stringtranslate.com

Животное

Животныемногоклеточные эукариотические организмы в биологическом царстве Animalia ( / ˌ æ n ɪ ˈ m l i ə / [4] ) . За немногими исключениями животные потребляют органический материал , дышат кислородом , имеют миоциты и способны двигаться , могут размножаться половым путем и расти из полой сферы клеток, бластулы , во время эмбрионального развития . Животные образуют кладу , что означает, что они произошли от одного общего предка.

Описано более 1,5 миллионов видов ныне живущих животных , из которых около 1,05 миллиона — насекомые , более 85 000 — моллюски и около 65 000 — позвоночные . По оценкам, на Земле существует около 7,77 миллионов видов животных. Длина тела животных колеблется от 8,5 мкм (0,00033 дюйма) до 33,6 м (110 футов). Они имеют сложную экологию и взаимодействие друг с другом и окружающей средой, образуя запутанные пищевые сети . Научное изучение животных известно как зоология , а изучение поведения животных известно как этология .

Большинство ныне живущих видов животных принадлежат к инфрацарству Bilateria , высоко пролиферативной кладе , члены которой имеют двусторонне-симметричный план тела . Подавляющее большинство принадлежит к двум крупным суперфилумам : первичноротым , которые включают такие организмы, как членистоногие , моллюски , плоские черви , кольчатые черви и нематоды ; и вторичноротым , которые включают иглокожих , полухордовых и хордовых , последний из которых включает позвоночных. Простые Xenacoelomorpha имеют неопределенное положение в Bilateria.

Животные впервые появляются в палеонтологической летописи в конце криогенового периода и разнообразились в последующем эдиакарском . Более ранние свидетельства о животных все еще спорны; губчатый организм Otavia был датирован тоновым периодом в начале неопротерозоя , но его идентичность как животного серьезно оспаривается. [5] Почти все современные типы животных были четко установлены в палеонтологической летописи как морские виды во время кембрийского взрыва , который начался около 539  миллионов лет назад (Mya), и большинство классов во время ордовикской радиации 485,4 Mya. Было идентифицировано 6331 групп генов , общих для всех современных животных; они могли возникнуть от одного общего предка, который жил около 650 Mya в криогеновый период.

Исторически Аристотель разделил животных на тех, у кого есть кровь, и тех, у кого нет . Карл Линней создал первую иерархическую биологическую классификацию животных в 1758 году в своей «Системе природы» , которую Жан-Батист Ламарк расширил до 14 типов к 1809 году. В 1874 году Эрнст Геккель разделил царство животных на многоклеточных Metazoa (теперь синоним Animalia) и Protozoa , одноклеточные организмы, которые больше не считаются животными. В наше время биологическая классификация животных опирается на передовые методы, такие как молекулярная филогенетика , которые эффективны для демонстрации эволюционных связей между таксонами .

Люди используют множество других видов животных для еды (включая мясо , яйца и молочные продукты ), для материалов (таких как кожа , мех и шерсть ), в качестве домашних животных и как рабочих животных для транспортировки и услуг . Собаки , первые одомашненные животные, использовались на охоте , в целях безопасности и на войне , как и лошади , голуби и хищные птицы ; в то время как на других наземных и водных животных охотятся ради спорта, трофеев или прибыли. Нечеловеческие животные также являются важным культурным элементом человеческой эволюции , появляясь в пещерном искусстве и тотемах с самых ранних времен и часто фигурируют в мифологии , религии , искусстве , литературе , геральдике , политике и спорте .

Этимология

Слово animal происходит от латинского существительного animal того же значения, которое, в свою очередь, происходит от латинского animalis «имеющий дыхание или душу». [6] Биологическое определение включает всех членов царства Animalia. [7] В разговорной речи термин animal часто используется для обозначения только нечеловеческих животных. [8] [9] [10] [11] Термин metazoa происходит от древнегреческого μετα ( meta ) «после» (в биологии префикс meta- означает «позже») и ζῷᾰ ( zōia ) «животные», множественное число от ζῷον zōion «животное». [12] [13]

Характеристики

Животные уникальны тем, что у них клеточный шар раннего эмбриона (1) развивается в полый шар или бластулу (2).

Животные обладают несколькими характеристиками, которые отличают их от других живых существ. Животные являются эукариотическими и многоклеточными . [14] В отличие от растений и водорослей , которые производят собственные питательные вещества , [15] животные являются гетеротрофными , [16] [17] питающимися органическим материалом и переваривающими его внутри. [18] За очень немногими исключениями, животные дышат аэробно . [a] [20] Все животные подвижны [21] (способны спонтанно перемещать свое тело) в течение по крайней мере части своего жизненного цикла , но некоторые животные, такие как губки , кораллы , мидии и морские желуди , позже становятся сидячими . Бластула — это стадия эмбрионального развития , которая уникальна для животных, позволяющая клеткам дифференцироваться в специализированные ткани и органы. [22]

Структура

Все животные состоят из клеток, окруженных характерным внеклеточным матриксом, состоящим из коллагена и эластичных гликопротеинов . [23] Во время развития внеклеточный матрикс животных образует относительно гибкий каркас, на котором клетки могут перемещаться и реорганизовываться, что делает возможным образование сложных структур. Он может кальцинироваться, образуя такие структуры, как раковины , кости и спикулы . [24] Напротив, клетки других многоклеточных организмов (в первую очередь водорослей, растений и грибов ) удерживаются на месте клеточными стенками и, таким образом, развиваются путем прогрессивного роста. [25] Животные клетки обладают уникальными клеточными соединениями, называемыми плотными соединениями , щелевыми соединениями и десмосомами . [26]

За немногими исключениями, в частности, губками и плакозоями , тела животных дифференцированы на ткани . [27] К ним относятся мышцы , которые обеспечивают движение, и нервные ткани , которые передают сигналы и координируют тело. Как правило, также имеется внутренняя пищеварительная камера с одним отверстием (у гребневиков, книдарий и плоских червей) или двумя отверстиями (у большинства билатерий). [28]

Размножение и развитие

Половое размножение практически универсально для животных, таких как эти стрекозы .

Почти все животные используют ту или иную форму полового размножения. [29] Они производят гаплоидные гаметы путем мейоза ; более мелкие, подвижные гаметы - сперматозоиды , а более крупные, неподвижные гаметы - яйцеклетки . [30] Они сливаются, образуя зиготы , [31] которые развиваются посредством митоза в полую сферу, называемую бластула. У губок личинки бластулы переплывают на новое место, прикрепляются к морскому дну и развиваются в новую губку. [32] У большинства других групп бластула претерпевает более сложную перестройку. [33] Сначала она инвагинирует , образуя гаструлу с пищеварительной камерой и двумя отдельными зародышевыми слоями , внешней эктодермой и внутренней энтодермой . [34] В большинстве случаев между ними также развивается третий зародышевый слой, мезодерма . [35] Затем эти зародышевые слои дифференцируются, образуя ткани и органы. [36]

Повторные случаи спаривания с близким родственником во время полового размножения обычно приводят к инбридинговой депрессии в популяции из-за возросшей распространенности вредных рецессивных признаков. [37] [38] У животных выработались многочисленные механизмы для избегания близкородственного скрещивания . [39]

Некоторые животные способны к бесполому размножению , что часто приводит к генетическому клону родителя. Это может происходить посредством фрагментации ; почкования , как у гидры и других книдарий ; или партеногенеза , когда оплодотворенные яйца производятся без спаривания , как у тлей . [40] [41]

Экология

Хищники , такие как эта ультрамариновая мухоловка ( Ficedula superciliaris ), питаются другими животными.

Животные классифицируются по экологическим группам в зависимости от их трофических уровней и того, как они потребляют органический материал . Такие группы включают плотоядных (далее делящихся на подкатегории, такие как рыбоядные , насекомоядные , яйцеядные и т. д.), травоядных (подразделяющихся на листоядных , злакоядных , плодоядных , зерноядных , нектароядных , альгиядных и т. д.), всеядных , грибоядных , падальщиков / детритоядных [42] и паразитов [ 43] . Взаимодействие между животными каждого биома образует сложные пищевые сети в пределах этой экосистемы . У плотоядных или всеядных видов хищничество представляет собой взаимодействие потребителя и ресурса , при котором хищник питается другим организмом, своей добычей [ 44], которая часто вырабатывает антихищные адаптации , чтобы избежать кормления. Селективное давление, оказываемое друг на друга, приводит к эволюционной гонке вооружений между хищником и добычей, что приводит к различным антагонистическим/ конкурентным коэволюциям . [45] [46] Почти все многоклеточные хищники являются животными. [47] Некоторые потребители используют несколько методов; например, у паразитоидных ос личинки питаются живыми тканями хозяев, убивая их в процессе, [48] но взрослые особи в основном потребляют нектар из цветов. [49] Другие животные могут иметь очень специфическое пищевое поведение , например, морские черепахи бисса , которые в основном питаются губками . [50]

Мидии и креветки гидротермальных источников

Большинство животных зависят от биомассы и биоэнергии, производимых растениями и фитопланктонами (совместно называемыми производителями ) посредством фотосинтеза . Травоядные животные, как первичные потребители , едят растительный материал напрямую, чтобы переварить и усвоить питательные вещества, в то время как плотоядные и другие животные на более высоких трофических уровнях косвенно получают питательные вещества, поедая травоядных или других животных, которые съели травоядных. Животные окисляют углеводы , липиды , белки и другие биомолекулы, что позволяет животному расти и поддерживать базальный метаболизм и подпитывать другие биологические процессы, такие как локомоция . [51] [52] [53] Некоторые бентосные животные, живущие вблизи гидротермальных источников и холодных просачиваний на темном морском дне, потребляют органические вещества, производимые посредством хемосинтеза (путем окисления неорганических соединений, таких как сероводород ) археями и бактериями . [54]

Животные эволюционировали в море. Линии членистоногих колонизировали сушу примерно в то же время, что и наземные растения , вероятно, между 510 и 471 миллионами лет назад в позднем кембрии или раннем ордовике . [55] Позвоночные, такие как лопастепёрая рыба тиктаалик, начали перемещаться на сушу в позднем девоне , около 375 миллионов лет назад. [56] [57] Животные занимают практически все среды обитания и микросреды обитания на Земле, с фаунами, приспособленными к соленой воде, гидротермальным источникам, пресной воде, горячим источникам, болотам, лесам, пастбищам, пустыням, воздуху и внутренностям других организмов. [58] Однако животные не особенно устойчивы к жаре ; очень немногие из них могут выживать при постоянных температурах выше 50 °C (122 °F) [59] или в самых экстремально холодных пустынях континентальной Антарктиды . [60]

Разнообразие

Размер

Синий кит — самое крупное животное, когда-либо жившее.

