stringtranslate.com

Вода

Вода — это неорганическое соединение с химической формулой H 2 O. Это прозрачное, безвкусное, без запаха, [ c] и почти бесцветное химическое вещество . Это основной компонент гидросферы Земли и жидкостей всех известных живых организмов (в которых она действует как растворитель [20] ). Она жизненно важна для всех известных форм жизни , несмотря на то, что не обеспечивает пищевую энергию или органические микроэлементы . Ее химическая формула, H 2 O , указывает на то, что каждая из ее молекул содержит один атом кислорода и два атома водорода , соединенных ковалентными связями . Атомы водорода присоединены к атому кислорода под углом 104,45°. [21] В жидкой форме H 2 O также называется «водой» при стандартной температуре и давлении .

Поскольку окружающая среда Земли относительно близка к тройной точке воды , вода существует на Земле в твердом , жидком и газообразном состоянии . [22] Она образует осадки в виде дождя и аэрозоли в виде тумана . Облака состоят из взвешенных капелек воды и льда , ее твердого состояния. При тонком измельчении кристаллический лед может выпадать в виде снега . Газообразное состояние воды - пар или водяной пар .

Вода покрывает около 71% поверхности Земли, при этом моря и океаны составляют большую часть объема воды (около 96,5%). [23] Небольшие порции воды встречаются в виде грунтовых вод (1,7%), в ледниках и ледяных шапках Антарктиды и Гренландии (1,7%), а также в воздухе в виде пара , облаков (состоящих из льда и жидкой воды, взвешенной в воздухе) и осадков (0,001%). [ 24] [25] Вода непрерывно движется через водный цикл испарения , транспирации ( эвапотранспирации ), конденсации , осадков и стока , обычно достигая моря.

Вода играет важную роль в мировой экономике . Примерно 70% пресной воды, используемой людьми, идет на нужды сельского хозяйства . [26] Рыболовство в соленых и пресных водоемах было и продолжает оставаться основным источником продовольствия для многих частей света, обеспечивая 6,5% мирового белка. [27] Большая часть торговли товарами на большие расстояния (такими как нефть, природный газ и промышленные товары) перевозится на лодках по морям, рекам, озерам и каналам. Большое количество воды, льда и пара используется для охлаждения и отопления в промышленности и домах. Вода является прекрасным растворителем для самых разных веществ, как минеральных, так и органических; как таковая, она широко используется в промышленных процессах, а также при приготовлении пищи и стирке. Вода, лед и снег также играют центральную роль во многих видах спорта и других формах развлечений, таких как плавание , прогулочный катер, гонки на лодках , серфинг , спортивная рыбалка , дайвинг , катание на коньках , сноуборде и лыжах .

Этимология

Слово вода происходит от древнеанглийского wæter , от протогерманского * watar (источник также древнесаксонского watar , древнефризского wetir , голландского water , древневерхненемецкого wazzar , немецкого Wasser , vatn , готского 𐍅𐌰𐍄𐍉 ( wato )), от протоиндоевропейского * wod-or , суффиксальной формы корня * wed- ( ' water ' ; ' wet ' ). [28] Также родственно , через индоевропейский корень, с греческим ύδωρ ( ýdor ; от древнегреческого ὕδωρ ( hýdōr ), откуда английское ' hydro- ' ), русским вода́ ( vodá ), ирландским uisce и албанским ujë .

История

На Земле

Одним из факторов оценки времени появления воды на Земле является то, что вода постоянно теряется в космосе. Молекулы H 2 O в атмосфере распадаются в результате фотолиза , и образующиеся свободные атомы водорода иногда могут избегать гравитационного притяжения Земли. Когда Земля была моложе и менее массивной , вода могла бы теряться в космосе легче. Ожидается, что более легкие элементы, такие как водород и гелий, будут постоянно утекать из атмосферы, но изотопные соотношения более тяжелых благородных газов в современной атмосфере предполагают, что даже более тяжелые элементы в ранней атмосфере подвергались значительным потерям. [29] В частности, ксенон полезен для расчетов потери воды с течением времени. Он не только является благородным газом (и, следовательно, не удаляется из атмосферы посредством химических реакций с другими элементами), но и сравнение распространенности его девяти стабильных изотопов в современной атмосфере показывает, что Земля потеряла по крайней мере один океан воды в начале своей истории, между хадеем и археем . [30] [ необходимо разъяснение ]

Любая вода на Земле в течение последней части ее аккреции была бы нарушена ударом, образовавшим Луну (~4,5 миллиарда лет назад), который, вероятно, испарил большую часть земной коры и верхней мантии и создал атмосферу из каменного пара вокруг молодой планеты. [31] [32] Каменный пар сконденсировался бы в течение двух тысяч лет, оставив после себя горячие летучие вещества, которые, вероятно, привели к образованию атмосферы, состоящей в основном из углекислого газа с водородом и водяным паром . После этого, океаны с жидкой водой могли бы существовать, несмотря на температуру поверхности 230 °C (446 °F) из-за повышенного атмосферного давления атмосферы CO 2 . По мере продолжения охлаждения большая часть CO 2 была удалена из атмосферы путем субдукции и растворения в океанской воде, но уровни резко колебались по мере появления новых поверхностных и мантийных циклов. [33]

Этот базальт-подушечка на морском дне около Гавайев образовался, когда магма выталкивалась под воду. Другие, гораздо более древние образования базальта-подушечки свидетельствуют о наличии больших водоемов в далеком прошлом в истории Земли.

Геологические данные также помогают ограничить временные рамки существования жидкой воды на Земле. Образец подушечного базальта (тип породы, образовавшейся во время подводного извержения) был извлечен из пояса зеленокаменных пород Исуа и предоставляет доказательства того, что вода существовала на Земле 3,8 миллиарда лет назад. [34] В поясе зеленокаменных пород Нуввуагиттук , Квебек, Канада, породы, возраст которых составляет 3,8 миллиарда лет по одному исследованию [35] и 4,28 миллиарда лет по другому [36], демонстрируют доказательства присутствия воды в эти годы. [34] Если океаны существовали раньше, то никаких геологических доказательств еще не обнаружено (что может быть связано с тем, что такие потенциальные доказательства были уничтожены геологическими процессами, такими как переработка земной коры ). Совсем недавно, в августе 2020 года, исследователи сообщили, что на Земле всегда могло быть достаточно воды для заполнения океанов с самого начала формирования планеты . [37] [38] [39]

В отличие от горных пород, минералы, называемые цирконами, обладают высокой устойчивостью к выветриванию и геологическим процессам и поэтому используются для понимания условий на очень ранней Земле. Минералогические данные по цирконам показали, что жидкая вода и атмосфера должны были существовать 4,404 ± 0,008 миллиарда лет назад, очень скоро после образования Земли. [40] [41] [42] [43] Это представляет собой своего рода парадокс, поскольку гипотеза холодной ранней Земли предполагает, что температуры были достаточно низкими, чтобы замерзнуть вода между примерно 4,4 миллиардами и 4,0 миллиардами лет назад. Другие исследования цирконов, найденных в австралийских гадейских породах, указывают на существование тектоники плит еще 4 миллиарда лет назад. Если это правда, это означает, что вместо горячей расплавленной поверхности и атмосферы, полной углекислого газа, ранняя поверхность Земли была во многом такой же, как сегодня (с точки зрения теплоизоляции ). Действие тектоники плит захватывает огромное количество CO2 , тем самым уменьшая парниковый эффект , что приводит к значительному снижению температуры поверхности и образованию твердых пород и жидкой воды. [44]

Характеристики

Молекула воды состоит из двух атомов водорода и одного атома кислорода.

Вода ( H 2 O ) — полярное неорганическое соединение . При комнатной температуре это жидкость без вкуса и запаха , почти бесцветная с оттенком синего . Самый простой халькогенид водорода , это, безусловно, наиболее изученное химическое соединение и иногда описывается как «универсальный растворитель» за его способность растворять больше веществ, чем любая другая жидкость, [45] [46] хотя он плохо растворяет неполярные вещества. [47] Это позволяет ему быть « растворителем жизни»: [48] действительно, вода, встречающаяся в природе, почти всегда включает в себя различные растворенные вещества, и для получения химически чистой воды требуются специальные шаги . Вода — единственное распространенное вещество, которое существует в твердом , жидком и газообразном состоянии в нормальных земных условиях. [49]

Штаты

Три распространенных состояния материи

Наряду с оксиданом , вода является одним из двух официальных названий химического соединения H
2
O
; [50] это также жидкая фаза H
2
O
. [51] Другие два распространенных состояния воды — это твердая фаза, лед , и газообразная фаза, водяной пар или пар . Добавление или удаление тепла может вызвать фазовые переходы : замерзание (из воды в лед), таяние (из льда в воду), испарение (из воды в пар), конденсация (из пара в воду), сублимация (из льда в пар) и осаждение (из пара в лед). [52]

Плотность

Вода отличается от большинства жидкостей тем, что она становится менее плотной при замерзании. [d] При давлении в 1 атм она достигает максимальной плотности 999,972 кг/м 3 (62,4262 фунта/куб. фут) при 3,98 °C (39,16 °F) или почти 1000 кг/м 3 (62,43 фунта/куб. фут) при почти 4 °C (39 °F). [54] [55] Плотность льда составляет 917 кг/м 3 (57,25 фунта/куб. фут), расширение составляет 9%. [56] [57] Это расширение может оказывать огромное давление, разрывая трубы и растрескивая скалы. [58]

В озере или океане вода при температуре 4 °C (39 °F) опускается на дно, а на поверхности образуется лед, плавающий на жидкой воде. Этот лед изолирует воду внизу, не давая ей замерзнуть. Без этой защиты большинство водных организмов, обитающих в озерах, погибли бы зимой. [59]

Магнетизм

Вода является диамагнитным материалом. [60] Хотя взаимодействие слабое, со сверхпроводящими магнитами оно может достигать заметного взаимодействия. [60]

Фазовые переходы

При давлении в одну атмосферу (атм) лед тает или вода замерзает (затвердевает) при 0 °C (32 °F), а вода кипит или пар конденсируется при 100 °C (212 °F). Однако даже ниже точки кипения вода может превращаться в пар на своей поверхности путем испарения (испарение по всей жидкости известно как кипение ). Сублимация и осаждение также происходят на поверхностях. [52] Например, иней осаждается на холодных поверхностях, в то время как снежинки образуются путем осаждения на аэрозольных частицах или ледяных ядрах. [61] В процессе сублимационной сушки продукты питания замораживаются, а затем хранятся при низком давлении, поэтому лед на их поверхности сублимируется. [62]

Температуры плавления и кипения зависят от давления. Хорошее приближение для скорости изменения температуры плавления с давлением дается соотношением Клаузиуса-Клапейрона :

где и — молярные объемы жидкой и твердой фаз, а — молярная скрытая теплота плавления. В большинстве веществ объем увеличивается при плавлении, поэтому температура плавления увеличивается с давлением. Однако, поскольку лед менее плотный, чем вода, температура плавления уменьшается. [53] В ледниках плавление под давлением может происходить под достаточно толстыми объемами льда, что приводит к образованию подледниковых озер . [63] [64]

Соотношение Клаузиуса-Клапейрона также применимо к точке кипения, но при переходе жидкость/газ паровая фаза имеет гораздо меньшую плотность, чем жидкая фаза, поэтому точка кипения увеличивается с давлением. [65] Вода может оставаться в жидком состоянии при высоких температурах в глубоком океане или под землей. Например, температура превышает 205 °C (401 °F) в гейзере Old Faithful в Йеллоустонском национальном парке . [66] В гидротермальных источниках температура может превышать 400 °C (752 °F). [67]

На уровне моря температура кипения воды составляет 100 °C (212 °F). Поскольку атмосферное давление уменьшается с высотой, температура кипения уменьшается на 1 °C каждые 274 метра. Приготовление пищи на большой высоте занимает больше времени, чем приготовление пищи на уровне моря. Например, на высоте 1524 метра (5000 футов) время приготовления пищи должно быть увеличено на четверть, чтобы достичь желаемого результата. [68] И наоборот, скороварку можно использовать для сокращения времени приготовления пищи за счет повышения температуры кипения. [69] В вакууме вода будет кипеть при комнатной температуре. [70]

