelines for the euthanasia of animals: 2020 Edition" (PDF). American Veterinary Medical Association. 2020. Archived (PDF) from the original on 1 February 2014. Retrieved 13 August 2021.
  140. ^ Harris D (September 1910). "The Pioneer in the Hygiene of Ventilation". The Lancet. 176 (4542): 906–908. doi:10.1016/S0140-6736(00)52420-9. Archived from the original on 17 March 2020. Retrieved 6 December 2019.
  141. ^ Almqvist E (2003). History of industrial gases. Springer. p. 93. ISBN 978-0-306-47277-0.
  142. ^ Priestley J, Hey W (1772). "Observations on Different Kinds of Air". Philosophical Transactions. 62: 147–264. doi:10.1098/rstl.1772.0021. S2CID 186210131. Archived from the original on 7 June 2010. Retrieved 11 October 2007.
  143. ^ Davy H (1823). "On the Application of Liquids Formed by the Condensation of Gases as Mechanical Agents". Philosophical Transactions. 113: 199–205. doi:10.1098/rstl.1823.0020. JSTOR 107649.
  144. ^ Thilorier AJ (1835). "Solidification de l'Acide carbonique". Comptes Rendus. 1: 194–196. Archived from the original on 2 September 2017. Retrieved 1 September 2017.
  145. ^ Thilorier AJ (1836). "Solidification of carbonic acid". The London and Edinburgh Philosophical Magazine. 8 (48): 446–447. doi:10.1080/14786443608648911. Archived from the original on 2 May 2016. Retrieved 15 November 2015.
  146. ^ Haldane, John (1894). "Notes of an Enquiry into the Nature and Physiological Action of Black-Damp, as Met with in Podmore Colliery, Staffordshire, and Lilleshall Colliery, Shropshire". Proceedings of the Royal Society of London. 57: 249–257. Bibcode:1894RSPS...57..249H. JSTOR 115391.

External links