Синий кит ( Balaenoptera musculus ) является крупнейшим животным, которое когда-либо жило, весом до 190 тонн и длиной до 33,6 метров (110 футов). [61] [62] [63] Самым крупным из ныне живущих наземных животных является африканский саванный слон ( Loxodonta africana ), весом до 12,25 тонн [61] и длиной до 10,67 метров (35,0 футов). [61] Самыми крупными наземными животными, которые когда-либо жили, были динозавры -титанозавры -зауроподы , такие как аргентинозавр , который мог весить до 73 тонн, и суперзавр , который мог достигать 39 метров. [64] [65] Некоторые животные микроскопические; некоторые Myxozoa ( облигатные паразиты в пределах Cnidaria) никогда не вырастают больше 20  мкм , [66] а один из самых маленьких видов ( Myxobolus shekel ) не превышает 8,5 мкм во взрослом состоянии. [67]

Численность и местообитания основных типов

В следующей таблице перечислены предполагаемые количества описанных существующих видов для основных типов животных [68] вместе с их основными местами обитания (наземные, пресноводные [69] и морские), [70] и свободноживущими или паразитическими образами жизни. [71] Оценки видов, показанные здесь, основаны на числах, описанных с научной точки зрения; гораздо большие оценки были рассчитаны на основе различных средств прогнозирования, и они могут сильно различаться. Например, было описано около 25 000–27 000 видов нематод, в то время как опубликованные оценки общего количества видов нематод включают 10 000–20 000; 500 000; 10 миллионов; и 100 миллионов. [72] Используя закономерности в таксономической иерархии, общее количество видов животных, включая еще не описанные, было подсчитано примерно в 7,77 миллиона в 2011 году. [73] [74] [b]

Эволюционное происхождение

Свидетельства о животных были найдены еще в криогеновый период. 24-изопропилхолестан (24-ipc) был обнаружен в породах возрастом около 650 миллионов лет; он производится только губками и водорослями -пелагофитами . Его вероятное происхождение связано с губками, основываясь на оценках молекулярных часов для происхождения продукции 24-ipc в обеих группах. Анализы водорослей-пелагофитов последовательно восстанавливают фанерозойское происхождение, в то время как анализы губок восстанавливают неопротерозойское происхождение, что согласуется с появлением 24-ipc в ископаемой летописи. [89] [90]

Первые окаменелости тел животных появляются в эдиакарском периоде , представленные такими формами, как Charnia и Spriggina . Долгое время возникали сомнения в том, что эти окаменелости действительно представляют животных, [91] [92] [93] но открытие животного липида холестерина в окаменелостях Dickinsonia устанавливает их природу. [94] Считается, что животные возникли в условиях низкого содержания кислорода, что предполагает, что они были способны жить исключительно за счет анаэробного дыхания , но по мере того, как они специализировались на аэробном метаболизме, они стали полностью зависеть от кислорода в своей среде. [95]

Многие типы животных впервые появляются в палеонтологической летописи во время кембрийского взрыва , начавшегося около 539 миллионов лет назад, в таких слоях, как сланцы Берджес . [96] Сохранившиеся типы в этих породах включают моллюсков , плеченогих , онихофор , тихоходок , членистоногих , иглокожих и полухордовых , а также многочисленные ныне вымершие формы, такие как хищный аномалокарис . Однако очевидная внезапность события может быть артефактом палеонтологической летописи, а не свидетельством того, что все эти животные появились одновременно. [97] [98] [99] [100] [101] Эта точка зрения подтверждается открытием Auroralumina attenboroughii , самого раннего известного эдиакарского кронового книдария (557–562 млн лет назад, около 20 миллионов лет до кембрийского взрыва) из леса Чарнвуд , Англия. Считается, что это один из древнейших хищников , ловивший мелкую добычу нематоцистами, как это делают современные книдарии. [102]

Некоторые палеонтологи предположили, что животные появились намного раньше кембрийского взрыва, возможно, уже 1 миллиард лет назад. [103] Ранние окаменелости, которые могут представлять животных, появляются, например, в породах формации Трезона возрастом 665 миллионов лет в Южной Австралии . Эти окаменелости интерпретируются как, скорее всего, ранние губки . [104] Следы ископаемых, такие как следы и норы, найденные в тонийский период (от 1 млрд лет назад), могут указывать на присутствие трехслойных червеобразных животных, примерно таких же больших (около 5 мм в ширину) и сложных, как дождевые черви. [105] Однако похожие следы оставляет гигантский одноклеточный протист Gromia sphaerica , поэтому следы ископаемых тонийского периода могут не указывать на раннюю эволюцию животных. [106] [107] Примерно в то же время слоистые маты микроорганизмов , называемые строматолитами, уменьшились в разнообразии, возможно, из-за выедания недавно эволюционировавшими животными. [108] Такие объекты, как заполненные осадком трубки, которые напоминают следы ископаемых нор червеобразных животных, были найдены в породах возрастом 1,2 гья в Северной Америке, в породах возрастом 1,5 гья в Австралии и Северной Америке и в породах возрастом 1,7 гья в Австралии. Их интерпретация как имеющих животное происхождение оспаривается, поскольку они могут быть водосбросами или другими структурами. [109] [110]

Филогения

Внешняя филогения

Животные монофилетичны , то есть произошли от общего предка. Животные являются сестринской группой хоанофлагеллят , с которыми они образуют Choanozoa . [111] Даты на филогенетическом дереве указывают приблизительно, сколько миллионов лет назад ( млн лет назад ) разделились линии. [112] [113] [114] [115] [116]

Рос-Роше и коллеги (2021) прослеживают происхождение животных от одноклеточных предков, предоставляя внешнюю филогению, показанную на кладограмме. Неопределенность отношений обозначена пунктирными линиями. [117]

Внутренняя филогения

Наиболее базальные животные, Porifera , Ctenophora , Cnidaria и Placozoa , имеют планы тела, в которых отсутствует двусторонняя симметрия . Их отношения все еще оспариваются; сестринской группой для всех других животных могут быть Porifera или Ctenophora, [118] у обоих из которых отсутствуют hox-гены , которые важны для развития плана тела . [119]

Hox-гены обнаружены у Placozoa, [120] [121] Cnidaria, [122] и Bilateria. [123] [124] Было идентифицировано 6331 группа генов , общих для всех ныне живущих животных; они могли произойти от одного общего предка, жившего 650 миллионов лет назад в докембрии . 25 из них являются новыми основными группами генов, обнаруженными только у животных; из них 8 предназначены для основных компонентов сигнальных путей Wnt и TGF-beta , которые могли позволить животным стать многоклеточными, предоставив шаблон для системы осей тела (в трех измерениях), а еще 7 предназначены для факторов транскрипции, включая гомеодоменные белки, участвующие в контроле развития . [125] [126]

Гирибет и Эджкомб (2020) предлагают то, что они считают консенсусной внутренней филогенией животных, воплощающей неопределенность относительно структуры в основании дерева (пунктирные линии). [127]

Альтернативная филогения, предложенная Капли и коллегами (2021), предлагает кладу Xenambulacraria для Xenacoelamorpha + Ambulacraria; она либо входит в состав Deuterostomia, как сестра Chordata, либо Deuterostomia выделяются как парафилетические, а Xenambulacraria является сестринской для предлагаемой клады Centroneuralia , состоящей из Chordata + Protostomia. [128]

Eumetazoa , клад, который содержит Ctenophora и ParaHoxozoa , был предложен в качестве сестринской группы для Porifera . [129] Конкурирующая гипотеза — клад Benthozoa , который состоит из Porifera и ParaHoxozoa как сестринской группы для Ctenophora . [130] [131]

Небилатерия

К недвухсторонним относятся губки (в центре) и кораллы (на заднем плане).

У некоторых типов животных отсутствует двусторонняя симметрия. Это Porifera (морские губки), Placozoa , Cnidaria (куда входят медузы , актинии и кораллы) и Ctenophora (гребневики).

Губки физически очень отличаются от других животных, и долгое время считалось, что они разделились первыми, представляя собой древнейший тип животных и образуя сестринскую кладу для всех других животных. [132] Несмотря на их морфологическое несходство со всеми другими животными, генетические данные свидетельствуют о том, что губки могут быть более тесно связаны с другими животными, чем гребневики. [133] [134] У губок отсутствует сложная организация, обнаруженная в большинстве других типов животных; [135] их клетки дифференцированы, но в большинстве случаев не организованы в отдельные ткани, в отличие от всех других животных. [136] Обычно они питаются, втягивая воду через поры, отфильтровывая мелкие частицы пищи. [137]

Гребневик и книдарии радиально симметричны и имеют пищеварительные камеры с одним отверстием, которое служит как ртом, так и анусом. [138] Животные обоих типов имеют различные ткани, но они не организованы в отдельные органы . [139] Они являются двухслойными , имеющими только два основных зародышевых листка, эктодерму и энтодерму. [140]

У крошечных плакозоев нет постоянной пищеварительной камеры и симметрии; они внешне напоминают амеб. [141] [142] Их филогения плохо определена и находится в стадии активного изучения. [133] [143]

Билатерия

Идеализированный план тела билатерального животного . [d] С удлиненным телом и направлением движения животное имеет головной и хвостовой концы. Органы чувств и рот образуют основу головы . Противоположные кольцевые и продольные мышцы обеспечивают перистальтическое движение .

Остальные животные, подавляющее большинство — включающее около 29 типов и более миллиона видов — образуют кладу Bilateria , которые имеют двусторонне-симметричный план тела . Bilateria являются трехслойными , с тремя хорошо развитыми зародышевыми слоями, и их ткани образуют отдельные органы . Пищеварительная камера имеет два отверстия, рот и анус, и есть внутренняя полость тела, целом или псевдоцелом. Эти животные имеют головной конец (передний) и хвостовой конец (задний), заднюю (дорсальную) поверхность и брюшную (вентральную) поверхность, а также левую и правую стороны. [144] [145]

Наличие передней части означает, что эта часть тела сталкивается со стимулами, такими как пища, что способствует цефализации , развитию головы с органами чувств и ртом. У многих билатерий есть комбинация кольцевых мышц , которые сжимают тело, делая его длиннее, и противостоящего набора продольных мышц, которые укорачивают тело; [145] это позволяет мягкотелым животным с гидростатическим скелетом двигаться с помощью перистальтики . [146] У них также есть кишечник, который простирается через в основном цилиндрическое тело от рта до ануса. У многих типов билатерий есть первичные личинки , которые плавают с помощью ресничек и имеют апикальный орган, содержащий сенсорные клетки. Однако с течением времени эволюционировали пространства-потомки, которые потеряли одну или несколько из каждой из этих характеристик. Например, взрослые иглокожие радиально симметричны (в отличие от их личинок), в то время как некоторые паразитические черви имеют чрезвычайно упрощенную структуру тела. [144] [145]

Генетические исследования значительно изменили понимание зоологами взаимоотношений внутри Bilateria. Большинство из них, по-видимому, принадлежат к двум основным линиям: первичноротым и вторичноротым . [147] Часто предполагается, что самые базальные билатерии — это Xenacoelomorpha , а все остальные билатерии относятся к подкладу Nephrozoa . [148] [149] [150] Однако это предположение было оспорено, поскольку другие исследования показали, что ксенацеломорфы более тесно связаны с Ambulacraria , чем с другими билатериями. [128]

Первичноротые и вторичноротые

Кишечник билатеральных животных развивается двумя способами. У многих первичноротых бластопор развивается в рот, а у вторичноротых он становится анусом.