Тройные и критические точки

Фазовая диаграмма воды

На фазовой диаграмме давление/температура (см. рисунок) есть кривые, разделяющие твердое тело от пара, пар от жидкости и жидкость от твердого тела. Они встречаются в одной точке, называемой тройной точкой , где все три фазы могут сосуществовать. Тройная точка находится при температуре 273,16 К (0,01 °C; 32,02 °F) и давлении 611,657 паскалей (0,00604 атм; 0,0887 фунтов на квадратный дюйм); [71] это самое низкое давление, при котором может существовать жидкая вода. До 2019 года тройная точка использовалась для определения шкалы температур Кельвина . [72] [73]

Кривая фазы вода/пар заканчивается при 647,096 К (373,946 °C; 705,103 °F) и 22,064 мегапаскалей (3200,1 фунтов на квадратный дюйм; 217,75 атм). [74] Это известно как критическая точка . При более высоких температурах и давлениях жидкая и паровая фазы образуют непрерывную фазу, называемую сверхкритической жидкостью . Она может постепенно сжиматься или расширяться между газообразной и жидкоподобной плотностью; ее свойства (которые весьма отличаются от свойств окружающей воды) чувствительны к плотности. Например, при подходящих давлениях и температурах она может свободно смешиваться с неполярными соединениями , включая большинство органических соединений . Это делает ее полезной в различных приложениях, включая высокотемпературную электрохимию и как экологически безопасный растворитель или катализатор в химических реакциях с участием органических соединений. В мантии Земли она действует как растворитель во время образования, растворения и осаждения минералов. [75] [76]

Фазы льда и воды

Нормальной формой льда на поверхности Земли является лед I h , фаза, которая образует кристаллы с гексагональной симметрией . Другая с кубической кристаллической симметрией , лед I c , может встречаться в верхних слоях атмосферы. [77] По мере увеличения давления лед образует другие кристаллические структуры . По состоянию на 2024 год экспериментально подтверждено двадцать из них, а теоретически предсказано еще несколько. [78] Восемнадцатая форма льда, лед XVIII , гранецентрированная кубическая, суперионная ледяная фаза, была обнаружена, когда капля воды подверглась воздействию ударной волны, которая подняла давление воды до миллионов атмосфер, а ее температуру до тысяч градусов, в результате чего образовалась структура из жестких атомов кислорода, в которой атомы водорода свободно текли. [79] [80] При зажатии между слоями графена лед образует квадратную решетку. [81]

Детали химической природы жидкой воды изучены недостаточно; некоторые теории предполагают, что ее необычное поведение обусловлено существованием двух жидких состояний. [55] [82] [83] [84]

Вкус и запах

Чистая вода обычно описывается как безвкусная и без запаха, хотя у людей есть особые сенсоры, которые могут чувствовать присутствие воды во рту, [85] [86] и лягушки, как известно, могут чувствовать ее запах. [87] Однако вода из обычных источников (включая минеральную воду ) обычно содержит много растворенных веществ, которые могут придавать ей различные вкусы и запахи. Люди и другие животные развили чувства, которые позволяют им оценивать пригодность воды для питья, чтобы избегать слишком соленой или гнилой воды . [88]

Цвет и внешний вид

Чистая вода имеет видимый синий цвет из-за поглощения света в области около 600–800 нм. [89] Цвет можно легко наблюдать в стакане водопроводной воды, помещенном на чистый белый фон, при дневном свете. Основные полосы поглощения, ответственные за цвет, являются обертонами валентных колебаний O–H . Видимая интенсивность цвета увеличивается с глубиной водного столба, следуя закону Бера . Это также применимо, например, к бассейну, когда источником света является солнечный свет, отраженный от белой плитки бассейна.

В природе цвет также может меняться с синего на зеленый из-за присутствия взвешенных частиц или водорослей.

В промышленности ближняя инфракрасная спектроскопия используется с водными растворами, поскольку большая интенсивность нижних обертонов воды означает, что можно использовать стеклянные кюветы с короткой длиной пути. Для наблюдения основного спектра поглощения растяжения воды или водного раствора в области около 3500 см −1 (2,85 мкм) [90] необходима длина пути около 25 мкм. Кроме того, кювета должна быть как прозрачной около 3500 см −1 , так и нерастворимой в воде; фторид кальция является одним из материалов, который обычно используется для окон кювет с водными растворами.

Рамановские активные основные колебания можно наблюдать, например, с помощью ячейки образца размером 1 см.

Водные растения , водоросли и другие фотосинтезирующие организмы могут жить в воде на глубине до сотен метров, поскольку солнечный свет может до них дойти. Практически никакой солнечный свет не достигает частей океанов, находящихся ниже 1000 метров (3300 футов) глубины.

Показатель преломления жидкой воды (1,333 при 20 °C (68 °F)) намного выше, чем у воздуха (1,0), аналогично показателям алканов и этанола , но ниже, чем у глицерина (1,473), бензола (1,501), сероуглерода (1,627) и обычных типов стекла (от 1,4 до 1,6). Показатель преломления льда (1,31) ниже, чем у жидкой воды.

Молекулярная полярность

Тетраэдрическая структура воды

В молекуле воды атомы водорода образуют угол 104,5° с атомом кислорода. Атомы водорода находятся близко к двум углам тетраэдра, центрированного на кислороде. В двух других углах находятся неподеленные пары валентных электронов, которые не участвуют в связывании. В идеальном тетраэдре атомы образуют угол 109,5°, но отталкивание между неподеленными парами больше, чем отталкивание между атомами водорода. [91] [92] Длина связи O–H составляет около 0,096 нм. [93]

Другие вещества имеют тетраэдрическую молекулярную структуру, например метан ( CH
4
) и сероводород ( H
2
S
). Однако кислород более электроотрицателен , чем большинство других элементов, поэтому атом кислорода имеет отрицательный частичный заряд, в то время как атомы водорода частично заряжены положительно. Наряду с изогнутой структурой это придает молекуле электрический дипольный момент , и она классифицируется как полярная молекула . [94]

Вода является хорошим полярным растворителем , растворяя многие соли и гидрофильные органические молекулы, такие как сахара и простые спирты, такие как этанол . Вода также растворяет многие газы, такие как кислород и углекислый газ — последний придает шипение газированным напиткам, игристым винам и пиву. Кроме того, многие вещества в живых организмах, такие как белки , ДНК и полисахариды , растворяются в воде. Взаимодействие между водой и субъединицами этих биомакромолекул формирует сворачивание белка , спаривание оснований ДНК и другие явления, имеющие решающее значение для жизни ( гидрофобный эффект ).

Многие органические вещества (такие как жиры и масла и алканы ) являются гидрофобными , то есть нерастворимыми в воде. Многие неорганические вещества также нерастворимы, включая большинство оксидов металлов , сульфидов и силикатов .

Водородные связи

Модель водородных связей (1) между молекулами воды

Из-за своей полярности молекула воды в жидком или твердом состоянии может образовывать до четырех водородных связей с соседними молекулами. Водородные связи примерно в десять раз сильнее силы Ван-дер-Ваальса , которая притягивает молекулы друг к другу в большинстве жидкостей. Вот почему температуры плавления и кипения воды намного выше, чем у других аналогичных соединений, таких как сероводород. Они также объясняют ее исключительно высокую удельную теплоемкость (около 4,2 Дж /(г·К)), теплоту плавления (около 333 Дж/г), теплоту испарения ( 2257 Дж/г ) и теплопроводность (от 0,561 до 0,679 Вт/(м·К)). Эти свойства делают воду более эффективной в смягчении климата Земли , сохраняя тепло и перенося его между океанами и атмосферой. Водородные связи воды составляют около 23 кДж/моль (по сравнению с ковалентной связью ОН при 492 кДж/моль). Из этого количества, по оценкам, 90% приходится на электростатику, а оставшиеся 10% — частично ковалентные. [95]

Эти связи являются причиной высокого поверхностного натяжения воды [96] и капиллярных сил. Капиллярное действие относится к тенденции воды двигаться вверх по узкой трубке против силы тяжести . Это свойство используется всеми сосудистыми растениями , такими как деревья. [ необходима цитата ]

Удельная теплоемкость воды [97]

Самоионизация

Вода — слабый раствор гидроксида гидроксония — существует равновесие 2H
2
О
Н
3
О+
+ ОН
, в сочетании с сольватацией образующихся ионов гидроксония и гидроксида .

Электропроводность и электролиз

Чистая вода имеет низкую электропроводность , которая увеличивается при растворении небольшого количества ионного материала, например, поваренной соли .

Жидкую воду можно разделить на элементы водород и кислород, пропуская через нее электрический ток — этот процесс называется электролизом . Разложение требует больше энергии, чем выделяется тепла в обратном процессе (285,8 кДж/ моль , или 15,9 МДж/кг). [98]

Механические свойства

Жидкую воду можно считать несжимаемой для большинства целей: ее сжимаемость колеблется от 4,4 до5,1 × 10−10  Па −1 в обычных условиях. [99] Даже в океанах на глубине 4 км, где давление составляет 400 атм, вода теряет в объеме всего 1,8%. [100]

Вязкость воды составляет около 10−3 Па · с или 0,01 пуаза при 20 °C (68 °F), а скорость звука в жидкой воде колеблется от 1400 до 1540 метров в секунду (от 4600 до 5100 футов/с) в зависимости от температуры. Звук распространяется на большие расстояния в воде с небольшим затуханием , особенно на низких частотах (примерно 0,03 дБ /км для 1 кГц ), свойство, которое используется китообразными и людьми для общения и зондирования окружающей среды ( сонар ). [101]

Реактивность

Металлические элементы, которые более электроположительны , чем водород, в частности щелочные металлы и щелочноземельные металлы, такие как литий , натрий , кальций , калий и цезий, вытесняют водород из воды, образуя гидроксиды и выделяя водород. При высоких температурах углерод реагирует с паром, образуя оксид углерода и водород. [ необходима цитата ]

На Земле

Гидрология — это изучение движения, распределения и качества воды на Земле. Изучением распределения воды занимается гидрография . Изучением распределения и движения грунтовых вод занимается гидрогеология , ледников — гляциология , внутренних вод — лимнология , а распределение океанов — океанография . Экологические процессы с гидрологией находятся в центре внимания экогидрологии .

Совокупная масса воды, находящаяся на поверхности планеты, под ней и над ней, называется гидросферой . Приблизительный объем воды на Земле (общий объем мировых запасов воды) составляет 1,386 миллиарда кубических километров (333 миллиона кубических миль). [24]

Жидкая вода находится в водоемах , таких как океан, море, озеро, река, ручей, канал , пруд или лужа . Большая часть воды на Земле — морская вода . Вода также присутствует в атмосфере в твердом, жидком и парообразном состоянии. Она также существует в виде грунтовых вод в водоносных горизонтах .

Вода важна во многих геологических процессах. Подземные воды присутствуют в большинстве горных пород , и давление этих подземных вод влияет на закономерности разломов . Вода в мантии ответственна за расплав, который производит вулканы в зонах субдукции . На поверхности Земли вода важна как в химических, так и в физических процессах выветривания . Вода и в меньшей, но все же значительной степени лед также ответственны за большой объем переноса осадков , который происходит на поверхности Земли. Отложение перемещенных осадков образует множество типов осадочных пород , которые составляют геологическую летопись истории Земли .

Круговорот воды

Круговорот воды

Круговорот воды в природе (в научной литературе его называют гидрологическим циклом) — это непрерывный обмен водой в гидросфере , между атмосферой , почвенными водами, поверхностными водами , грунтовыми водами и растениями.

Вода постоянно движется через каждую из этих областей в круговороте воды, состоящем из следующих процессов переноса:

Большая часть водяного пара, находящегося в основном в океане, возвращается в него, но ветры переносят водяной пар над сушей с той же скоростью, что и сток в море, около 47  Тт в год, в то время как испарение и транспирация, происходящие на суше, также вносят еще 72 Тт в год. Осадки, выпадающие со скоростью 119 Тт в год над сушей, имеют несколько форм: чаще всего это дождь, снег и град , а также некоторый вклад тумана и росы . [102] Роса — это маленькие капли воды, которые конденсируются, когда высокая плотность водяного пара встречается с прохладной поверхностью. Роса обычно образуется утром, когда температура самая низкая, непосредственно перед восходом солнца и когда температура поверхности земли начинает повышаться. [103] Конденсированная вода в воздухе также может преломлять солнечный свет , создавая радуги .