Первичноротые и вторичноротые отличаются несколькими способами. На ранних стадиях развития эмбрионы вторичноротых претерпевают радиальное дробление во время деления клеток, в то время как многие первичноротые ( Spiralia ) претерпевают спиральное дробление. [151] Животные из обеих групп обладают полным пищеварительным трактом, но у первичноротых первое отверстие эмбриональной кишки развивается в рот, а анус формируется вторично. У вторичноротых сначала формируется анус, а рот развивается вторично. [152] [153] Большинство первичноротых имеют шизоцельное развитие , при котором клетки просто заполняют внутреннюю часть гаструлы, образуя мезодерму. У вторичноротых мезодерма формируется путем энтероцельного образования , посредством инвагинации энтодермы. [154]

Основными типами вторичноротых являются иглокожие и хордовые. [155] Иглокожие являются исключительно морскими и включают морских звезд , морских ежей и морских огурцов . [156] Среди хордовых преобладают позвоночные (животные с позвоночником ), [157] которые состоят из рыб , амфибий , рептилий , птиц и млекопитающих . [158] Вторичноротые также включают полухордовых (желудевых червей). [159] [160]

Экдизозои
Ecdysis : стрекоза выползла из сухой экзувии и расправляет крылья. Как и у других членистоногих , ее тело разделено на сегменты .

The Ecdysozoa are protostomes, named after their shared trait of ecdysis, growth by moulting.[161] They include the largest animal phylum, the Arthropoda, which contains insects, spiders, crabs, and their kin. All of these have a body divided into repeating segments, typically with paired appendages. Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits. The ecdysozoans also include the Nematoda or roundworms, perhaps the second largest animal phylum. Roundworms are typically microscopic and occur in nearly every environment where there is water;[162] some are important parasites.[163] Smaller phyla related to them are the Nematomorpha or horsehair worms, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.[164]

Spiralia
Spiral cleavage in a sea snail embryo

The Spiralia are a large group of protostomes that develop by spiral cleavage in the early embryo.[165] The Spiralia's phylogeny has been disputed, but it contains a large clade, the superphylum Lophotrochozoa, and smaller groups of phyla such as the Rouphozoa which includes the gastrotrichs and the flatworms. All of these are grouped as the Platytrochozoa, which has a sister group, the Gnathifera, which includes the rotifers.[166][167]

The Lophotrochozoa includes the molluscs, annelids, brachiopods, nemerteans, bryozoa and entoprocts.[166][168][169] The molluscs, the second-largest animal phylum by number of described species, includes snails, clams, and squids, while the annelids are the segmented worms, such as earthworms, lugworms, and leeches. These two groups have long been considered close relatives because they share trochophore larvae.[170][171]

History of classification

Jean-Baptiste de Lamarck led the creation of a modern classification of invertebrates, breaking up Linnaeus's "Vermes" into 9 phyla by 1809.[172]

In the classical era, Aristotle divided animals,[e] based on his own observations, into those with blood (roughly, the vertebrates) and those without. The animals were then arranged on a scale from man (with blood, 2 legs, rational soul) down through the live-bearing tetrapods (with blood, 4 legs, sensitive soul) and other groups such as crustaceans (no blood, many legs, sensitive soul) down to spontaneously generating creatures like sponges (no blood, no legs, vegetable soul). Aristotle was uncertain whether sponges were animals, which in his system ought to have sensation, appetite, and locomotion, or plants, which did not: he knew that sponges could sense touch and would contract if about to be pulled off their rocks, but that they were rooted like plants and never moved about.[173]

In 1758, Carl Linnaeus created the first hierarchical classification in his Systema Naturae.[174] In his original scheme, the animals were one of three kingdoms, divided into the classes of Vermes, Insecta, Pisces, Amphibia, Aves, and Mammalia. Since then, the last four have all been subsumed into a single phylum, the Chordata, while his Insecta (which included the crustaceans and arachnids) and Vermes have been renamed or broken up. The process was begun in 1793 by Jean-Baptiste de Lamarck, who called the Vermes une espèce de chaos (a chaotic mess)[f] and split the group into three new phyla: worms, echinoderms, and polyps (which contained corals and jellyfish). By 1809, in his Philosophie Zoologique, Lamarck had created 9 phyla apart from vertebrates (where he still had 4 phyla: mammals, birds, reptiles, and fish) and molluscs, namely cirripedes, annelids, crustaceans, arachnids, insects, worms, radiates, polyps, and infusorians.[172]

In his 1817 Le Règne Animal, Georges Cuvier used comparative anatomy to group the animals into four embranchements ("branches" with different body plans, roughly corresponding to phyla), namely vertebrates, molluscs, articulated animals (arthropods and annelids), and zoophytes (radiata) (echinoderms, cnidaria and other forms).[176] This division into four was followed by the embryologist Karl Ernst von Baer in 1828, the zoologist Louis Agassiz in 1857, and the comparative anatomist Richard Owen in 1860.[177]

In 1874, Ernst Haeckel divided the animal kingdom into two subkingdoms: Metazoa (multicellular animals, with five phyla: coelenterates, echinoderms, articulates, molluscs, and vertebrates) and Protozoa (single-celled animals), including a sixth animal phylum, sponges.[178][177] The protozoa were later moved to the former kingdom Protista, leaving only the Metazoa as a synonym of Animalia.[179]

In human culture

Practical uses

Sides of beef in a slaughterhouse

The human population exploits a large number of other animal species for food, both of domesticated livestock species in animal husbandry and, mainly at sea, by hunting wild species.[180][181] Marine fish of many species are caught commercially for food. A smaller number of species are farmed commercially.[180][182][183] Humans and their livestock make up more than 90% of the biomass of all terrestrial vertebrates, and almost as much as all insects combined.[184]

Invertebrates including cephalopods, crustaceans, and bivalve or gastropod molluscs are hunted or farmed for food.[185] Chickens, cattle, sheep, pigs, and other animals are raised as livestock for meat across the world.[181][186][187] Animal fibres such as wool are used to make textiles, while animal sinews have been used as lashings and bindings, and leather is widely used to make shoes and other items. Animals have been hunted and farmed for their fur to make items such as coats and hats.[188] Dyestuffs including carmine (cochineal),[189][190] shellac,[191][192] and kermes[193][194] have been made from the bodies of insects. Working animals including cattle and horses have been used for work and transport from the first days of agriculture.[195]

Animals such as the fruit fly Drosophila melanogaster serve a major role in science as experimental models.[196][197][198][199] Animals have been used to create vaccines since their discovery in the 18th century.[200] Some medicines such as the cancer drug trabectedin are based on toxins or other molecules of animal origin.[201]

A gun dog retrieving a duck during a hunt

People have used hunting dogs to help chase down and retrieve animals,[202] and birds of prey to catch birds and mammals,[203] while tethered cormorants have been used to catch fish.[204] Poison dart frogs have been used to poison the tips of blowpipe darts.[205][206]A wide variety of animals are kept as pets, from invertebrates such as tarantulas, octopuses, and praying mantises,[207] reptiles such as snakes and chameleons,[208] and birds including canaries, parakeets, and parrots[209] all finding a place. However, the most kept pet species are mammals, namely dogs, cats, and rabbits.[210][211][212] There is a tension between the role of animals as companions to humans, and their existence as individuals with rights of their own.[213]

A wide variety of terrestrial and aquatic animals are hunted for sport.[214]

Symbolic uses

The signs of the Western and Chinese zodiacs are based on animals.[215][216] In China and Japan, the butterfly has been seen as the personification of a person's soul,[217] and in classical representation the butterfly is also the symbol of the soul.[218][219]

Artistic vision: Still Life with Lobster and Oysters by Alexander Coosemans, c. 1660

Animals have been the subjects of art from the earliest times, both historical, as in ancient Egypt, and prehistoric, as in the cave paintings at Lascaux. Major animal paintings include Albrecht Dürer's 1515 The Rhinoceros, and George Stubbs's c. 1762 horse portrait Whistlejacket.[220] Insects, birds and mammals play roles in literature and film,[221] such as in giant bug movies.[222][223][224]

Animals including insects[217] and mammals[225] feature in mythology and religion. The scarab beetle was sacred in ancient Egypt,[226] and the cow is sacred in Hinduism.[227] Among other mammals, deer,[225] horses,[228] lions,[229] bats,[230] bears,[231] and wolves[232] are the subjects of myths and worship.