Водный сток часто собирается на водоразделах, впадающих в реки. Благодаря эрозии сток формирует окружающую среду, создавая речные долины и дельты , которые обеспечивают богатую почву и ровную местность для создания населенных пунктов. Наводнение происходит, когда участок земли, обычно низменный, покрывается водой, что происходит, когда река выходит из берегов или происходит штормовой нагон. С другой стороны, засуха — это длительный период в несколько месяцев или лет, когда в регионе отмечается дефицит водоснабжения. Это происходит, когда регион получает постоянное количество осадков ниже среднего либо из-за его топографии, либо из-за его расположения с точки зрения широты .

Водные ресурсы

Водные ресурсы — это природные водные ресурсы, которые потенциально полезны для людей, [104] например, как источник питьевой воды или воды для орошения . Вода существует как в виде «запасов», так и в виде «потоков». Вода может храниться в виде озер, водяного пара, грунтовых вод или водоносных горизонтов, а также льда и снега. Из общего объема мировой пресной воды, по оценкам, 69 процентов хранится в ледниках и постоянном снежном покрове; 30 процентов находится в грунтовых водах; а оставшийся 1 процент в озерах, реках, атмосфере и биоте. [105] Продолжительность времени, в течение которого вода остается в хранилище, сильно варьируется: некоторые водоносные горизонты состоят из воды, хранящейся в течение тысяч лет, но объемы озер могут колебаться в зависимости от сезона, уменьшаясь в засушливые периоды и увеличиваясь во влажные. Значительная часть водоснабжения некоторых регионов состоит из воды, извлекаемой из воды, хранящейся в запасах, и когда забор превышает пополнение, запасы уменьшаются. По некоторым оценкам, до 30 процентов от общего объема воды, используемой для орошения, поступает из-за неустойчивого забора грунтовых вод, что приводит к истощению грунтовых вод . [106]

Морская вода и приливы

Морская вода содержит в среднем около 3,5% хлорида натрия , а также меньшее количество других веществ. Физические свойства морской воды отличаются от пресной воды в некоторых важных отношениях. Она замерзает при более низкой температуре (около −1,9 °C (28,6 °F)), а ее плотность увеличивается с понижением температуры до точки замерзания, вместо того, чтобы достигать максимальной плотности при температуре выше точки замерзания. Соленость воды в основных морях варьируется от примерно 0,7% в Балтийском море до 4,0% в Красном море . ( Мертвое море , известное своим сверхвысоким уровнем солености от 30 до 40%, на самом деле является соленым озером .)

Приливы — это циклические подъемы и падения местного уровня моря, вызванные приливными силами Луны и Солнца, действующими на океаны. Приливы вызывают изменения глубины морских и эстуарных водоемов и создают колебательные течения, известные как приливные потоки. Изменение прилива, производимое в данном месте, является результатом изменения положения Луны и Солнца относительно Земли в сочетании с эффектами вращения Земли и местной батиметрии . Полоса морского побережья, которая погружается под воду во время прилива и обнажается во время отлива, приливная зона , является важным экологическим продуктом океанских приливов.

Влияние на жизнь

Обзор фотосинтеза (зеленый) и дыхания (красный)

С биологической точки зрения вода обладает множеством отличительных свойств, которые имеют решающее значение для распространения жизни. Она выполняет эту роль, позволяя органическим соединениям реагировать способами, которые в конечном итоге позволяют репликацию . Все известные формы жизни зависят от воды. Вода жизненно важна как растворитель , в котором растворяются многие из растворенных веществ организма, так и как неотъемлемая часть многих метаболических процессов в организме. Метаболизм — это сумма анаболизма и катаболизма . При анаболизме вода удаляется из молекул (с помощью требующих энергии ферментативных химических реакций) для того, чтобы вырастить более крупные молекулы (например, крахмалы, триглицериды и белки для хранения топлива и информации). При катаболизме вода используется для разрыва связей с целью создания более мелких молекул (например, глюкозы, жирных кислот и аминокислот, которые будут использоваться в качестве топлива для использования энергии или для других целей). Без воды эти конкретные метаболические процессы не могли бы существовать.

Вода имеет основополагающее значение как для фотосинтеза, так и для дыхания. Фотосинтетические клетки используют энергию солнца для отделения водорода воды от кислорода. [107] При наличии солнечного света водород соединяется с CO
2
(поглощается из воздуха или воды) для образования глюкозы и высвобождения кислорода. [108] Все живые клетки используют такое топливо и окисляют водород и углерод для захвата энергии солнца и преобразования воды и CO
2
в процессе (клеточное дыхание).

Вода также играет центральную роль в кислотно-щелочной нейтральности и функции ферментов. Кислота, ион водорода ( H+
, то есть донор протона, может быть нейтрализован основанием, акцептором протона, таким как гидроксид-ион ( ОН
) для образования воды. Вода считается нейтральной, с pH (отрицательный логарифм концентрации ионов водорода) 7 в идеальном состоянии. Кислоты имеют значения pH менее 7, а основания — более 7.

Водные формы жизни

Поверхностные воды Земли наполнены жизнью. Самые ранние формы жизни появились в воде; почти все рыбы живут исключительно в воде, и существует множество видов морских млекопитающих, таких как дельфины и киты. Некоторые виды животных, такие как земноводные , проводят часть своей жизни в воде, а часть — на суше. Растения, такие как ламинария и водоросли, растут в воде и являются основой некоторых подводных экосистем. Планктон, как правило, является основой пищевой цепи океана .

Водные позвоночные должны получать кислород, чтобы выжить, и они делают это разными способами. У рыб вместо легких жабры , хотя у некоторых видов рыб, таких как двоякодышащие рыбы , есть и то, и другое. Морским млекопитающим , таким как дельфины, киты, выдры и тюлени , необходимо периодически всплывать, чтобы дышать воздухом. Некоторые амфибии способны поглощать кислород через кожу. Беспозвоночные демонстрируют широкий спектр модификаций, чтобы выживать в воде с низким содержанием кислорода, включая дыхательные трубки (см. сифоны насекомых и моллюсков ) и жабры ( Carcinus ). Однако, поскольку беспозвоночные развивались в водной среде обитания, у большинства из них практически нет специализации для дыхания в воде.

Влияние на человеческую цивилизацию

Фонтанчик​

Цивилизация исторически процветала вокруг рек и крупных водных путей; Месопотамия , одна из так называемых колыбелей цивилизации , была расположена между крупными реками Тигром и Евфратом ; древнее общество египтян полностью зависело от Нила . Ранняя цивилизация долины Инда ( ок.  3300 г. до н. э.  — ок.  1300 г. до н. э. ) развивалась вдоль реки Инд и притоков, вытекающих из Гималаев . Рим также был основан на берегах итальянской реки Тибр . Крупные мегаполисы, такие как Роттердам , Лондон , Монреаль , Париж , Нью-Йорк , Буэнос-Айрес , Шанхай , Токио , Чикаго и Гонконг, обязаны своим успехом отчасти легкой доступности по воде и последующему расширению торговли. Острова с безопасными водными портами, такие как Сингапур , процветали по той же причине. В таких местах, как Северная Африка и Ближний Восток, где воды меньше, доступ к чистой питьевой воде был и остается важнейшим фактором развития человечества.

Здоровье и загрязнение

Программа по науке об окружающей среде – студент из Университета штата Айова берет пробу воды

Вода, пригодная для потребления человеком, называется питьевой водой или питьевой водой. Вода, которая не является питьевой, может быть сделана питьевой путем фильтрации или дистилляции , или рядом других методов . Более 660 миллионов человек не имеют доступа к безопасной питьевой воде. [109] [110]

Вода, которая не пригодна для питья, но не вредна для человека при использовании для купания или купания, называется по-разному, кроме как питьевая или питьевая вода, и иногда ее называют безопасной водой или «безопасной для купания». Хлор — это раздражитель кожи и слизистых оболочек, который используется для того, чтобы сделать воду безопасной для купания или питья. Его использование является высокотехническим и обычно контролируется государственными нормами (обычно 1 часть на миллион (ppm) для питьевой воды и 1–2 ppm хлора, еще не прореагировавшего с примесями, для воды для купания). Вода для купания может поддерживаться в удовлетворительном микробиологическом состоянии с помощью химических дезинфицирующих средств, таких как хлор или озон , или с помощью ультрафиолетового света.

Рекультивация воды — это процесс преобразования сточных вод (чаще всего сточных вод , также называемых городскими сточными водами) в воду, которую можно повторно использовать для других целей. 2,3 миллиарда человек проживают в странах с дефицитом воды, что означает, что каждый человек получает менее 1700 кубических метров (60 000 кубических футов) воды в год. Ежегодно в мире образуется 380 миллиардов кубических метров (13 × 10 12  кубических футов) городских сточных вод. [111] [112] [113]^

Пресная вода является возобновляемым ресурсом, циркулирующим в естественном гидрологическом цикле , но давление на доступ к ней является результатом естественного неравномерного распределения в пространстве и времени, растущих экономических потребностей сельского хозяйства и промышленности, а также роста населения. В настоящее время около миллиарда человек во всем мире не имеют доступа к безопасной и доступной воде. В 2000 году Организация Объединенных Наций установила Цели развития тысячелетия для воды, чтобы к 2015 году сократить вдвое долю людей во всем мире, не имеющих доступа к безопасной воде и санитарии . Прогресс в достижении этой цели был неравномерным, и в 2015 году ООН взяла на себя обязательство по Целям устойчивого развития по достижению всеобщего доступа к безопасной и доступной воде и санитарии к 2030 году. Плохое качество воды и плохая санитария смертельны; около пяти миллионов смертей в год вызваны болезнями, связанными с водой. Всемирная организация здравоохранения оценивает, что безопасная вода может предотвратить 1,4 миллиона детских смертей от диареи каждый год. [114]

В развивающихся странах 90% всех городских сточных вод по-прежнему сбрасываются неочищенными в местные реки и ручьи. [115] Около 50 стран, в которых проживает примерно треть населения мира, также страдают от средней или высокой нехватки воды , а 17 из них ежегодно забирают больше воды, чем пополняется за счет их естественных водных циклов. [116] Эта нагрузка не только влияет на поверхностные пресноводные водоемы, такие как реки и озера, но и ухудшает ресурсы подземных вод.