See also

Notes

  1. ^ Henneguya zschokkei does not have mitochondrial DNA or utilize aerobic respiration.[19]
  2. ^ The application of DNA barcoding to taxonomy further complicates this; a 2016 barcoding analysis estimated a total count of nearly 100,000 insect species for Canada alone, and extrapolated that the global insect fauna must be in excess of 10 million species, of which nearly 2 million are in a single fly family known as gall midges (Cecidomyiidae).[75]
  3. ^ Not including parasitoids.[71]
  4. ^ Compare File:Annelid redone w white background.svg for a more specific and detailed model of a particular phylum with this general body plan.
  5. ^ In his History of Animals and Parts of Animals.
  6. ^ The French prefix une espèce de is pejorative.[175]

References

  1. ^ de Queiroz, Kevin; Cantino, Philip; Gauthier, Jacques, eds. (2020). "Metazoa E. Haeckel 1874 [J. R. Garey and K. M. Halanych], converted clade name". Phylonyms: A Companion to the PhyloCode (1st ed.). CRC Press. p. 1352. doi:10.1201/9780429446276. ISBN 9780429446276. S2CID 242704712.
  2. ^ Nielsen, Claus (2008). "Six major steps in animal evolution: are we derived sponge larvae?". Evolution & Development. 10 (2): 241–257. doi:10.1111/j.1525-142X.2008.00231.x. ISSN 1520-541X. PMID 18315817. S2CID 8531859.
  3. ^ a b c Rothmaler, Werner (1951). "Die Abteilungen und Klassen der Pflanzen". Feddes Repertorium, Journal of Botanical Taxonomy and Geobotany. 54 (2–3): 256–266. doi:10.1002/fedr.19510540208.
  4. ^ "animalia". Merriam-Webster.com Dictionary. Merriam-Webster.
  5. ^ Antcliffe, Jonathan B.; Callow, Richard H. T.; Brasier, Martin D. (November 2014). "Giving the early fossil record of sponges a squeeze". Biological Reviews. 89 (4): 972–1004. doi:10.1111/brv.12090. PMID 24779547. S2CID 22630754.
  6. ^ Cresswell, Julia (2010). The Oxford Dictionary of Word Origins (2nd ed.). New York: Oxford University Press. ISBN 978-0-19-954793-7. 'having the breath of life', from anima 'air, breath, life'.
  7. ^ "Animal". The American Heritage Dictionary (4th ed.). Houghton Mifflin. 2006.
  8. ^ "animal". English Oxford Living Dictionaries. Archived from the original on 26 July 2018. Retrieved 26 July 2018.
  9. ^ Boly, Melanie; Seth, Anil K.; Wilke, Melanie; Ingmundson, Paul; Baars, Bernard; Laureys, Steven; Edelman, David; Tsuchiya, Naotsugu (2013). "Consciousness in humans and non-human animals: recent advances and future directions". Frontiers in Psychology. 4: 625. doi:10.3389/fpsyg.2013.00625. PMC 3814086. PMID 24198791.
  10. ^ "The use of non-human animals in research". Royal Society. Archived from the original on 12 June 2018. Retrieved 7 June 2018.
  11. ^ "Nonhuman definition and meaning". Collins English Dictionary. Archived from the original on 12 June 2018. Retrieved 7 June 2018.
  12. ^ "Metazoan". Merriam-Webster. Archived from the original on 6 July 2022. Retrieved 6 July 2022.
  13. ^ "Metazoa". Collins. Archived from the original on 30 July 2022. Retrieved 6 July 2022. and further meta- (sense 1) Archived 30 July 2022 at the Wayback Machine and -zoa Archived 30 July 2022 at the Wayback Machine.
  14. ^ Avila, Vernon L. (1995). Biology: Investigating Life on Earth. Jones & Bartlett Learning. pp. 767–. ISBN 978-0-86720-942-6.
  15. ^ Davidson, Michael W. "Animal Cell Structure". Archived from the original on 20 September 2007. Retrieved 20 September 2007.
  16. ^ "Palaeos:Metazoa". Palaeos. Archived from the original on 28 February 2018. Retrieved 25 February 2018.
  17. ^ Bergman, Jennifer. "Heterotrophs". Archived from the original on 29 August 2007. Retrieved 30 September 2007.
  18. ^ Douglas, Angela E.; Raven, John A. (January 2003). "Genomes at the interface between bacteria and organelles". Philosophical Transactions of the Royal Society B. 358 (1429): 5–17. doi:10.1098/rstb.2002.1188. PMC 1693093. PMID 12594915.
  19. ^ Andrew, Scottie (26 February 2020). "Scientists discovered the first animal that doesn't need oxygen to live. It's changing the definition of what an animal can be". CNN. Archived from the original on 10 January 2022. Retrieved 28 February 2020.
  20. ^ Mentel, Marek; Martin, William (2010). "Anaerobic animals from an ancient, anoxic ecological niche". BMC Biology. 8: 32. doi:10.1186/1741-7007-8-32. PMC 2859860. PMID 20370917.
  21. ^ Saupe, S. G. "Concepts of Biology". Archived from the original on 21 November 2007. Retrieved 30 September 2007.
  22. ^ Minkoff, Eli C. (2008). Barron's EZ-101 Study Keys Series: Biology (2nd, revised ed.). Barron's Educational Series. p. 48. ISBN 978-0-7641-3920-8.
  23. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2002). Molecular Biology of the Cell (4th ed.). Garland Science. ISBN 978-0-8153-3218-3. Archived from the original on 23 December 2016. Retrieved 29 August 2017.
  24. ^ Sangwal, Keshra (2007). Additives and crystallization processes: from fundamentals to applications. John Wiley and Sons. p. 212. ISBN 978-0-470-06153-4.
  25. ^ Becker, Wayne M. (1991). The world of the cell. Benjamin Cummings. ISBN 978-0-8053-0870-9.
  26. ^ Magloire, Kim (2004). Cracking the AP Biology Exam, 2004–2005 Edition. The Princeton Review. p. 45. ISBN 978-0-375-76393-9.
  27. ^ Starr, Cecie (2007). Biology: Concepts and Applications without Physiology. Cengage Learning. pp. 362, 365. ISBN 978-0-495-38150-1. Retrieved 19 May 2020.
  28. ^ Hillmer, Gero; Lehmann, Ulrich (1983). Fossil Invertebrates. Translated by J. Lettau. Cambridge University Press Archive. p. 54. ISBN 978-0-521-27028-1. Retrieved 8 January 2016.
  29. ^ Knobil, Ernst (1998). Encyclopedia of reproduction, Volume 1. Academic Press. p. 315. ISBN 978-0-12-227020-8.
  30. ^ Schwartz, Jill (2010). Master the GED 2011. Peterson's. p. 371. ISBN 978-0-7689-2885-3.
  31. ^ Hamilton, Matthew B. (2009). Population genetics. Wiley-Blackwell. p. 55. ISBN 978-1-4051-3277-0.
  32. ^ Ville, Claude Alvin; Walker, Warren Franklin; Barnes, Robert D. (1984). General zoology. Saunders College Pub. p. 467. ISBN 978-0-03-062451-3.
  33. ^ Hamilton, William James; Boyd, James Dixon; Mossman, Harland Winfield (1945). Human embryology: (prenatal development of form and function). Williams & Wilkins. p. 330.
  34. ^ Philips, Joy B. (1975). Development of vertebrate anatomy. Mosby. p. 176. ISBN 978-0-8016-3927-2.
  35. ^ The Encyclopedia Americana: a library of universal knowledge, Volume 10. Encyclopedia Americana Corp. 1918. p. 281.
  36. ^ Romoser, William S.; Stoffolano, J. G. (1998). The science of entomology. WCB McGraw-Hill. p. 156. ISBN 978-0-697-22848-2.
  37. ^ Charlesworth, D.; Willis, J. H. (2009). "The genetics of inbreeding depression". Nature Reviews Genetics. 10 (11): 783–796. doi:10.1038/nrg2664. PMID 19834483. S2CID 771357.
  38. ^ Bernstein, H.; Hopf, F. A.; Michod, R. E. (1987). "The Molecular Basis of the Evolution of Sex". Molecular Genetics of Development. Advances in Genetics. Vol. 24. pp. 323–370. doi:10.1016/s0065-2660(08)60012-7. ISBN 978-0-12-017624-3. PMID 3324702.
  39. ^ Pusey, Anne; Wolf, Marisa (1996). "Inbreeding avoidance in animals". Trends Ecol. Evol. 11 (5): 201–206. Bibcode:1996TEcoE..11..201P. doi:10.1016/0169-5347(96)10028-8. PMID 21237809.
  40. ^ Adiyodi, K. G.; Hughes, Roger N.; Adiyodi, Rita G. (July 2002). Reproductive Biology of Invertebrates, Volume 11, Progress in Asexual Reproduction. Wiley. p. 116. ISBN 978-0-471-48968-9.
  41. ^ Schatz, Phil. "Concepts of Biology: How Animals Reproduce". OpenStax College. Archived from the original on 6 March 2018. Retrieved 5 March 2018.
  42. ^ Marchetti, Mauro; Rivas, Victoria (2001). Geomorphology and environmental impact assessment. Taylor & Francis. p. 84. ISBN 978-90-5809-344-8.
  43. ^ Levy, Charles K. (1973). Elements of Biology. Appleton-Century-Crofts. p. 108. ISBN 978-0-390-55627-1.
  44. ^ Begon, M.; Townsend, C.; Harper, J. (1996). Ecology: Individuals, populations and communities (Third ed.). Blackwell Science. ISBN 978-0-86542-845-4.
  45. ^ Allen, Larry Glen; Pondella, Daniel J.; Horn, Michael H. (2006). Ecology of marine fishes: California and adjacent waters. University of California Press. p. 428. ISBN 978-0-520-24653-9.
  46. ^ Caro, Tim (2005). Antipredator Defenses in Birds and Mammals. University of Chicago Press. pp. 1–6 and passim.
  47. ^ Simpson, Alastair G.B; Roger, Andrew J. (2004). "The real 'kingdoms' of eukaryotes". Current Biology. 14 (17): R693–696. Bibcode:2004CBio...14.R693S. doi:10.1016/j.cub.2004.08.038. PMID 15341755. S2CID 207051421.
  48. ^ Stevens, Alison N. P. (2010). "Predation, Herbivory, and Parasitism". Nature Education Knowledge. 3 (10): 36. Archived from the original on 30 September 2017. Retrieved 12 February 2018.
  49. ^ Jervis, M. A.; Kidd, N. A. C. (November 1986). "Host-Feeding Strategies in Hymenopteran Parasitoids". Biological Reviews. 61 (4): 395–434. doi:10.1111/j.1469-185x.1986.tb00660.x. S2CID 84430254.
  50. ^ Meylan, Anne (22 January 1988). "Spongivory in Hawksbill Turtles: A Diet of Glass". Science. 239 (4838): 393–395. Bibcode:1988Sci...239..393M. doi:10.1126/science.239.4838.393. JSTOR 1700236. PMID 17836872. S2CID 22971831.
  51. ^ Clutterbuck, Peter (2000). Understanding Science: Upper Primary. Blake Education. p. 9. ISBN 978-1-86509-170-9.
  52. ^ Gupta, P. K. (1900). Genetics Classical To Modern. Rastogi Publications. p. 26. ISBN 978-81-7133-896-2.
  53. ^ Garrett, Reginald; Grisham, Charles M. (2010). Biochemistry. Cengage Learning. p. 535. ISBN 978-0-495-10935-8.
  54. ^ Castro, Peter; Huber, Michael E. (2007). Marine Biology (7th ed.). McGraw-Hill. p. 376. ISBN 978-0-07-722124-9.
  55. ^ Rota-Stabelli, Omar; Daley, Allison C.; Pisani, Davide (2013). "Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution". Current Biology. 23 (5): 392–8. Bibcode:2013CBio...23..392R. doi:10.1016/j.cub.2013.01.026. PMID 23375891.
  56. ^ Daeschler, Edward B.; Shubin, Neil H.; Jenkins, Farish A. Jr. (6 April 2006). "A Devonian tetrapod-like fish and the evolution of the tetrapod body plan". Nature. 440 (7085): 757–763. Bibcode:2006Natur.440..757D. doi:10.1038/nature04639. PMID 16598249.
  57. ^ Clack, Jennifer A. (21 November 2005). "Getting a Leg Up on Land". Scientific American. 293 (6): 100–7. Bibcode:2005SciAm.293f.100C. doi:10.1038/scientificamerican1205-100. PMID 16323697.
  58. ^ Margulis, Lynn; Schwartz, Karlene V.; Dolan, Michael (1999). Diversity of Life: The Illustrated Guide to the Five Kingdoms. Jones & Bartlett Learning. pp. 115–116. ISBN 978-0-7637-0862-7.
  59. ^ Clarke, Andrew (2014). "The thermal limits to life on Earth" (PDF). International Journal of Astrobiology. 13 (2): 141–154. Bibcode:2014IJAsB..13..141C. doi:10.1017/S1473550413000438. Archived (PDF) from the original on 24 April 2019.
  60. ^ "Land animals". British Antarctic Survey. Archived from the original on 6 November 2018. Retrieved 7 March 2018.
  61. ^ a b c Wood, Gerald (1983). The Guinness Book of Animal Facts and Feats. Enfield, Middlesex : Guinness Superlatives. ISBN 978-0-85112-235-9.
  62. ^ Davies, Ella (20 April 2016). "The longest animal alive may be one you never thought of". BBC Earth. Archived from the original on 19 March 2018. Retrieved 1 March 2018.
  63. ^ "Largest mammal". Guinness World Records. Archived from the original on 31 January 2018. Retrieved 1 March 2018.
  64. ^ Mazzetta, Gerardo V.; Christiansen, Per; Fariña, Richard A. (2004). "Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs". Historical Biology. 16 (2–4): 71–83. Bibcode:2004HBio...16...71M. CiteSeerX 10.1.1.694.1650. doi:10.1080/08912960410001715132. S2CID 56028251.
  65. ^ Curtice, Brian (2020). "Society of Vertebrate Paleontology" (PDF). Vertpaleo.org. Archived (PDF) from the original on 19 October 2021. Retrieved 30 December 2022.
  66. ^ Fiala, Ivan (10 July 2008). "Myxozoa". Tree of Life Web Project. Archived from the original on 1 March 2018. Retrieved 4 March 2018.
  67. ^ Kaur, H.; Singh, R. (2011). "Two new species of Myxobolus (Myxozoa: Myxosporea: Bivalvulida) infecting an Indian major carp and a cat fish in wetlands of Punjab, India". Journal of Parasitic Diseases. 35 (2): 169–176. doi:10.1007/s12639-011-0061-4. PMC 3235390. PMID 23024499.
  68. ^ a b c d e f g h i j k l m n o Zhang, Zhi-Qiang (30 August 2013). "Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)". Zootaxa. 3703 (1): 5. doi:10.11646/zootaxa.3703.1.3. Archived from the original on 24 April 2019. Retrieved 2 March 2018.
  69. ^ a b c d e f g h i j Balian, E. V.; Lévêque, C.; Segers, H.; Martens, K. (2008). Freshwater Animal Diversity Assessment. Springer. p. 628. ISBN 978-1-4020-8259-7.
  70. ^ a b c d e f g h i j k l m n Hogenboom, Melissa. "There are only 35 kinds of animal and most are really weird". BBC Earth. Archived from the original on 10 August 2018. Retrieved 2 March 2018.
  71. ^ a b c d e f g h Poulin, Robert (2007). Evolutionary Ecology of Parasites. Princeton University Press. p. 6. ISBN 978-0-691-12085-0.
  72. ^ a b c d Felder, Darryl L.; Camp, David K. (2009). Gulf of Mexico Origin, Waters, and Biota: Biodiversity. Texas A&M University Press. p. 1111. ISBN 978-1-60344-269-5.
  73. ^ "How many species on Earth? About 8.7 million, new estimate says". 24 August 2011. Archived from the original on 1 July 2018. Retrieved 2 March 2018.
  74. ^ Mora, Camilo; Tittensor, Derek P.; Adl, Sina; Simpson, Alastair G.B.; Worm, Boris (23 August 2011). Mace, Georgina M. (ed.). "How Many Species Are There on Earth and in the Ocean?". PLOS Biology. 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC 3160336. PMID 21886479.
  75. ^ Hebert, Paul D.N.; Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R. (1 August 2016). "Counting animal species with DNA barcodes: Canadian insects". Philosophical Transactions of the Royal Society B: Biological Sciences. 371 (1702): 20150333. doi:10.1098/rstb.2015.0333. PMC 4971185. PMID 27481785.
  76. ^ Stork, Nigel E. (January 2018). "How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?". Annual Review of Entomology. 63 (1): 31–45. doi:10.1146/annurev-ento-020117-043348. PMID 28938083. S2CID 23755007. Stork notes that 1m insects have been named, making much larger predicted estimates.
  77. ^ Poore, Hugh F. (2002). "Introduction". Crustacea: Malacostraca. Zoological catalogue of Australia. Vol. 19.2A. CSIRO Publishing. pp. 1–7. ISBN 978-0-643-06901-5.
  78. ^ a b c d Nicol, David (June 1969). "The Number of Living Species of Molluscs". Systematic Zoology. 18 (2): 251–254. doi:10.2307/2412618. JSTOR 2412618.
  79. ^ Uetz, P. "A Quarter Century of Reptile and Amphibian Databases". Herpetological Review. 52: 246–255. Archived from the original on 21 February 2022. Retrieved 2 October 2021 – via ResearchGate.
  80. ^ a b c Reaka-Kudla, Marjorie L.; Wilson, Don E.; Wilson, Edward O. (1996). Biodiversity II: Understanding and Protecting Our Biological Resources. Joseph Henry Press. p. 90. ISBN 978-0-309-52075-1.
  81. ^ Burton, Derek; Burton, Margaret (2017). Essential Fish Biology: Diversity, Structure and Function. Oxford University Press. pp. 281–282. ISBN 978-0-19-878555-2. Trichomycteridae ... includes obligate parasitic fish. Thus 17 genera from 2 subfamilies, Vandelliinae; 4 genera, 9spp. and Stegophilinae; 13 genera, 31 spp. are parasites on gills (Vandelliinae) or skin (stegophilines) of fish.
  82. ^ Sluys, R. (1999). "Global diversity of land planarians (Platyhelminthes, Tricladida, Terricola): a new indicator-taxon in biodiversity and conservation studies". Biodiversity and Conservation. 8 (12): 1663–1681. doi:10.1023/A:1008994925673. S2CID 38784755.
  83. ^ a b Pandian, T. J. (2020). Reproduction and Development in Platyhelminthes. CRC Press. pp. 13–14. ISBN 978-1-000-05490-3. Retrieved 19 May 2020.
  84. ^ Morand, Serge; Krasnov, Boris R.; Littlewood, D. Timothy J. (2015). Parasite Diversity and Diversification. Cambridge University Press. p. 44. ISBN 978-1-107-03765-6. Retrieved 2 March 2018.
  85. ^ Fontaneto, Diego. "Marine Rotifers | An Unexplored World of Richness" (PDF). JMBA Global Marine Environment. pp. 4–5. Archived (PDF) from the original on 2 March 2018. Retrieved 2 March 2018.
  86. ^ Chernyshev, A. V. (September 2021). "An updated classification of the phylum Nemertea". Invertebrate Zoology. 18 (3): 188–196. doi:10.15298/invertzool.18.3.01. S2CID 239872311. Retrieved 18 January 2023.
  87. ^ Hookabe, Natsumi; Kajihara, Hiroshi; Chernyshev, Alexei V.; Jimi, Naoto; Hasegawa, Naohiro; Kohtsuka, Hisanori; Okanishi, Masanori; Tani, Kenichiro; Fujiwara, Yoshihiro; Tsuchida, Shinji; Ueshima, Rei (2022). "Molecular Phylogeny of the Genus Nipponnemertes (Nemertea: Monostilifera: Cratenemertidae) and Descriptions of 10 New Species, With Notes on Small Body Size in a Newly Discovered Clade". Frontiers in Marine Science. 9. doi:10.3389/fmars.2022.906383. Retrieved 18 January 2023.
  88. ^ Hickman, Cleveland P.; Keen, Susan L.; Larson, Allan; Eisenhour, David J. (2018). Animal Diversity (8th ed.). McGraw-Hill Education. ISBN 978-1-260-08427-6.
  89. ^ Gold, David; et al. (22 February 2016). "Sterol and genomic analyses validate the sponge biomarker hypothesis". PNAS. 113 (10): 2684–2689. Bibcode:2016PNAS..113.2684G. doi:10.1073/pnas.1512614113. PMC 4790988. PMID 26903629.
  90. ^ Love, Gordon; et al. (5 February 2009). "Fossil steroids record the appearance of Demospongiae during the Cryogenian period". Nature. 457 (7230): 718–721. Bibcode:2009Natur.457..718L. doi:10.1038/nature07673. PMID 19194449.
  91. ^ Shen, Bing; Dong, Lin; Xiao, Shuhai; Kowalewski, Michał (2008). "The Avalon Explosion: Evolution of Ediacara Morphospace". Science. 319 (5859): 81–84. Bibcode:2008Sci...319...81S. doi:10.1126/science.1150279. PMID 18174439. S2CID 206509488.
  92. ^ Chen, Zhe; Chen, Xiang; Zhou, Chuanming; Yuan, Xunlai; Xiao, Shuhai (1 June 2018). "Late Ediacaran trackways produced by bilaterian animals with paired appendages". Science Advances. 4 (6): eaao6691. Bibcode:2018SciA....4.6691C. doi:10.1126/sciadv.aao6691. PMC 5990303. PMID 29881773.
  93. ^ Schopf, J. William (1999). Evolution!: facts and fallacies. Academic Press. p. 7. ISBN 978-0-12-628860-5.
  94. ^ a b Bobrovskiy, Ilya; Hope, Janet M.; Ivantsov, Andrey; Nettersheim, Benjamin J.; Hallmann, Christian; Brocks, Jochen J. (20 September 2018). "Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals". Science. 361 (6408): 1246–1249. Bibcode:2018Sci...361.1246B. doi:10.1126/science.aat7228. PMID 30237355.