Человек использует

Общий забор воды для сельскохозяйственных, промышленных и коммунальных нужд на душу населения, измеряемый в кубических метрах (м 3 ) в год в 2010 году [117]

Сельское хозяйство

Наиболее существенное использование воды человеком приходится на сельское хозяйство, включая орошаемое земледелие, на долю которого приходится от 80 до 90 процентов общего потребления воды человеком. [118] В Соединенных Штатах 42% пресной воды, забираемой для использования, идет на орошение, но подавляющее большинство «потребленной» воды (использованной и не возвращенной в окружающую среду) идет на сельское хозяйство. [119]

Доступ к пресной воде часто воспринимается как должное, особенно в развитых странах, которые построили сложные водные системы для сбора, очистки и доставки воды, а также удаления сточных вод. Но растущее экономическое, демографическое и климатическое давление усиливает обеспокоенность по поводу водных проблем, что приводит к усилению конкуренции за фиксированные водные ресурсы, порождая концепцию пиковой воды . [120] Поскольку население и экономика продолжают расти, потребление мяса, требующего много воды, увеличивается, и возникает новый спрос на биотопливо или новые водоемкие отрасли, вероятны новые водные проблемы. [121]

Оценка управления водными ресурсами в сельском хозяйстве была проведена в 2007 году Международным институтом управления водными ресурсами в Шри-Ланке, чтобы выяснить, достаточно ли в мире воды для обеспечения продовольствием растущего населения. [122] Он оценил текущую доступность воды для сельского хозяйства в глобальном масштабе и нанес на карту места, страдающие от нехватки воды. Было обнаружено, что пятая часть населения мира, более 1,2 миллиарда человек, живут в районах с физическим дефицитом воды , где воды недостаточно для удовлетворения всех потребностей. Еще 1,6 миллиарда человек живут в районах, испытывающих экономический дефицит воды , где отсутствие инвестиций в воду или недостаточный человеческий потенциал делают невозможным для властей удовлетворить спрос на воду. В отчете было установлено, что в будущем можно будет производить необходимое количество продовольствия, но продолжение сегодняшнего производства продовольствия и экологических тенденций приведет к кризисам во многих частях мира. Чтобы избежать глобального водного кризиса, фермерам придется стремиться к повышению производительности для удовлетворения растущего спроса на продовольствие, в то время как промышленность и города найдут способы более эффективного использования воды. [123]

Дефицит воды также вызван производством водоемких продуктов. Например, хлопок : для производства 1 кг хлопка — эквивалента пары джинсов — требуется 10,9 кубических метров (380 кубических футов) воды. Хотя на хлопок приходится 2,4% мирового потребления воды, вода потребляется в регионах, которые уже подвержены риску нехватки воды. Был нанесен значительный ущерб окружающей среде: например, отвод воды бывшим Советским Союзом из рек Амударья и Сырдарья для производства хлопка в значительной степени стал причиной исчезновения Аральского моря . [124]

Как научный стандарт

7 апреля 1795 года во Франции грамм был определен как равный «абсолютному весу объема чистой воды, равного кубу одной сотой метра, при температуре тающего льда». [125] Однако для практических целей требовался металлический эталон, в тысячу раз более массивный, чем килограмм. Поэтому была заказана работа по точному определению массы одного литра воды. Несмотря на то, что установленное определение грамма указывало воду при 0 °C (32 °F) — высоковоспроизводимой температуре — ученые решили переопределить стандарт и провести свои измерения при температуре самой высокой плотности воды , которая в то время была измерена как 4 °C (39 °F). [126]

Шкала температур Кельвина системы СИ была основана на тройной точке воды, определенной как ровно 273,16 К (0,01 °C; 32,02 °F), но с мая 2019 года основана на постоянной Больцмана . Шкала представляет собой абсолютную температурную шкалу с тем же шагом, что и шкала температур Цельсия, которая изначально была определена в соответствии с точкой кипения (установленной на 100 °C (212 °F)) и точкой плавления (установленной на 0 °C (32 °F)) воды.

Природная вода в основном состоит из изотопов водорода-1 и кислорода-16, но также есть небольшое количество более тяжелых изотопов кислорода-18, кислорода-17 и водорода-2 ( дейтерия ). Процент тяжелых изотопов очень мал, но он все равно влияет на свойства воды. Вода из рек и озер, как правило, содержит меньше тяжелых изотопов, чем морская вода. Поэтому стандартная вода определяется в спецификации Vienna Standard Mean Ocean Water .

Для питья

Молодая девушка пьет бутилированную воду.
Доступность воды: доля населения, использующего улучшенные источники воды, по странам.
Придорожный источник пресной воды из ледника, Нубра

Тело человека содержит от 55% до 78% воды, в зависимости от размера тела. [127] [ источник, созданный пользователем? ] Для правильного функционирования организму требуется от одного до семи литров (0,22 и 1,54 галлона США; 0,26 и 1,85 галлона США) [ необходима ссылка ] воды в день, чтобы избежать обезвоживания ; точное количество зависит от уровня активности, температуры, влажности и других факторов. Большая часть этого потребляется через пищу или напитки, а не через питьевую воду. Неясно, сколько воды необходимо здоровым людям, хотя Британская диетическая ассоциация рекомендует, чтобы 2,5 литра воды в день было минимальным количеством для поддержания надлежащей гидратации, включая 1,8 литра (6-7 стаканов), полученных непосредственно из напитков. [128] Медицинская литература выступает за более низкое потребление, как правило, 1 литр воды для среднестатистического мужчины, без учета дополнительных потребностей из-за потери жидкости из-за физических упражнений или теплой погоды. [129]

Здоровые почки могут выделять от 0,8 до 1 литра воды в час, но стресс, такой как физические упражнения, может уменьшить это количество. Люди могут пить гораздо больше воды, чем необходимо, во время упражнений, подвергая себя риску водной интоксикации (гипергидратации), которая может быть фатальной. [130] [131] Популярное утверждение, что «человек должен потреблять восемь стаканов воды в день», похоже, не имеет под собой реальной научной основы. [132] Исследования показали, что дополнительное потребление воды, особенно до 500 миллилитров (18 британских жидких унций; 17 американских жидких унций) во время еды, было связано с потерей веса. [133] [134] [135] [136] [137] [138] Достаточное потребление жидкости полезно для предотвращения запоров. [139]

Символ опасности для непитьевой воды

Первоначальная рекомендация по потреблению воды от 1945 года, составленная Советом по продовольствию и питанию Национального исследовательского совета США, гласила: «Обычный стандарт для разных людей составляет 1 миллилитр на каждую калорию пищи. Большая часть этого количества содержится в приготовленных продуктах». [140] Последний отчет о рекомендуемом потреблении пищи Национального исследовательского совета США в целом рекомендовал, основываясь на медианном общем потреблении воды из данных опроса в США (включая источники пищи): 3,7 литра (0,81 имп галлона; 0,98 галлона США) для мужчин и 2,7 литра (0,59 имп галлона; 0,71 галлона США) воды в целом для женщин, отмечая, что вода, содержащаяся в пище, обеспечивала приблизительно 19% от общего потребления воды в опросе. [141]

В частности, беременным и кормящим грудью женщинам необходимо дополнительное количество жидкости, чтобы оставаться гидратированными. Институт медицины США рекомендует, чтобы в среднем мужчины потребляли 3 литра (0,66 имп галлона; 0,79 галлона США), а женщины 2,2 литра (0,48 имп галлона; 0,58 галлона США); беременным женщинам следует увеличить потребление до 2,4 литра (0,53 имп галлона; 0,63 галлона США), а кормящим грудью женщинам следует получать 3 литра (12 чашек), поскольку особенно большое количество жидкости теряется во время кормления грудью. [142] Также отмечается, что обычно около 20% потребляемой воды поступает из пищи, а остальное — из питьевой воды и напитков ( включая кофеиносодержащие ). Вода выводится из организма в нескольких формах: через мочу и кал , через потоотделение и при выдыхании водяного пара. При физических нагрузках и воздействии тепла потеря воды будет увеличиваться, и ежедневная потребность в жидкости также может увеличиться.

Людям нужна вода с небольшим количеством примесей. Обычные примеси включают соли и оксиды металлов, включая медь, железо, кальций и свинец, [143] [ полная ссылка необходима ] и вредные бактерии, такие как Vibrio . Некоторые растворенные вещества приемлемы и даже желательны для улучшения вкуса и обеспечения необходимых электролитов . [144]

Самым крупным (по объему) источником пресной воды, пригодной для питья, является озеро Байкал в Сибири. [145]

Стирка

Женщина моет руки с мылом и водой.

Мытье — это метод очистки , обычно с использованием воды и мыла или моющего средства . Регулярное мытье и последующее ополаскивание тела и одежды является неотъемлемой частью хорошей гигиены и здоровья. [146] [147] [148]

Часто люди используют мыла и моющие средства, чтобы помочь в эмульгировании масел и частиц грязи, чтобы их можно было смыть. Мыло можно наносить напрямую или с помощью мочалки или с помощью губок или подобных чистящих инструментов .

В социальном контексте мытье относится к акту купания или мытья различных частей тела, таких как руки , волосы или лица . Чрезмерное мытье может повредить волосы, вызывая перхоть или вызывать грубую кожу/повреждения кожи. [149] [150] Некоторые мытья тела совершаются ритуально в таких религиях, как христианство и иудаизм, как акт очищения .

Стирка также может относиться к мытью предметов. Например, стирка одежды или других предметов из ткани, таких как простыни, или мытье посуды или кухонной одежды . Содержание предметов в чистоте, особенно если они взаимодействуют с пищей или кожей, может помочь с санитарией. Другие виды стирки направлены на поддержание чистоты и долговечности предметов, которые пачкаются, например , мытье автомобиля путем намыливания внешней поверхности автомобильным мылом или мытья инструментов, используемых в грязном процессе.

Стиральная машина для частного дома

Транспорт

Морской транспорт (или океанский транспорт) или, в более общем смысле, водный транспорт — это перевозка людей ( пассажиров ) или товаров ( грузов ) по водным путям . Грузовые перевозки по морю широко использовались на протяжении всей зарегистрированной истории . Появление авиации уменьшило важность морских путешествий для пассажиров, хотя они по-прежнему популярны для коротких поездок и прогулочных круизов . Водный транспорт дешевле, чем воздушный или наземный транспорт, [151] , но значительно медленнее на больших расстояниях. По данным ЮНКТАД за 2020 год, на морской транспорт приходится около 80% международной торговли .

Морской транспорт может осуществляться на любые расстояния на лодке, судне, паруснике или барже , через океаны и озера, по каналам или по рекам. Судоходство может быть в коммерческих , развлекательных или военных целях. Хотя обширное внутреннее судоходство сегодня менее критично, основные водные пути мира, включая множество каналов, по-прежнему очень важны и являются неотъемлемой частью мировой экономики . В частности, особенно любой материал может быть перемещен по воде; однако водный транспорт становится непрактичным, когда доставка материалов критична по времени, например, различных видов скоропортящихся продуктов . Тем не менее, водный транспорт является высокорентабельным при регулярных плановых грузоперевозках, таких как трансокеанская доставка потребительских товаров, и особенно для тяжелых грузов или насыпных грузов , таких как уголь , кокс , руда или зерно . Можно утверждать, что промышленная революция оказала свое первое влияние там, где дешевый водный транспорт по каналам, навигация или доставка всеми типами водных судов по естественным водным путям поддерживали экономически эффективные массовые перевозки .

Контейнеризация произвела революцию в морских перевозках, начиная с 1970-х годов. «Генеральный груз» включает товары, упакованные в коробки, ящики, поддоны и бочки. Когда груз перевозится более чем одним видом транспорта, он называется интермодальным или комбинированным .

Химическое использование

Вода широко используется в химических реакциях в качестве растворителя или реагента и реже в качестве растворенного вещества или катализатора. В неорганических реакциях вода является обычным растворителем, растворяя многие ионные соединения, а также другие полярные соединения, такие как аммиак и соединения, тесно связанные с водой . В органических реакциях она обычно не используется в качестве растворителя реакции, поскольку она плохо растворяет реагенты и является амфотерной (кислотной и основной) и нуклеофильной . Тем не менее, эти свойства иногда желательны. Также было замечено ускорение реакций Дильса-Альдера водой. Сверхкритическая вода в последнее время стала предметом исследований. Насыщенная кислородом сверхкритическая вода эффективно сжигает органические загрязнители.

Теплообмен

Вода и пар являются распространенной жидкостью, используемой для теплообмена , из-за ее доступности и высокой теплоемкости , как для охлаждения, так и для нагрева. Холодная вода может быть даже естественным образом доступна из озера или моря. Она особенно эффективна для переноса тепла посредством испарения и конденсации воды из-за ее большой скрытой теплоты испарения . Недостатком является то, что металлы, обычно встречающиеся в таких отраслях, как сталелитейная и медная, окисляются быстрее неочищенной водой и паром. Почти на всех тепловых электростанциях вода используется в качестве рабочей жидкости (используется в замкнутом контуре между котлом, паровой турбиной и конденсатором) и охлаждающей жидкости (используется для обмена отработанного тепла с водоемом или отвода его путем испарения в градирне ). В Соединенных Штатах охлаждение электростанций является крупнейшим использованием воды. [152]

В ядерной энергетике вода также может использоваться в качестве замедлителя нейтронов . В большинстве ядерных реакторов вода является как охладителем, так и замедлителем. Это обеспечивает своего рода пассивную меру безопасности, поскольку удаление воды из реактора также замедляет ядерную реакцию . Однако для остановки реакции предпочтительны другие методы, и предпочтительно держать ядерное ядро ​​покрытым водой, чтобы обеспечить достаточное охлаждение.

Пожарные соображения

Вода используется для тушения лесных пожаров .