  95. ^ Zimorski, Verena; Mentel, Marek; Tielens, Aloysius G. M.; Martin, William F. (2019). "Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation". Free Radical Biology and Medicine. 140: 279–294. doi:10.1016/j.freeradbiomed.2019.03.030. PMC 6856725. PMID 30935869.
  96. ^ "Stratigraphic Chart 2022" (PDF). International Stratigraphic Commission. February 2022. Archived (PDF) from the original on 2 April 2022. Retrieved 25 April 2022.
  97. ^ Maloof, A. C.; Porter, S. M.; Moore, J. L.; Dudas, F. O.; Bowring, S. A.; Higgins, J. A.; Fike, D. A.; Eddy, M. P. (2010). "The earliest Cambrian record of animals and ocean geochemical change". Geological Society of America Bulletin. 122 (11–12): 1731–1774. Bibcode:2010GSAB..122.1731M. doi:10.1130/B30346.1. S2CID 6694681.
  98. ^ "New Timeline for Appearances of Skeletal Animals in Fossil Record Developed by UCSB Researchers". The Regents of the University of California. 10 November 2010. Archived from the original on 3 September 2014. Retrieved 1 September 2014.
  99. ^ Conway-Morris, Simon (2003). "The Cambrian "explosion" of metazoans and molecular biology: would Darwin be satisfied?". The International Journal of Developmental Biology. 47 (7–8): 505–515. PMID 14756326. Archived from the original on 14 November 2023. Retrieved 28 September 2024.
  100. ^ Conway Morris, S (29 June 2006). "Darwin's dilemma: the realities of the Cambrian 'explosion'". Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 361 (1470): 1069–83. doi:10.1098/rstb.2006.1846. PMC 1578734. PMID 16754615.
  101. ^ "The Tree of Life". The Burgess Shale. Royal Ontario Museum. 10 June 2011. Archived from the original on 16 February 2018. Retrieved 28 February 2018.
  102. ^ a b Dunn, F. S.; Kenchington, C. G.; Parry, L. A.; Clark, J. W.; Kendall, R. S.; Wilby, P. R. (25 July 2022). "A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK". Nature Ecology & Evolution. 6 (8): 1095–1104. Bibcode:2022NatEE...6.1095D. doi:10.1038/s41559-022-01807-x. PMC 9349040. PMID 35879540.
  103. ^ Campbell, Neil A.; Reece, Jane B. (2005). Biology (7th ed.). Pearson, Benjamin Cummings. p. 526. ISBN 978-0-8053-7171-0.
  104. ^ Maloof, Adam C.; Rose, Catherine V.; Beach, Robert; Samuels, Bradley M.; Calmet, Claire C.; Erwin, Douglas H.; Poirier, Gerald R.; Yao, Nan; Simons, Frederik J. (17 August 2010). "Possible animal-body fossils in pre-Marinoan limestones from South Australia". Nature Geoscience. 3 (9): 653–659. Bibcode:2010NatGe...3..653M. doi:10.1038/ngeo934.
  105. ^ Seilacher, Adolf; Bose, Pradip K.; Pfluger, Friedrich (2 October 1998). "Triploblastic animals more than 1 billion years ago: trace fossil evidence from india". Science. 282 (5386): 80–83. Bibcode:1998Sci...282...80S. doi:10.1126/science.282.5386.80. PMID 9756480.
  106. ^ Matz, Mikhail V.; Frank, Tamara M.; Marshall, N. Justin; Widder, Edith A.; Johnsen, Sönke (9 December 2008). "Giant Deep-Sea Protist Produces Bilaterian-like Traces". Current Biology. 18 (23): 1849–54. Bibcode:2008CBio...18.1849M. doi:10.1016/j.cub.2008.10.028. PMID 19026540. S2CID 8819675.
  107. ^ Reilly, Michael (20 November 2008). "Single-celled giant upends early evolution". NBC News. Archived from the original on 29 March 2013. Retrieved 5 December 2008.
  108. ^ Bengtson, S. (2002). "Origins and early evolution of predation" (PDF). In Kowalewski, M.; Kelley, P. H. (eds.). The fossil record of predation. The Paleontological Society Papers. Vol. 8. The Paleontological Society. pp. 289–317. Archived (PDF) from the original on 30 October 2019. Retrieved 3 March 2018.
  109. ^ Seilacher, Adolf (2007). Trace fossil analysis. Berlin: Springer. pp. 176–177. ISBN 978-3-540-47226-1. OCLC 191467085.
  110. ^ Breyer, J. A. (1995). "Possible new evidence for the origin of metazoans prior to 1 Ga: Sediment-filled tubes from the Mesoproterozoic Allamoore Formation, Trans-Pecos Texas". Geology. 23 (3): 269–272. Bibcode:1995Geo....23..269B. doi:10.1130/0091-7613(1995)023<0269:PNEFTO>2.3.CO;2.
  111. ^ Budd, Graham E.; Jensen, Sören (2017). "The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution". Biological Reviews. 92 (1): 446–473. doi:10.1111/brv.12239. PMID 26588818.
  112. ^ Peterson, Kevin J.; Cotton, James A.; Gehling, James G.; Pisani, Davide (27 April 2008). "The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records". Philosophical Transactions of the Royal Society of London B: Biological Sciences. 363 (1496): 1435–1443. doi:10.1098/rstb.2007.2233. PMC 2614224. PMID 18192191.
  113. ^ Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A. (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences. 108 (33): 13624–13629. Bibcode:2011PNAS..10813624P. doi:10.1073/pnas.1110633108. PMC 3158185. PMID 21810989.
  114. ^ "Raising the Standard in Fossil Calibration". Fossil Calibration Database. Archived from the original on 7 March 2018. Retrieved 3 March 2018.
  115. ^ Laumer, Christopher E.; Gruber-Vodicka, Harald; Hadfield, Michael G.; Pearse, Vicki B.; Riesgo, Ana; Marioni, John C.; Giribet, Gonzalo (2018). "Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias". eLife. 2018, 7: e36278. doi:10.7554/eLife.36278. PMC 6277202. PMID 30373720.
  116. ^ Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric; Brown, Matthew W. (2018). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/jeu.12691. PMC 6492006. PMID 30257078.
  117. ^ Ros-Rocher, Núria; Pérez-Posada, Alberto; Leger, Michelle M.; Ruiz-Trillo, Iñaki (2021). "The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition". Open Biology. 11 (2). The Royal Society: 200359. doi:10.1098/rsob.200359. PMC 8061703. PMID 33622103.
  118. ^ Kapli, Paschalia; Telford, Maximilian J. (11 December 2020). "Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha". Science Advances. 6 (10): eabc5162. Bibcode:2020SciA....6.5162K. doi:10.1126/sciadv.abc5162. PMC 7732190. PMID 33310849.
  119. ^ Giribet, Gonzalo (27 September 2016). "Genomics and the animal tree of life: conflicts and future prospects". Zoologica Scripta. 45: 14–21. doi:10.1111/zsc.12215.
  120. ^ "Evolution and Development" (PDF). Carnegie Institution for Science Department of Embryology. 1 May 2012. p. 38. Archived from the original (PDF) on 2 March 2014. Retrieved 4 March 2018.
  121. ^ Dellaporta, Stephen; Holland, Peter; Schierwater, Bernd; Jakob, Wolfgang; Sagasser, Sven; Kuhn, Kerstin (April 2004). "The Trox-2 Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary". Development Genes and Evolution. 214 (4): 170–175. doi:10.1007/s00427-004-0390-8. PMID 14997392. S2CID 41288638.
  122. ^ Finnerty, John (June 2001). "Cnidarians Reveal Intermediate Stages in the Evolution of Hox Clusters and Axial Complexity". American Zoologist. 41 (3): 608–620. doi:10.1093/icb/41.3.608.
  123. ^ Peterson, Kevin J.; Eernisse, Douglas J (2001). "Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences". Evolution and Development. 3 (3): 170–205. CiteSeerX 10.1.1.121.1228. doi:10.1046/j.1525-142x.2001.003003170.x. PMID 11440251. S2CID 7829548.
  124. ^ Kraemer-Eis, Andrea; Ferretti, Luca; Schiffer, Philipp; Heger, Peter; Wiehe, Thomas (2016). "A catalogue of Bilaterian-specific genes – their function and expression profiles in early development" (PDF). bioRxiv. doi:10.1101/041806. S2CID 89080338. Archived (PDF) from the original on 26 February 2018.
  125. ^ Zimmer, Carl (4 May 2018). "The Very First Animal Appeared Amid an Explosion of DNA". The New York Times. Archived from the original on 4 May 2018. Retrieved 4 May 2018.
  126. ^ Paps, Jordi; Holland, Peter W. H. (30 April 2018). "Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty". Nature Communications. 9 (1730 (2018)): 1730. Bibcode:2018NatCo...9.1730P. doi:10.1038/s41467-018-04136-5. PMC 5928047. PMID 29712911.
  127. ^ Giribet, G.; Edgecombe, G.D. (2020). The Invertebrate Tree of Life. Princeton University Press. p. 21. ISBN 978-0-6911-7025-1. Retrieved 27 May 2023.
  128. ^ a b Kapli, Paschalia; Natsidis, Paschalis; Leite, Daniel J.; Fursman, Maximilian; Jeffrie, Nadia; Rahman, Imran A.; Philippe, Hervé; Copley, Richard R.; Telford, Maximilian J. (19 March 2021). "Lack of support for Deuterostomia prompts reinterpretation of the first Bilateria". Science Advances. 7 (12): eabe2741. Bibcode:2021SciA....7.2741K. doi:10.1126/sciadv.abe2741. PMC 7978419. PMID 33741592.
  129. ^ Feuda, Roberto; Dohrmann, Martin; Pett, Walker; Philippe, Hervé; Rota-Stabelli, Omar; Lartillot, Nicolas; Wörheide, Gert; Pisani, Davide (2017). "Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals". Current Biology. 27 (24): 3864–3870.e4. doi:10.1016/j.cub.2017.11.008. hdl:10449/43929. PMID 29199080.
  130. ^ Schultz, Darrin T.; Haddock, Steven H. D.; Bredeson, Jessen V.; Green, Richard E.; Simakov, Oleg; Rokhsar, Daniel S. (17 May 2023). "Ancient gene linkages support ctenophores as sister to other animals". Nature. doi:10.1038/s41586-023-05936-6. PMC 10232365.