Вода имеет высокую теплоту испарения и относительно инертна, что делает ее хорошей огнетушащей жидкостью. Испарение воды уносит тепло от огня. Опасно использовать воду при пожарах, связанных с маслами и органическими растворителями, поскольку многие органические материалы плавают на воде, и вода имеет тенденцию распространять горящую жидкость.

При использовании воды для тушения пожаров следует также учитывать опасность парового взрыва , который может произойти при использовании воды для тушения очень горячих пожаров в замкнутых пространствах, а также опасность взрыва водорода, когда вещества, реагирующие с водой, такие как некоторые металлы или горячий углерод, такой как уголь, древесный уголь или коксовый графит, разлагают воду, выделяя водяной газ .

Мощность таких взрывов была продемонстрирована в Чернобыльской катастрофе , хотя вода в этом случае была взята не из пожаротушения, а из собственной системы водяного охлаждения реактора. Паровой взрыв произошел, когда экстремальный перегрев активной зоны привел к тому, что вода превратилась в пар. Взрыв водорода мог произойти в результате реакции между паром и горячим цирконием .

Некоторые оксиды металлов, особенно щелочных и щелочноземельных металлов , выделяют так много тепла при реакции с водой, что может возникнуть опасность возгорания. Негашеная известь щелочноземельного оксида , также известная как оксид кальция, является массовым веществом, которое часто перевозится в бумажных пакетах. Если они промокнут, они могут воспламениться, поскольку их содержимое реагирует с водой. [153]

Отдых

остров Сан-Андрес , Колумбия

Люди используют воду для многих рекреационных целей, а также для упражнений и занятий спортом. Некоторые из них включают плавание, водные лыжи , катание на лодках , серфинг и дайвинг . Кроме того, некоторые виды спорта, такие как хоккей и катание на коньках , проводятся на льду. Берега озер, пляжи и аквапарки являются популярными местами, где люди могут расслабиться и насладиться отдыхом. Многие находят звук и вид текущей воды успокаивающими, а фонтаны и другие сооружения с текущей водой являются популярными украшениями. Некоторые держат рыб и другую флору и фауну в аквариумах или прудах для шоу, веселья и общения. Люди также используют воду для зимних видов спорта, таких как катание на лыжах , санях , снегоходах или сноуборде , для которых требуется, чтобы вода была низкой температуры либо в виде льда, либо в виде кристаллизованного снега .

Водное хозяйство

Водная отрасль предоставляет услуги по питьевой воде и сточным водам (включая очистку сточных вод ) для домохозяйств и промышленности. Водоснабжающие сооружения включают скважины , цистерны для сбора дождевой воды , водопроводные сети и водоочистные сооружения, резервуары для воды , водонапорные башни , водопроводные трубы , включая старые акведуки . Атмосферные генераторы воды находятся в стадии разработки.

Питьевую воду часто собирают в источниках , добывают из искусственных скважин (скважин) в земле или выкачивают из озер и рек. Таким образом, строительство большего количества скважин в подходящих местах является возможным способом производства большего количества воды, предполагая, что водоносные горизонты могут обеспечить достаточный поток. Другие источники воды включают сбор дождевой воды. Вода может потребовать очистки для потребления человеком. Это может включать удаление нерастворенных веществ, растворенных веществ и вредных микробов . Популярные методы - фильтрация песком, которая удаляет только нерастворенный материал, в то время как хлорирование и кипячение убивают вредные микробы. Дистилляция выполняет все три функции. Существуют более продвинутые методы, такие как обратный осмос . Опреснение обильной морской воды - более дорогое решение, используемое в прибрежных засушливых климатических условиях .

Распределение питьевой воды осуществляется через муниципальные системы водоснабжения , доставку автоцистернами или в виде бутилированной воды . Правительства многих стран имеют программы по бесплатной раздаче воды нуждающимся.

Сокращение использования путем использования питьевой воды только для потребления человеком является еще одним вариантом. В некоторых городах, таких как Гонконг, морская вода широко используется для смыва туалетов по всему городу с целью сохранения ресурсов пресной воды .

Загрязнение воды может быть самым большим единичным злоупотреблением водой; в той степени, в которой загрязнитель ограничивает другие виды использования воды, это становится пустой тратой ресурса, независимо от выгод для загрязнителя. Как и другие типы загрязнения, это не входит в стандартный учет рыночных издержек, поскольку рассматривается как внешние факторы , которые рынок не может учесть. Таким образом, другие люди платят цену за загрязнение воды, в то время как прибыль частных фирм не перераспределяется среди местного населения, жертв этого загрязнения. Фармацевтические препараты, потребляемые людьми, часто попадают в водные пути и могут оказывать пагубное воздействие на водную флору и фауну, если они биоаккумулируются и не являются биоразлагаемыми .

Муниципальные и промышленные сточные воды обычно очищаются на очистных сооружениях . Смягчение последствий загрязнения поверхностного стока достигается с помощью различных методов профилактики и очистки .

Промышленное применение

Многие промышленные процессы основаны на реакциях с использованием химикатов, растворенных в воде, суспензии твердых веществ в водных пульпах или использовании воды для растворения и извлечения веществ или для промывки продуктов или технологического оборудования. Такие процессы, как добыча полезных ископаемых , химическая варка целлюлозы , отбеливание целлюлозы, производство бумаги , текстильное производство, крашение, печать и охлаждение электростанций, используют большое количество воды, требуя выделенного источника воды, и часто вызывают значительное загрязнение воды.

Вода используется для выработки электроэнергии . Гидроэлектроэнергия — это электричество, полученное из гидроэлектростанций . Гидроэлектроэнергия вырабатывается водой, приводящей в движение водяную турбину, соединенную с генератором. Гидроэлектроэнергия — это недорогой, экологически чистый, возобновляемый источник энергии. Энергия вырабатывается за счет движения воды. Обычно на реке сооружают плотину, создавая за ней искусственное озеро. Вода, вытекающая из озера, прогоняется через турбины, которые вращают генераторы.

Вода под давлением используется в водоструйной очистке и водоструйных резаках . Высоконапорные водяные пистолеты используются для точной резки. Они работают очень хорошо, относительно безопасны и не вредны для окружающей среды. Они также используются для охлаждения оборудования, чтобы предотвратить перегрев или предотвратить перегрев пильных полотен.

Вода также используется во многих промышленных процессах и машинах, таких как паровая турбина и теплообменник , в дополнение к ее использованию в качестве химического растворителя . Сброс неочищенной воды из промышленных источников является загрязнением . Загрязнение включает в себя сбрасываемые растворенные вещества (химическое загрязнение) и сбрасываемую охлаждающую воду ( тепловое загрязнение ). Промышленности требуется чистая вода для многих применений, и она использует различные методы очистки как при подаче воды, так и при сбросе.

Пищевая промышленность

Воду можно использовать для приготовления таких продуктов, как лапша .
Стерильная вода для инъекций

Кипячение , приготовление на пару и томление на медленном огне являются популярными методами приготовления пищи, которые часто требуют погружения пищи в воду или ее газообразное состояние, пар. [154] Вода также используется для мытья посуды . Вода также играет множество важных ролей в области пищевой науки .

Растворенные вещества, такие как соли и сахара, находящиеся в воде, влияют на физические свойства воды. На точки кипения и замерзания воды влияют растворенные вещества, а также давление воздуха , которое, в свою очередь, зависит от высоты. Вода кипит при более низких температурах при более низком давлении воздуха, которое возникает на больших высотах. Один моль сахарозы (сахара) на килограмм воды повышает температуру кипения воды на 0,51 °C (0,918 °F), а один моль соли на кг повышает температуру кипения на 1,02 °C (1,836 °F); аналогично, увеличение количества растворенных частиц снижает температуру замерзания воды. [155]

Растворенные в воде вещества также влияют на активность воды, которая влияет на многие химические реакции и рост микробов в пище. [156] Активность воды можно описать как отношение давления паров воды в растворе к давлению паров чистой воды. [155] Растворенные в воде вещества снижают активность воды — это важно знать, поскольку рост большинства бактерий прекращается при низких уровнях активности воды. [156] Рост микробов влияет не только на безопасность продуктов питания, но также на сохранность и срок годности продуктов питания.

Жесткость воды также является критическим фактором в обработке пищевых продуктов и может быть изменена или обработана с помощью химической ионообменной системы. Она может существенно повлиять на качество продукта, а также играть роль в санитарии. Жесткость воды классифицируется на основе концентрации карбоната кальция, содержащегося в воде. Вода классифицируется как мягкая, если она содержит менее 100 мг/л (Великобритания) [157] или менее 60 мг/л (США). [158]

Согласно отчету, опубликованному организацией Water Footprint в 2010 году, для производства одного килограмма говядины требуется 15 тысяч литров (3,3 × 10 3  галлонов США; 4,0 × 10 3  галлонов США) воды; однако авторы также поясняют, что это мировое среднее значение, а количество воды, используемой при производстве говядины, определяется косвенными факторами. [159]^^

Медицинское применение

Вода для инъекций входит в список основных лекарственных средств Всемирной организации здравоохранения . [160]

Распространение в природе

Во вселенной

Приемник Band 5 ALMA — это прибор, специально разработанный для обнаружения воды во Вселенной. [161]

Большая часть воды во вселенной образуется как побочный продукт звездообразования . Формирование звезд сопровождается сильным внешним ветром газа и пыли. Когда этот отток материала в конечном итоге воздействует на окружающий газ, создаваемые ударные волны сжимают и нагревают газ. Наблюдаемая вода быстро образуется в этом теплом плотном газе. [162]

22 июля 2011 года в отчете было описано открытие гигантского облака водяного пара, содержащего «в 140 триллионов раз больше воды, чем все океаны Земли вместе взятые» вокруг квазара , расположенного в 12 миллиардах световых лет от Земли. По словам исследователей, «открытие показывает, что вода была распространена во Вселенной почти на протяжении всего ее существования». [163] [164]

Вода была обнаружена в межзвездных облаках в пределах Млечного Пути . [165] Вода, вероятно, существует в изобилии и в других галактиках, потому что ее компоненты, водород и кислород, являются одними из самых распространенных элементов во Вселенной. Основываясь на моделях формирования и эволюции Солнечной системы и других звездных систем, большинство других планетарных систем, вероятно, имеют схожие ингредиенты.

Водяной пар

Вода присутствует в виде пара в:

Жидкая вода

Жидкая вода присутствует на Земле, покрывая 71% ее поверхности. [23] Жидкая вода также иногда присутствует в небольших количествах на Марсе . [186] Ученые полагают, что жидкая вода присутствует на спутниках Сатурна Энцеладе в виде океана толщиной 10 километров примерно в 30–40 километрах под южной полярной поверхностью Энцелада, [187] [188] и на Титане в виде подповерхностного слоя, возможно, смешанного с аммиаком . [189] Спутник Юпитера Европа имеет поверхностные характеристики, которые предполагают наличие подповерхностного океана жидкой воды. [190] Жидкая вода также может существовать на спутнике Юпитера Ганимеде в виде слоя, зажатого между льдом высокого давления и камнем. [191]

Водяной лед

Вода присутствует в виде льда на:

Южная полярная ледяная шапка Марса во время марсианского южного лета 2000 года

А также, вероятно, присутствует на:

Экзотические формы

Вода и другие летучие вещества, вероятно, составляют большую часть внутренних структур Урана и Нептуна , а вода в более глубоких слоях может находиться в форме ионной воды , в которой молекулы распадаются на суп из ионов водорода и кислорода, а еще глубже — в форме суперионной воды , в которой кислород кристаллизуется, но ионы водорода свободно плавают внутри решетки кислорода. [210]

Вода и обитаемость планет

Существование жидкой воды и в меньшей степени ее газообразных и твердых форм на Земле жизненно важно для существования жизни на Земле, какой мы ее знаем. Земля расположена в обитаемой зоне Солнечной системы ; если бы она была немного ближе или дальше от Солнца (около 5%, или около 8 миллионов километров), условия, которые позволяют трем формам присутствовать одновременно, были бы гораздо менее вероятны. [211] [212]

Гравитация Земли позволяет ей удерживать атмосферу . Водяной пар и углекислый газ в атмосфере обеспечивают температурный буфер ( парниковый эффект ), который помогает поддерживать относительно постоянную температуру поверхности. Если бы Земля была меньше, более тонкая атмосфера допускала бы экстремальные температуры, тем самым предотвращая накопление воды, за исключением полярных ледяных шапок (как на Марсе ). [ необходима цитата ]

Температура поверхности Земли была относительно постоянной в течение геологического времени, несмотря на различные уровни поступающей солнечной радиации ( инсоляции ), что указывает на то, что динамический процесс управляет температурой Земли через комбинацию парниковых газов и поверхностного или атмосферного альбедо . Это предложение известно как гипотеза Геи . [ требуется ссылка ]

Состояние воды на планете зависит от давления окружающей среды, которое определяется гравитацией планеты. Если планета достаточно массивна, вода на ней может быть твердой даже при высоких температурах из-за высокого давления, вызванного гравитацией, как это наблюдалось на экзопланетах Gliese 436 b [213] и GJ 1214 b . [214]

Право, политика и кризис

Оценка доли населения в развивающихся странах, имеющего доступ к питьевой воде, 1970–2000 гг.