  131. ^ Erives, Albert; Fritzsch, Bernd (17 July 2019). "A screen for gene paralogies delineating evolutionary branching order of early Metazoa". bioRxiv: 704551. doi:10.1101/704551.
  132. ^ Bhamrah, H. S.; Juneja, Kavita (2003). An Introduction to Porifera. Anmol Publications. p. 58. ISBN 978-81-261-0675-2.
  133. ^ a b Schultz, Darrin T.; Haddock, Steven H. D.; Bredeson, Jessen V.; Green, Richard E.; Simakov, Oleg; Rokhsar, Daniel S. (17 May 2023). "Ancient gene linkages support ctenophores as sister to other animals". Nature. 618 (7963): 110–117. Bibcode:2023Natur.618..110S. doi:10.1038/s41586-023-05936-6. PMC 10232365. PMID 37198475. S2CID 258765122.
  134. ^ Whelan, Nathan V.; Kocot, Kevin M.; Moroz, Tatiana P.; Mukherjee, Krishanu; Williams, Peter; Paulay, Gustav; Moroz, Leonid L.; Halanych, Kenneth M. (9 October 2017). "Ctenophore relationships and their placement as the sister group to all other animals". Nature Ecology & Evolution. 1 (11): 1737–1746. Bibcode:2017NatEE...1.1737W. doi:10.1038/s41559-017-0331-3. PMC 5664179. PMID 28993654.
  135. ^ Sumich, James L. (2008). Laboratory and Field Investigations in Marine Life. Jones & Bartlett Learning. p. 67. ISBN 978-0-7637-5730-4.
  136. ^ Jessop, Nancy Meyer (1970). Biosphere; a study of life. Prentice-Hall. p. 428.
  137. ^ Sharma, N. S. (2005). Continuity And Evolution Of Animals. Mittal Publications. p. 106. ISBN 978-81-8293-018-6.
  138. ^ Langstroth, Lovell; Langstroth, Libby (2000). Newberry, Todd (ed.). A Living Bay: The Underwater World of Monterey Bay. University of California Press. p. 244. ISBN 978-0-520-22149-9.
  139. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 16. Encyclopædia Britannica. p. 523. ISBN 978-0-85229-961-6.
  140. ^ Kotpal, R.L. (2012). Modern Text Book of Zoology: Invertebrates. Rastogi Publications. p. 184. ISBN 978-81-7133-903-7.
  141. ^ Barnes, Robert D. (1982). Invertebrate Zoology. Holt-Saunders International. pp. 84–85. ISBN 978-0-03-056747-6.
  142. ^ "Introduction to Placozoa". UCMP Berkeley. Archived from the original on 25 March 2018. Retrieved 10 March 2018.
  143. ^ Srivastava, Mansi; Begovic, Emina; Chapman, Jarrod; Putnam, Nicholas H.; Hellsten, Uffe; Kawashima, Takeshi; Kuo, Alan; Mitros, Therese; Salamov, Asaf; Carpenter, Meredith L.; Signorovitch, Ana Y.; Moreno, Maria A.; Kamm, Kai; Grimwood, Jane; Schmutz, Jeremy (1 August 2008). "The Trichoplax genome and the nature of placozoans". Nature. 454 (7207): 955–960. Bibcode:2008Natur.454..955S. doi:10.1038/nature07191. PMID 18719581. S2CID 4415492.
  144. ^ a b Minelli, Alessandro (2009). Perspectives in Animal Phylogeny and Evolution. Oxford University Press. p. 53. ISBN 978-0-19-856620-5.
  145. ^ a b c Brusca, Richard C. (2016). "Introduction to the Bilateria and the Phylum Xenacoelomorpha | Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation". Invertebrates (PDF). Sinauer Associates. pp. 345–372. ISBN 978-1-60535-375-3. Archived (PDF) from the original on 24 April 2019. Retrieved 4 March 2018.
  146. ^ Quillin, K. J. (May 1998). "Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm lumbricus terrestris". Journal of Experimental Biology. 201 (12): 1871–1883. doi:10.1242/jeb.201.12.1871. PMID 9600869. Archived from the original on 17 June 2020. Retrieved 4 March 2018.
  147. ^ Telford, Maximilian J. (2008). "Resolving Animal Phylogeny: A Sledgehammer for a Tough Nut?". Developmental Cell. 14 (4): 457–459. doi:10.1016/j.devcel.2008.03.016. PMID 18410719.
  148. ^ Philippe, H.; Brinkmann, H.; Copley, R.R.; Moroz, L. L.; Nakano, H.; Poustka, A.J.; Wallberg, A.; Peterson, K. J.; Telford, M.J. (2011). "Acoelomorph flatworms are deuterostomes related to Xenoturbella". Nature. 470 (7333): 255–258. Bibcode:2011Natur.470..255P. doi:10.1038/nature09676. PMC 4025995. PMID 21307940.
  149. ^ Perseke, M.; Hankeln, T.; Weich, B.; Fritzsch, G.; Stadler, P.F.; Israelsson, O.; Bernhard, D.; Schlegel, M. (August 2007). "The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis" (PDF). Theory Biosci. 126 (1): 35–42. CiteSeerX 10.1.1.177.8060. doi:10.1007/s12064-007-0007-7. PMID 18087755. S2CID 17065867. Archived (PDF) from the original on 24 April 2019. Retrieved 4 March 2018.
  150. ^ Cannon, Johanna T.; Vellutini, Bruno C.; Smith III, Julian.; Ronquist, Frederik; Jondelius, Ulf; Hejnol, Andreas (3 February 2016). "Xenacoelomorpha is the sister group to Nephrozoa". Nature. 530 (7588): 89–93. Bibcode:2016Natur.530...89C. doi:10.1038/nature16520. PMID 26842059. S2CID 205247296. Archived from the original on 30 July 2022. Retrieved 21 February 2022.
  151. ^ Valentine, James W. (July 1997). "Cleavage patterns and the topology of the metazoan tree of life". PNAS. 94 (15): 8001–8005. Bibcode:1997PNAS...94.8001V. doi:10.1073/pnas.94.15.8001. PMC 21545. PMID 9223303.
  152. ^ Peters, Kenneth E.; Walters, Clifford C.; Moldowan, J. Michael (2005). The Biomarker Guide: Biomarkers and isotopes in petroleum systems and Earth history. Vol. 2. Cambridge University Press. p. 717. ISBN 978-0-521-83762-0.
  153. ^ Hejnol, A.; Martindale, M.Q. (2009). "The mouth, the anus, and the blastopore – open questions about questionable openings". In Telford, M.J.; Littlewood, D.J. (eds.). Animal Evolution – Genomes, Fossils, and Trees. Oxford University Press. pp. 33–40. ISBN 978-0-19-957030-0. Archived from the original on 28 October 2018. Retrieved 1 March 2018.
  154. ^ Safra, Jacob E. (2003). The New Encyclopædia Britannica, Volume 1; Volume 3. Encyclopædia Britannica. p. 767. ISBN 978-0-85229-961-6.
  155. ^ Hyde, Kenneth (2004). Zoology: An Inside View of Animals. Kendall Hunt. p. 345. ISBN 978-0-7575-0997-1.
  156. ^ Alcamo, Edward (1998). Biology Coloring Workbook. The Princeton Review. p. 220. ISBN 978-0-679-77884-4.
  157. ^ Holmes, Thom (2008). The First Vertebrates. Infobase Publishing. p. 64. ISBN 978-0-8160-5958-4.
  158. ^ Rice, Stanley A. (2007). Encyclopedia of evolution. Infobase Publishing. p. 75. ISBN 978-0-8160-5515-9.
  159. ^ Tobin, Allan J.; Dusheck, Jennie (2005). Asking about life. Cengage Learning. p. 497. ISBN 978-0-534-40653-0.
  160. ^ Simakov, Oleg; Kawashima, Takeshi; Marlétaz, Ferdinand; Jenkins, Jerry; Koyanagi, Ryo; Mitros, Therese; Hisata, Kanako; Bredeson, Jessen; Shoguchi, Eiichi (26 November 2015). "Hemichordate genomes and deuterostome origins". Nature. 527 (7579): 459–465. Bibcode:2015Natur.527..459S. doi:10.1038/nature16150. PMC 4729200. PMID 26580012.
  161. ^ Dawkins, Richard (2005). The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution. Houghton Mifflin Harcourt. p. 381. ISBN 978-0-618-61916-0.
  162. ^ Prewitt, Nancy L.; Underwood, Larry S.; Surver, William (2003). BioInquiry: making connections in biology. John Wiley. p. 289. ISBN 978-0-471-20228-8.
  163. ^ Schmid-Hempel, Paul (1998). Parasites in social insects. Princeton University Press. p. 75. ISBN 978-0-691-05924-2.
  164. ^ Miller, Stephen A.; Harley, John P. (2006). Zoology. McGraw-Hill. p. 173. ISBN 978-0-07-063682-8.
  165. ^ Shankland, M.; Seaver, E.C. (2000). "Evolution of the bilaterian body plan: What have we learned from annelids?". Proceedings of the National Academy of Sciences. 97 (9): 4434–4437. Bibcode:2000PNAS...97.4434S. doi:10.1073/pnas.97.9.4434. JSTOR 122407. PMC 34316. PMID 10781038.
  166. ^ a b Struck, Torsten H.; Wey-Fabrizius, Alexandra R.; Golombek, Anja; Hering, Lars; Weigert, Anne; Bleidorn, Christoph; Klebow, Sabrina; Iakovenko, Nataliia; Hausdorf, Bernhard; Petersen, Malte; Kück, Patrick; Herlyn, Holger; Hankeln, Thomas (2014). "Platyzoan Paraphyly Based on Phylogenomic Data Supports a Noncoelomate Ancestry of Spiralia". Molecular Biology and Evolution. 31 (7): 1833–1849. doi:10.1093/molbev/msu143. PMID 24748651.
  167. ^ Fröbius, Andreas C.; Funch, Peter (April 2017). "Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans". Nature Communications. 8 (1): 9. Bibcode:2017NatCo...8....9F. doi:10.1038/s41467-017-00020-w. PMC 5431905. PMID 28377584.
  168. ^ Hervé, Philippe; Lartillot, Nicolas; Brinkmann, Henner (May 2005). "Multigene Analyses of Bilaterian Animals Corroborate the Monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia". Molecular Biology and Evolution. 22 (5): 1246–1253. doi:10.1093/molbev/msi111. PMID 15703236.
  169. ^ Speer, Brian R. (2000). "Introduction to the Lophotrochozoa | Of molluscs, worms, and lophophores..." UCMP Berkeley. Archived from the original on 16 August 2000. Retrieved 28 February 2018.
  170. ^ Giribet, G.; Distel, D.L.; Polz, M.; Sterrer, W.; Wheeler, W.C. (2000). "Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology". Syst Biol. 49 (3): 539–562. doi:10.1080/10635159950127385. PMID 12116426.
  171. ^ Kim, Chang Bae; Moon, Seung Yeo; Gelder, Stuart R.; Kim, Won (September 1996). "Phylogenetic Relationships of Annelids, Molluscs, and Arthropods Evidenced from Molecules and Morphology". Journal of Molecular Evolution. 43 (3): 207–215. Bibcode:1996JMolE..43..207K. doi:10.1007/PL00006079. PMID 8703086.
  172. ^ a b Gould, Stephen Jay (2011). The Lying Stones of Marrakech. Harvard University Press. pp. 130–134. ISBN 978-0-674-06167-5.
  173. ^ Leroi, Armand Marie (2014). The Lagoon: How Aristotle Invented Science. Bloomsbury. pp. 111–119, 270–271. ISBN 978-1-4088-3622-4.