Водная политика — это политика, на которую влияют вода и водные ресурсы . Вода, особенно пресная вода, является стратегическим ресурсом во всем мире и важным элементом во многих политических конфликтах. Она оказывает влияние на здоровье и наносит ущерб биоразнообразию.

Доступ к безопасной питьевой воде улучшился за последние десятилетия почти во всех частях мира, но около одного миллиарда человек по-прежнему не имеют доступа к безопасной воде, а более 2,5 миллиардов не имеют доступа к адекватным санитарным условиям . [215] Однако некоторые наблюдатели подсчитали, что к 2025 году более половины населения мира столкнется с уязвимостью, связанной с водой. [216] В отчете, опубликованном в ноябре 2009 года, предполагается, что к 2030 году в некоторых развивающихся регионах мира спрос на воду превысит предложение на 50%. [217]

1,6 миллиарда человек получили доступ к безопасному источнику воды с 1990 года. [218] Подсчитано, что доля людей в развивающихся странах , имеющих доступ к безопасной воде, увеличилась с 30% в 1970 году [219] до 71% в 1990 году, 79% в 2000 году и 84% в 2004 году. [215]

В докладе Организации Объединенных Наций за 2006 год говорилось, что «воды достаточно для всех», но доступ к ней затруднен из-за неэффективного управления и коррупции. [220] Кроме того, глобальные инициативы по повышению эффективности предоставления помощи, такие как Парижская декларация об эффективности помощи , не были приняты донорами водного сектора так же эффективно, как в образовании и здравоохранении, что потенциально приводит к тому, что несколько доноров работают над дублирующими проектами, а правительства-получатели остаются без полномочий для действий. [221]

Авторы Комплексной оценки управления водными ресурсами в сельском хозяйстве 2007 года назвали плохое управление одной из причин некоторых форм дефицита воды. Управление водными ресурсами — это набор формальных и неформальных процессов, посредством которых принимаются решения, связанные с управлением водными ресурсами. Хорошее управление водными ресурсами в первую очередь заключается в знании того, какие процессы работают лучше всего в определенном физическом и социально-экономическом контексте. Иногда ошибки допускались при попытке применить «чертежи», которые работают в развитом мире, к местам и контекстам развивающегося мира. Река Меконг — один из примеров; обзор Международным институтом управления водными ресурсами политики в шести странах, которые зависят от реки Меконг для получения воды, показал, что тщательный и прозрачный анализ затрат и выгод и оценка воздействия на окружающую среду проводились редко. Они также обнаружили, что проект закона Камбоджи о воде был намного сложнее, чем нужно. [222]

В 2004 году британская благотворительная организация WaterAid сообщила, что каждые 15 секунд от легко предотвратимых заболеваний, связанных с водой, которые часто связаны с отсутствием надлежащих санитарных условий, умирает ребенок. [223] [224]

Начиная с 2003 года Доклад ООН о развитии водных ресурсов мира , подготовленный Программой ЮНЕСКО по оценке водных ресурсов мира , предоставляет лицам, принимающим решения, инструменты для разработки устойчивой политики в области водных ресурсов . [225] В докладе за 2023 год говорится, что два миллиарда человек (26% населения) не имеют доступа к питьевой воде , а 3,6 миллиарда (46%) не имеют доступа к безопасной санитарии. [226] Люди в городских районах (2,4 миллиарда) столкнутся с нехваткой воды к 2050 году. [225] Дефицит воды описывается как эндемическое явление из-за чрезмерного потребления и загрязнения . [227] В докладе говорится, что 10% населения мира проживает в странах с высоким или критическим дефицитом воды. Тем не менее, за последние 40 лет потребление воды увеличилось примерно на 1% в год, и ожидается, что оно будет расти такими же темпами до 2050 года. С 2000 года наводнения в тропиках выросли в четыре раза, в то время как наводнения в северных средних широтах увеличились в 2,5 раза. [228] Стоимость этих наводнений в период с 2000 по 2019 год составила 100 000 смертей и 650 миллионов долларов. [225]

Организации, занимающиеся охраной водных ресурсов, включают Международную водную ассоциацию (IWA), WaterAid, Water 1st и Американскую ассоциацию водных ресурсов. Международный институт управления водными ресурсами реализует проекты с целью использования эффективного управления водными ресурсами для сокращения бедности. Конвенции, связанные с водными ресурсами, — это Конвенция Организации Объединенных Наций по борьбе с опустыниванием (КБО ООН), Международная конвенция по предотвращению загрязнения с судов , Конвенция Организации Объединенных Наций по морскому праву и Рамсарская конвенция . Всемирный день водных ресурсов отмечается 22 марта [229] , а Всемирный день океанов — 8 июня. [230]

В культуре

Религия

Люди приходят к источнику Инда Абба Хадера ( Инда Силласие , Эфиопия ), чтобы умыться святой водой.

Вода считается очистителем в большинстве религий. Верования, которые включают ритуальное омовение ( аблюцию ), включают христианство , [231] индуизм , ислам , иудаизм , движение растафари , синтоизм , даосизм и викка . Погружение (или окропление или обливание ) человека в воду является центральным Таинством христианства (где оно называется крещением ); это также часть практики других религий, включая ислам ( гусл ), иудаизм ( миква ) и сикхизм ( амрит санскар ). Кроме того, ритуальное омовение в чистой воде совершается для умерших во многих религиях, включая ислам и иудаизм. В исламе пять ежедневных молитв можно совершать в большинстве случаев после омовения определенных частей тела чистой водой ( вуду ), если вода недоступна (см. Тайаммум ). В синтоизме вода используется почти во всех ритуалах для очищения человека или пространства (например, в ритуале мисоги ).

В христианстве святая вода — это вода, освященная священником для крещения , благословения людей , мест и предметов или как средство отпугивания зла. [232] [233]

В зороастризме вода ( āb ) почитается как источник жизни. [234]

Философия

Икосаэдр как часть памятника Спинозе в Амстердаме.
Икосаэдр как часть памятника Спинозе в Амстердаме

Древнегреческий философ Эмпедокл считал воду одним из четырех классических элементов (наряду с огнем, землей и воздухом ) и считал ее илемом , или основной субстанцией вселенной. Фалес , которого Аристотель изображал как астронома и инженера, выдвинул теорию о том, что земля, которая плотнее воды, возникла из воды. Фалес, монист , также считал, что все вещи сделаны из воды. Платон считал, что форма воды — икосаэдр — легко текучая по сравнению с кубической формой земли. [235]

Теория четырех телесных жидкостей связывала воду с мокротой , как с холодной и влажной. Классический элемент воды также был одним из пяти элементов в традиционной китайской философии (наряду с землей , огнем , деревом и металлом ).

Некоторые традиционные и популярные азиатские философские системы берут воду в качестве образца для подражания. В переводе « Дао Дэ Цзин» Джеймса Легга 1891 года говорится: «Высшее совершенство подобно (совершенству) воды. Совершенство воды проявляется в том, что она приносит пользу всем вещам и занимает, не стремясь (к противоположному), низкое место, которое не нравится всем людям. Поэтому (ее путь) близок (пути) Дао » и «Нет ничего в мире более мягкого и слабого, чем вода, и все же для нападения на то, что твердо и сильно, нет ничего, что могло бы превзойти ее — ибо нет ничего (столь эффективного), на что ее можно было бы изменить». [236] Гуаньцзы в главе «Шуй ди» 水地 далее развивает символику воды, провозглашая, что «человек есть вода» и приписывая природные качества людей разных китайских регионов характеру местных водных ресурсов. [237]

Фольклор

«Живая вода» фигурирует в германских и славянских сказках как средство возвращения мертвых к жизни. Обратите внимание на сказку братьев ГриммВода жизни ») и русскую дихотомию живой  [ru] и мертвой воды  [ru] . Фонтан молодости представляет собой связанную концепцию магических вод, якобы предотвращающих старение.

Искусство и активизм

В значительном модернистском романе «Улисс» (1922) ирландского писателя Джеймса Джойса глава «Итака» принимает форму катехизиса из 309 вопросов и ответов, один из которых известен как «гимн воде». [238] : 91  По словам Ричарда Э. Мэдтеса, гимн — это не просто «монотонная цепочка фактов», скорее, его фразы, как и их тема, «приливают и отливают, вздымаются и набухают, собираются и распадаются, пока не успокоятся в спокойном покое заключительного «чумного болота, увядшей цветочной воды, стоячих прудов в ущербной луне». [238] : 79  Гимн считается одним из самых замечательных отрывков в «Итаке», и, по словам литературного критика Хью Кеннера , достигает «невероятного подвига возведения в поэзию всего беспорядка ничтожной информации, которая накопилась в школьных учебниках». [238] : 91  Литературный мотив воды представляет собой тему романа «вечной, вечно меняющейся жизни», а гимн представляет собой кульминацию мотива в романе. [238] : 91  Ниже приводится полная цитата гимна. [239]

Чем же в воде восхищался Блум, любитель воды, черпатель воды, водонос, возвращающийся на пастбище?
Его универсальность: его демократическое равенство и постоянство своей природы в поиске собственного уровня: его необъятность в океане проекции Меркатора: его неизмеримая глубина в желобе Сундам в Тихом океане, превышающая 8000 саженей: беспокойство его волн и поверхностных частиц, посещающих по очереди все точки его побережья: независимость его единиц: изменчивость состояний моря: его гидростатическое спокойствие в штиль: его гидрокинетическая тургуляция в квадратные и сизигийные приливы: его оседание после опустошения: его бесплодие в циркумполярных ледяных шапках, арктических и антарктических: его климатическое и коммерческое значение: его преобладание в соотношении 3 к 1 над сушей земного шара: его бесспорная гегемония, простирающаяся на квадратные лиги над всем регионом ниже субэкваториального тропика Козерога: многовековая стабильность его первобытного бассейна: его лютеофульвовое ложе: его способность растворять и удерживать в растворе все растворимые вещества, включая миллионы тонн самых драгоценных металлов: ее медленная эрозия полуостровов и нисходящих мысов: ее аллювиальные отложения: ее вес, объем и плотность: ее невозмутимость в лагунах и высокогорных озерах: ее градация цветов в жарких, умеренных и холодных зонах: ее транспортные разветвления в континентальных озёрных ручьях и впадающих в океан реках с их притоками и трансокеанскими течениями: Гольфстрим, северные и южные экваториальные течения: ее неистовство в моретрясениях, водяных смерчах, артезианских скважинах, извержениях, ливнях, водоворотах, паводках, наводнениях, донной волне, водоразделах, водоразделах, гейзерах, водопадах, водоворотах, водоворотах, наводнениях, потопах, ливнях: ее обширная околоземная горизонтальная кривая: ее секретность в источниках и скрытая влажность, раскрываемая рабдомантические или гигрометрические приборы, примером которых служит колодец у отверстия в стене у ворот Эштауна, насыщение воздуха, дистилляция росы: простота его состава, две составные части водорода с одной составной частью кислорода: его целебные свойства: его плавучесть в водах Мертвого моря: его настойчивая проникающая способность в ручьи, овраги, ненадлежащие плотины, течи на борту судна: его очищающие свойства, утоляющие жажду и огонь, питающие растительность: его непогрешимость как парадигмы и образца: его метаморфозы в виде пара, тумана, облака, дождя, мокрого снега, снега, града: его прочность в жестких гидрантах: его разнообразие форм в оврагах, заливах, бухтах, лагунах, атоллах, архипелагах, проливах, фьордах, протоках, приливных эстуариях и морских рукавах: его прочность в ледниках, айсберги, льдины: его покорность в работе гидравлических мельничных колес, турбин, динамо-машин, электростанций, отбеливательных заводов, кожевенных заводов, стропильных фабрик; его полезность в каналах, реках, если они судоходны, плавучих и гравийных доках: его потенциал, вытекающий из использования приливов или падающих с уровня на уровень водотоков: его подводная фауна и флора (анакустическая, светобоязненная) в количественном отношении,если не в буквальном смысле, то обитатели земного шара: его повсеместное распространение, поскольку он составляет 90% человеческого тела; пагубность его испарений в озерных болотах, тлетворных топях, увядшей цветочной воде, застойных лужах при убывающей луне.

Громкий «водный гимн» в романе Джеймса Джойса «Улисс» звучит, когда главный герой Леопольд Блум наполняет чайник водой из кухонного крана . [239]

Художница и активистка Фредерика Фостер курировала выставку «Ценность воды » в соборе Святого Иоанна Богослова в Нью-Йорке [240] , которая положила начало годовой инициативе собора, посвященной нашей зависимости от воды. [241] [242] Это была самая крупная выставка, когда-либо проходившая в соборе, [243] в ней приняли участие более сорока художников, включая Дженни Хольцер , Роберта Лонго , Марка Ротко , Уильяма Кентриджа , Эйприл Горник , Кики Смит , Пэт Стейр , Элис Далтон Браун , Тереситу Фернандес и Билла Виолу . [244] [245] Фостер создала «Подумайте о воде» [246] [ необходима полная цитата ] — экологический коллектив художников, которые используют воду в качестве предмета или среды. В состав группы входят Бася Айрланд, [247] [ необходима полная ссылка ] Авива Рахмани , Бетси Дэймон , Дайан Берко , Лейла Доу , Стейси Леви , Шарлотта Коте, [248] Меридель Рубенштейн и Анна Маклеод .

В ознаменование 10-й годовщины того, как ООН объявила доступ к воде и санитарии правом человека, благотворительная организация WaterAid поручила десяти художникам продемонстрировать влияние чистой воды на жизнь людей. [249] [250]

Пародия на оксид дигидрогена

«Дигидроген монооксид» — технически правильное, но редко используемое химическое название воды. Это название использовалось в серии розыгрышей и шуток , высмеивающих научную безграмотность . Это началось в 1983 году, когда в газете в Дюранде, штат Мичиган , появилась статья на День дурака . Ложная история состояла из опасений по поводу безопасности этого вещества. [251]

Музыка

Слово «Вода» использовалось многими рэперами из Флориды как своего рода крылатая фраза или импровизация. Рэперы, которые делали это, включают BLP Kosher и Ski Mask the Slump God . [252] Чтобы пойти еще дальше, некоторые рэперы написали целые песни, посвященные воде во Флориде, например, песня Дэнни Тауэрса 2023 года «Florida Water». [253] Другие написали целые песни, посвященные воде в целом, например , XXXTentacion и Ski Mask the Slump God с их хитом «H2O».

Смотрите также

Примечания

  1. ^ Обычно цитируемое значение 15,7, используемое в основном в органической химии для pK a воды, неверно. [12] [13]
  2. ^ ab Венский стандарт средней океанической воды (VSMOW), используемый для калибровки, плавится при 273,1500089(10) К (0,000089(10) °C и кипит при 373,1339 К (99,9839 °C). Другие изотопные составы плавятся или кипят при несколько иных температурах.
  3. ^ см. раздел вкус и запах
  4. ^ Другие вещества с этим свойством включают висмут , кремний , германий и галлий . [53]