  174. ^ Linnaeus, Carl (1758). Systema naturae per regna tria naturae :secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis [The System of Nature through the Three Kingdoms of Nature] (in Latin) (10th ed.). Holmiae (Laurentii Salvii). Archived from the original on 10 October 2008. Retrieved 22 September 2008.
  175. ^ "Espèce de". Reverso Dictionnnaire. Archived from the original on 28 July 2013. Retrieved 1 March 2018.
  176. ^ De Wit, Hendrik C. D. (1994). Histoire du Développement de la Biologie, Volume III. Presses Polytechniques et Universitaires Romandes. pp. 94–96. ISBN 978-2-88074-264-5.
  177. ^ a b Valentine, James W. (2004). On the Origin of Phyla. University of Chicago Press. pp. 7–8. ISBN 978-0-226-84548-7.
  178. ^ Haeckel, Ernst (1874). Anthropogenie oder Entwickelungsgeschichte des menschen [Anthropogeny or the Development story of Humans] (in German). W. Engelmann. p. 202.
  179. ^ Hutchins, Michael (2003). Grzimek's Animal Life Encyclopedia (2nd ed.). Gale. p. 3. ISBN 978-0-7876-5777-2.
  180. ^ a b "Fisheries and Aquaculture". Food and Agriculture Organization. Archived from the original on 19 May 2009. Retrieved 8 July 2016.
  181. ^ a b "Graphic detail Charts, maps and infographics. Counting chickens". The Economist. 27 July 2011. Archived from the original on 15 July 2016. Retrieved 23 June 2016.
  182. ^ Helfman, Gene S. (2007). Fish Conservation: A Guide to Understanding and Restoring Global Aquatic Biodiversity and Fishery Resources. Island Press. p. 11. ISBN 978-1-59726-760-1.
  183. ^ "World Review of Fisheries and Aquaculture" (PDF). FAO. Archived (PDF) from the original on 28 August 2015. Retrieved 13 August 2015.
  184. ^ Eggleton, Paul (17 October 2020). "The State of the World's Insects". Annual Review of Environment and Resources. 45 (1): 61–82. doi:10.1146/annurev-environ-012420-050035.
  185. ^ "Shellfish climbs up the popularity ladder". Seafood Business. January 2002. Archived from the original on 5 November 2012. Retrieved 8 July 2016.
  186. ^ "Breeds of Cattle at Cattle Today". Cattle-today.com. Archived from the original on 15 July 2011. Retrieved 15 October 2013.
  187. ^ Lukefahr, S. D.; Cheeke, P. R. "Rabbit project development strategies in subsistence farming systems". Food and Agriculture Organization. Archived from the original on 6 May 2016. Retrieved 23 June 2016.
  188. ^ "Ancient fabrics, high-tech geotextiles". Natural Fibres. Archived from the original on 20 July 2016. Retrieved 8 July 2016.
  189. ^ "Cochineal and Carmine". Major colourants and dyestuffs, mainly produced in horticultural systems. FAO. Archived from the original on 6 March 2018. Retrieved 16 June 2015.
  190. ^ "Guidance for Industry: Cochineal Extract and Carmine". FDA. Archived from the original on 13 July 2016. Retrieved 6 July 2016.
  191. ^ "How Shellac Is Manufactured". The Mail (Adelaide, SA : 1912–1954). 18 December 1937. Archived from the original on 30 July 2022. Retrieved 17 July 2015.
  192. ^ Pearnchob, N.; Siepmann, J.; Bodmeier, R. (2003). "Pharmaceutical applications of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets". Drug Development and Industrial Pharmacy. 29 (8): 925–938. doi:10.1081/ddc-120024188. PMID 14570313. S2CID 13150932.
  193. ^ Barber, E. J. W. (1991). Prehistoric Textiles. Princeton University Press. pp. 230–231. ISBN 978-0-691-00224-8.
  194. ^ Munro, John H. (2003). "Medieval Woollens: Textiles, Technology, and Organisation". In Jenkins, David (ed.). The Cambridge History of Western Textiles. Cambridge University Press. pp. 214–215. ISBN 978-0-521-34107-3.
  195. ^ Pond, Wilson G. (2004). Encyclopedia of Animal Science. CRC Press. pp. 248–250. ISBN 978-0-8247-5496-9. Retrieved 22 February 2018.
  196. ^ "Genetics Research". Animal Health Trust. Archived from the original on 12 December 2017. Retrieved 24 June 2016.
  197. ^ "Drug Development". Animal Research.info. Archived from the original on 8 June 2016. Retrieved 24 June 2016.
  198. ^ "Animal Experimentation". BBC. Archived from the original on 1 July 2016. Retrieved 8 July 2016.
  199. ^ "EU statistics show decline in animal research numbers". Speaking of Research. 2013. Archived from the original on 6 October 2017. Retrieved 24 January 2016.
  200. ^ "Vaccines and animal cell technology". Animal Cell Technology Industrial Platform. 10 June 2013. Archived from the original on 13 July 2016. Retrieved 9 July 2016.
  201. ^ "Medicines by Design". National Institute of Health. Archived from the original on 4 June 2016. Retrieved 9 July 2016.
  202. ^ Fergus, Charles (2002). Gun Dog Breeds, A Guide to Spaniels, Retrievers, and Pointing Dogs. The Lyons Press. ISBN 978-1-58574-618-7.
  203. ^ "History of Falconry". The Falconry Centre. Archived from the original on 29 May 2016. Retrieved 22 April 2016.
  204. ^ King, Richard J. (2013). The Devil's Cormorant: A Natural History. University of New Hampshire Press. p. 9. ISBN 978-1-61168-225-0.
  205. ^ "AmphibiaWeb – Dendrobatidae". AmphibiaWeb. Archived from the original on 10 August 2011. Retrieved 10 October 2008.
  206. ^ Heying, H. (2003). "Dendrobatidae". Animal Diversity Web. Archived from the original on 12 February 2011. Retrieved 9 July 2016.
  207. ^ "Other bugs". Keeping Insects. 18 February 2011. Archived from the original on 7 July 2016. Retrieved 8 July 2016.
  208. ^ Kaplan, Melissa. "So, you think you want a reptile?". Anapsid.org. Archived from the original on 3 July 2016. Retrieved 8 July 2016.
  209. ^ "Pet Birds". PDSA. Archived from the original on 7 July 2016. Retrieved 8 July 2016.
  210. ^ "Animals in Healthcare Facilities" (PDF). 2012. Archived from the original (PDF) on 4 March 2016.
  211. ^ The Humane Society of the United States. "U.S. Pet Ownership Statistics". Archived from the original on 7 April 2012. Retrieved 27 April 2012.
  212. ^ "U.S. Rabbit Industry profile" (PDF). United States Department of Agriculture. Archived from the original (PDF) on 20 October 2013. Retrieved 10 July 2013.
  213. ^ Plous, S. (1993). "The Role of Animals in Human Society". Journal of Social Issues. 49 (1): 1–9. doi:10.1111/j.1540-4560.1993.tb00906.x.
  214. ^ Hummel, Richard (1994). Hunting and Fishing for Sport: Commerce, Controversy, Popular Culture. Popular Press. ISBN 978-0-87972-646-1.
  215. ^ Lau, Theodora (2005). The Handbook of Chinese Horoscopes. Souvenir Press. pp. 2–8, 30–35, 60–64, 88–94, 118–124, 148–153, 178–184, 208–213, 238–244, 270–278, 306–312, 338–344.
  216. ^ Tester, S. Jim (1987). A History of Western Astrology. Boydell & Brewer. pp. 31–33 and passim. ISBN 978-0-85115-446-6.
  217. ^ a b Hearn, Lafcadio (1904). Kwaidan: Stories and Studies of Strange Things. Dover. ISBN 978-0-486-21901-1.
  218. ^ De Jaucourt, Louis (January 2011). "Butterfly". Encyclopedia of Diderot and d'Alembert. Archived from the original on 11 August 2016. Retrieved 16 December 2023.
  219. ^ Hutchins, M., Arthur V. Evans, Rosser W. Garrison and Neil Schlager (Eds) (2003), Grzimek's Animal Life Encyclopedia, 2nd edition. Volume 3, Insects. Gale, 2003.
  220. ^ Jones, Jonathan (27 June 2014). "The top 10 animal portraits in art". The Guardian. Archived from the original on 18 May 2016. Retrieved 24 June 2016.
  221. ^ Paterson, Jennifer (29 October 2013). "Animals in Film and Media". Oxford Bibliographies. doi:10.1093/obo/9780199791286-0044. Archived from the original on 14 June 2016. Retrieved 24 June 2016.
  222. ^ Gregersdotter, Katarina; Höglund, Johan; Hållén, Nicklas (2016). Animal Horror Cinema: Genre, History and Criticism. Springer. p. 147. ISBN 978-1-137-49639-3.
  223. ^ Warren, Bill; Thomas, Bill (2009). Keep Watching the Skies!: American Science Fiction Movies of the Fifties, The 21st Century Edition. McFarland & Company. p. 32. ISBN 978-1-4766-2505-8.
  224. ^ Crouse, Richard (2008). Son of the 100 Best Movies You've Never Seen. ECW Press. p. 200. ISBN 978-1-55490-330-6.
  225. ^ a b "Deer". Trees for Life. Archived from the original on 14 June 2016. Retrieved 23 June 2016.
  226. ^ Ben-Tor, Daphna (1989). Scarabs, A Reflection of Ancient Egypt. Jerusalem: Israel Museum. p. 8. ISBN 978-965-278-083-6.
  227. ^ Biswas, Soutik (15 October 2015). "Why the humble cow is India's most polarising animal". BBC. Archived from the original on 22 November 2016. Retrieved 9 July 2016.
  228. ^ van Gulik, Robert Hans. Hayagrīva: The Mantrayānic Aspect of Horse-cult in China and Japan. Brill Archive. p. 9.
  229. ^ Grainger, Richard (24 June 2012). "Lion Depiction across Ancient and Modern Religions". Alert. Archived from the original on 23 September 2016. Retrieved 6 July 2016.
  230. ^ Read, Kay Almere; Gonzalez, Jason J. (2000). Mesoamerican Mythology. Oxford University Press. pp. 132–134.
  231. ^ Wunn, Ina (January 2000). "Beginning of Religion". Numen. 47 (4): 417–452. doi:10.1163/156852700511612. S2CID 53595088.
  232. ^ McCone, Kim R. (1987). "Hund, Wolf, und Krieger bei den Indogermanen". In Meid, W. (ed.). Studien zum indogermanischen Wortschatz. Innsbruck. pp. 101–154.{{cite book}}: CS1 maint: location missing publisher (link)

External links