Ссылки

  1. ^ "именование молекулярных соединений". www.iun.edu . Архивировано из оригинала 24 сентября 2018 г. . Получено 1 октября 2018 г. Иногда эти соединения имеют общие или общепринятые названия (например, H2O — это «вода»), а также систематические названия (например, H2O, монооксид дигидрогена).
  2. ^ "Определение Hydrol". Merriam-Webster . Архивировано из оригинала 13 августа 2017 года . Получено 21 апреля 2019 года .
  3. ^ Ли, Фавр и Метаномски 1998, стр. 99.
  4. ^ Braun CL, Smirnov SN (1 августа 1993 г.). "Почему вода синяя?" (PDF) . Journal of Chemical Education . 70 (8): 612. Bibcode :1993JChEd..70..612B. doi :10.1021/ed070p612. ISSN  0021-9584. Архивировано (PDF) из оригинала 1 декабря 2019 г. . Получено 13 сентября 2023 г. .
  5. ^ abc Tanaka M, Girard G, Davis R, Peuto A, Bignell N (август 2001 г.). «Рекомендуемая таблица плотности воды между 0 °C и 40 °C на основе последних экспериментальных отчетов». Metrologia . 38 (4): 301–309. doi :10.1088/0026-1394/38/4/3.
  6. ^ Lemmon EW, Bell IH, Huber ML, McLinden MO. "Thermophysical Properties of Fluid Systems". В Linstrom P, Mallard W (ред.). NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Национальный институт стандартов и технологий. doi :10.18434/T4D303. Архивировано из оригинала 23 октября 2023 г. Получено 17 октября 2023 г.
  7. ^ Лид 2003, Свойства льда и переохлажденной воды в разделе 6.
  8. ^ abc Anatolievich KR. "Свойства вещества: вода". Архивировано из оригинала 2 июня 2014 года . Получено 1 июня 2014 года .
  9. ^ Лид 2003, Давление паров воды от 0 до 370 °C в разделе 6.
  10. ^ Лиде 2003, Глава 8: Константы диссоциации неорганических кислот и оснований.
  11. ^ Вайнгертнер и др. 2016, с. 13.
  12. ^ "What is the pKa of Water". University of California, Davis. 9 August 2015. Archived from the original on 14 February 2016. Retrieved 9 April 2016.
  13. ^ Silverstein TP, Heller ST (17 April 2017). "pKa Values in the Undergraduate Curriculum: What Is the Real pKa of Water?". Journal of Chemical Education. 94 (6): 690–695. Bibcode:2017JChEd..94..690S. doi:10.1021/acs.jchemed.6b00623.
  14. ^ Ramires ML, Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA (1 May 1995). "Standard Reference Data for the Thermal Conductivity of Water". Journal of Physical and Chemical Reference Data. 24 (3): 1377–1381. Bibcode:1995JPCRD..24.1377R. doi:10.1063/1.555963. ISSN 0047-2689.
  15. ^ Lide 2003, 8—Concentrative Properties of Aqueous Solutions: Density, Refractive Index, Freezing Point Depression, and Viscosity.
  16. ^ Lide 2003, 6.186.
  17. ^ a b c d Water in Linstrom, Peter J.; Mallard, William G. (eds.); NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD)
  18. ^ Lide 2003, 9—Dipole Moments.
  19. ^ GHS: PubChem 962 Archived 2023-07-28 at the Wayback Machine
  20. ^ "Water Q&A: Why is water the "universal solvent"?". Water Science School. United States Geological Survey, U.S. Department of the Interior. 20 June 2019. Archived from the original on 6 February 2021. Retrieved 15 January 2021.
  21. ^ "10.2: Hybrid Orbitals in Water". Chemistry LibreTexts. 18 March 2020. Archived from the original on 30 July 2022. Retrieved 11 April 2021.
  22. ^ Butler J. "The Earth – Introduction – Weathering". University of Houston. Archived from the original on 30 January 2023. Retrieved 30 January 2023. Note that the Earth environment is close to the triple point and that water, steam and ice can all exist at the surface.
  23. ^ a b "How Much Water is There on Earth?". Water Science School. United States Geological Survey, U.S. Department of the Interior. 13 November 2019. Archived from the original on 9 June 2022. Retrieved 8 June 2022.
  24. ^ a b Gleick, P.H., ed. (1993). Water in Crisis: A Guide to the World's Freshwater Resources. Oxford University Press. p. 13, Table 2.1 "Water reserves on the earth". Archived from the original on 8 April 2013.
  25. ^ Water Vapor in the Climate System Archived 20 March 2007 at the Wayback Machine, Special Report, [AGU], December 1995 (linked 4/2007). Vital Water Archived 20 February 2008 at the Wayback Machine UNEP.
  26. ^ Baroni, L., Cenci, L., Tettamanti, M., Berati, M. (2007). "Evaluating the environmental impact of various dietary patterns combined with different food production systems". European Journal of Clinical Nutrition. 61 (2): 279–286. doi:10.1038/sj.ejcn.1602522. ISSN 0954-3007. PMID 17035955.
  27. ^ Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, et al. (16 September 2014). "Does aquaculture add resilience to the global food system?". Proceedings of the National Academy of Sciences. 111 (37): 13257–13263. Bibcode:2014PNAS..11113257T. doi:10.1073/pnas.1404067111. ISSN 0027-8424. PMC 4169979. PMID 25136111.
  28. ^ "Water (v.)". www.etymonline.com. Online Etymology Dictionary. Archived from the original on 2 August 2017. Retrieved 20 May 2017.
  29. ^ Pepin RO (July 1991). "On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles". Icarus. 92 (1): 2–79. Bibcode:1991Icar...92....2P. doi:10.1016/0019-1035(91)90036-s. ISSN 0019-1035.
  30. ^ Zahnle KJ, Gacesa M, Catling DC (January 2019). "Strange messenger: A new history of hydrogen on Earth, as told by Xenon". Geochimica et Cosmochimica Acta. 244: 56–85. arXiv:1809.06960. Bibcode:2019GeCoA.244...56Z. doi:10.1016/j.gca.2018.09.017. ISSN 0016-7037. S2CID 119079927.
  31. ^ Canup RM, Asphaug E (August 2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature. 412 (6848): 708–712. Bibcode:2001Natur.412..708C. doi:10.1038/35089010. ISSN 0028-0836. PMID 11507633. S2CID 4413525.
  32. ^ Cuk M, Stewart ST (17 October 2012). "Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning". Science. 338 (6110): 1047–1052. Bibcode:2012Sci...338.1047C. doi:10.1126/science.1225542. ISSN 0036-8075. PMID 23076099. S2CID 6909122.
  33. ^ Sleep NH, Zahnle K, Neuhoff PS (2001). "Initiation of clement surface conditions on the earliest Earth". Proceedings of the National Academy of Sciences. 98 (7): 3666–3672. Bibcode:2001PNAS...98.3666S. doi:10.1073/pnas.071045698. PMC 31109. PMID 11259665.
  34. ^ a b Pinti DL, Arndt N (2014), "Oceans, Origin of", Encyclopedia of Astrobiology, Springer Berlin Heidelberg, pp. 1–5, doi:10.1007/978-3-642-27833-4_1098-4, ISBN 978-3-642-27833-4
  35. ^ Cates N, Mojzsis S (March 2007). "Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, northern Québec". Earth and Planetary Science Letters. 255 (1–2): 9–21. Bibcode:2007E&PSL.255....9C. doi:10.1016/j.epsl.2006.11.034. ISSN 0012-821X.
  36. ^ O'Neil J, Carlson RW, Paquette JL, Francis D (November 2012). "Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt" (PDF). Precambrian Research. 220–221: 23–44. Bibcode:2012PreR..220...23O. doi:10.1016/j.precamres.2012.07.009. ISSN 0301-9268.
  37. ^ Piani, Laurette (28 August 2020). "Earth's water may have been inherited from material similar to enstatite chondrite meteorites". Science. 369 (6507): 1110–1113. Bibcode:2020Sci...369.1110P. doi:10.1126/science.aba1948. PMID 32855337. S2CID 221342529. Retrieved 28 August 2020.
  38. ^ Washington University in St. Louis (27 August 2020). "Meteorite study suggests Earth may have been wet since it formed - Enstatite chondrite meteorites, once considered 'dry,' contain enough water to fill the oceans -- and then some". EurekAlert!. Retrieved 28 August 2020.
  39. ^ American Association for the Advancement of Science (27 August 2020). "Unexpected abundance of hydrogen in meteorites reveals the origin of Earth's water". EurekAlert!. Retrieved 28 August 2020.
  40. ^ Wilde S, Valley J, Peck W, Graham C (2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 nGyr ago" (PDF). Nature. 409 (6817): 175–8. Bibcode:2001Natur.409..175W. doi:10.1038/35051550. PMID 11196637. S2CID 4319774.
  41. ^ "ANU - Research School of Earth Sciences - ANU College of Science - Harrison". Ses.anu.edu.au. Archived from the original on 21 June 2006. Retrieved 20 August 2009.
  42. ^ "ANU - OVC - MEDIA - MEDIA RELEASES - 2005 - NOVEMBER - 181105HARRISONCONTINENTS". Info.anu.edu.au. Retrieved 20 August 2009.
  43. ^ "A Cool Early Earth". Geology.wisc.edu. Archived from the original on 16 June 2013. Retrieved 20 August 2009.
  44. ^ Chang K (2 December 2008). "A New Picture of the Early Earth". The New York Times. Retrieved 20 May 2010.
  45. ^ Greenwood NN, Earnshaw A (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 620. ISBN 978-0-08-037941-8.
  46. ^ "Water, the Universal Solvent". USGS. Archived from the original on 9 July 2017. Retrieved 27 June 2017.
  47. ^ "Solvent properties of water". Khan Academy.
  48. ^ Reece JB (2013). Campbell Biology (10th ed.). Pearson. p. 48. ISBN 978-0-321-77565-8.
  49. ^ Reece JB (2013). Campbell Biology (10th ed.). Pearson. p. 44. ISBN 978-0-321-77565-8.
  50. ^ Leigh GJ, Favre HA, Metanomski WV (1998). Principles of chemical nomenclature: a guide to IUPAC recommendations (PDF). Oxford: Blackwell Science. ISBN 978-0-86542-685-6. OCLC 37341352. Archived from the original (PDF) on 26 July 2011.
  51. ^ PubChem. "Water". National Center for Biotechnology Information. Archived from the original on 3 August 2018. Retrieved 25 March 2020.
  52. ^ a b Belnay L. "The water cycle" (PDF). Critical thinking activities. Earth System Research Laboratory. Archived (PDF) from the original on 20 September 2020. Retrieved 25 March 2020.
  53. ^ a b Oliveira MJ (2017). Equilibrium Thermodynamics. Springer. pp. 120–124. ISBN 978-3-662-53207-2. Archived from the original on 8 March 2021. Retrieved 26 March 2020.
  54. ^ "What is Density?". Mettler Toledo. Archived from the original on 11 November 2022. Retrieved 11 November 2022.
  55. ^ a b Ball P (2008). "Water – an enduring mystery". Nature. 452 (7185): 291–2. Bibcode:2008Natur.452..291B. doi:10.1038/452291a. PMID 18354466. S2CID 4365814. Archived from the original on 17 November 2016. Retrieved 15 November 2016.
  56. ^ Kotz JC, Treichel P, Weaver GC (2005). Chemistry & Chemical Reactivity. Thomson Brooks/Cole. ISBN 978-0-534-39597-1.
  57. ^ Ben-Naim A, Ben-Naim R, et al. (2011). Alice's Adventures in Water-land. doi:10.1142/8068. ISBN 978-981-4338-96-7.
  58. ^ Matsuoka N, Murton J (2008). "Frost weathering: recent advances and future directions". Permafrost and Periglacial Processes. 19 (2): 195–210. Bibcode:2008PPPr...19..195M. doi:10.1002/ppp.620. S2CID 131395533.
  59. ^ Wiltse B. "A Look Under The Ice: Winter Lake Ecology". Ausable River Association. Archived from the original on 19 June 2020. Retrieved 23 April 2020.
  60. ^ a b Chen Z (21 April 2010). "Measurement of Diamagnetism in Water". hdl:11299/90865. Archived from the original on 8 January 2022. Retrieved 8 January 2022.
  61. ^ Wells S (21 January 2017). "The Beauty and Science of Snowflakes". Smithsonian Science Education Center. Archived from the original on 25 March 2020. Retrieved 25 March 2020.
  62. ^ Fellows P (2017). "Freeze drying and freeze concentration". Food processing technology: principles and practice (4th ed.). Kent: Woodhead Publishing/Elsevier Science. pp. 929–940. ISBN 978-0-08-100523-1. OCLC 960758611.
  63. ^ Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, et al. (December 2001). "Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes". Nature. 414 (6864): 603–609. Bibcode:2001Natur.414..603S. doi:10.1038/414603a. PMID 11740551. S2CID 4423510.
  64. ^ Davies B. "Antarctic subglacial lakes". AntarcticGlaciers. Archived from the original on 3 October 2020. Retrieved 25 March 2020.
  65. ^ Masterton WL, Hurley CN (2008). Chemistry: principles and reactions (6th ed.). Cengage Learning. p. 230. ISBN 978-0-495-12671-3. Archived from the original on 8 March 2021. Retrieved 3 April 2020.
  66. ^ Peaco J. "Yellowstone Lesson Plan: How Yellowstone Geysers Erupt". Yellowstone National Park: U.S. National Park Service. Archived from the original on 2 March 2020. Retrieved 5 April 2020.
  67. ^ Brahic C. "Found: The hottest water on Earth". New Scientist. Archived from the original on 9 May 2020. Retrieved 5 April 2020.
  68. ^ USDA Food Safety and Inspection Service. "High Altitude Cooking and Food Safety" (PDF). Archived from the original (PDF) on 20 January 2021. Retrieved 5 April 2020.
  69. ^ "Pressure Cooking – Food Science". Exploratorium. 26 September 2019. Archived from the original on 19 June 2020. Retrieved 21 April 2020.
  70. ^ Allain R (12 September 2018). "Yes, You Can Boil Water at Room Temperature. Here's How". Wired. Archived from the original on 28 September 2020. Retrieved 5 April 2020.
  71. ^ Murphy DM, Koop T (1 April 2005). "Review of the vapour pressures of ice and supercooled water for atmospheric applications". Quarterly Journal of the Royal Meteorological Society. 131 (608): 1540. Bibcode:2005QJRMS.131.1539M. doi:10.1256/qj.04.94. S2CID 122365938. Archived from the original on 18 August 2020. Retrieved 31 August 2020.
  72. ^ International Bureau of Weights and Measures (2006). The International System of Units (SI) (PDF) (8th ed.). Bureau International des Poids et Mesures. p. 114. ISBN 92-822-2213-6. Archived (PDF) from the original on 14 August 2017.
  73. ^ "9th edition of the SI Brochure". BIPM. 2019. Archived from the original on 19 April 2021. Retrieved 20 May 2019.
  74. ^ Wagner W, Pruß A (June 2002). "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use". Journal of Physical and Chemical Reference Data. 31 (2): 398. doi:10.1063/1.1461829.
  75. ^ Weingärtner H, Franck EU (29 April 2005). "Supercritical Water as a Solvent". Angewandte Chemie International Edition. 44 (18): 2672–2692. doi:10.1002/anie.200462468. PMID 15827975.
  76. ^ Adschiri T, Lee YW, Goto M, Takami S (2011). "Green materials synthesis with supercritical water". Green Chemistry. 13 (6): 1380. doi:10.1039/c1gc15158d.
  77. ^ Murray BJ, Knopf DA, Bertram AK (2005). "The formation of cubic ice under conditions relevant to Earth's atmosphere". Nature. 434 (7030): 202–205. Bibcode:2005Natur.434..202M. doi:10.1038/nature03403. PMID 15758996. S2CID 4427815.
  78. ^ Salzmann CG (14 February 2019). "Advances in the experimental exploration of water's phase diagram". The Journal of Chemical Physics. 150 (6): 060901. arXiv:1812.04333. Bibcode:2019JChPh.150f0901S. doi:10.1063/1.5085163. PMID 30770019.
  79. ^ Sokol J (12 May 2019). "A Bizarre Form of Water May Exist All Over the Universe". Wired. Archived from the original on 12 May 2019. Retrieved 1 September 2021.
  80. ^ Millot M, Coppari F, Rygg JR, Barrios AC, Hamel S, Swift DC, et al. (2019). "Nanosecond X-ray diffraction of shock-compressed superionic water ice". Nature. 569 (7755). Springer: 251–255. Bibcode:2019Natur.569..251M. doi:10.1038/s41586-019-1114-6. OSTI 1568026. PMID 31068720. S2CID 148571419. Archived from the original on 9 July 2023. Retrieved 5 March 2024.
  81. ^ Peplow M (25 March 2015). "Graphene sandwich makes new form of ice". Nature. doi:10.1038/nature.2015.17175. S2CID 138877465.
  82. ^ Maestro LM, Marqués MI, Camarillo E, Jaque D, Solé JG, Gonzalo JA, et al. (1 January 2016). "On the existence of two states in liquid water: impact on biological and nanoscopic systems" (PDF). International Journal of Nanotechnology. 13 (8–9): 667–677. Bibcode:2016IJNT...13..667M. doi:10.1504/IJNT.2016.079670. S2CID 5995302. Archived (PDF) from the original on 15 November 2023. Retrieved 5 March 2024.
  83. ^ Mallamace F, Corsaro C, Stanley HE (18 December 2012). "A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water". Scientific Reports. 2 (1): 993. Bibcode:2012NatSR...2E.993M. doi:10.1038/srep00993. PMC 3524791. PMID 23251779.
  84. ^ Perakis F, Amann-Winkel K, Lehmkühler F, Sprung M, Mariedahl D, Sellberg JA, et al. (26 June 2017). "Diffusive dynamics during the high-to-low density transition in amorphous ice". Proceedings of the National Academy of Sciences of the United States of America. 13 (8–9): 667–677. Bibcode:2017PNAS..114.8193P. doi:10.1073/pnas.1705303114. PMC 5547632. PMID 28652327.
  85. ^ Zocchi D, Wennemuth G, Oka Y (July 2017). "The cellular mechanism for water detection in the mammalian taste system" (PDF). Nature Neuroscience. 20 (7): 927–933. doi:10.1038/nn.4575. PMID 28553944. S2CID 13263401. Archived from the original on 5 March 2024. Retrieved 27 January 2024.
  86. ^ Edmund T. Rolls (2005). Emotion Explained. Oxford University Press, Medical. ISBN 978-0198570035.
  87. ^ R. Llinas, W. Precht (2012), Frog Neurobiology: A Handbook. Springer Science & Business Media. ISBN 978-3642663161
  88. ^ Candau J (2004). "The Olfactory Experience: constants and cultural variables". Water Science and Technology. 49 (9): 11–17. doi:10.2166/wst.2004.0522. PMID 15237601. Archived from the original on 2 October 2016. Retrieved 28 September 2016.
  89. ^ Braun CL, Sergei N. Smirnov (1993). "Why is water blue?". Journal of Chemical Education. 70 (8): 612. Bibcode:1993JChEd..70..612B. doi:10.1021/ed070p612. Archived from the original on 20 March 2012. Retrieved 21 April 2007.
  90. ^ Nakamoto K (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry (5th ed.). New York: Wiley. p. 170. ISBN 0-471-16394-5.
  91. ^ Ball 2001, p. 168
  92. ^ Franks 2007, p. 10
  93. ^ "Physical Chemistry of Water". Michigan State University. Archived from the original on 20 October 2020. Retrieved 11 September 2020.
  94. ^ Ball 2001, p. 169
  95. ^ Isaacs ED, Shukla A, Platzman PM, Hamann DR, Barbiellini B, Tulk CA (1 March 2000). "Compton scattering evidence for covalency of the hydrogen bond in ice". Journal of Physics and Chemistry of Solids. 61 (3): 403–406. Bibcode:2000JPCS...61..403I. doi:10.1016/S0022-3697(99)00325-X.
  96. ^ Campbell NA, Williamson B, Heyden RJ (2006). Biology: Exploring Life. Boston: Pearson Prentice Hall. ISBN 978-0-13-250882-7. Archived from the original on 2 November 2014. Retrieved 11 November 2008.
  97. ^ "Heat capacity water online". Desmos (in Russian). Archived from the original on 6 June 2022. Retrieved 3 June 2022.
  98. ^ Ball P (14 September 2007). "Burning water and other myths". News@nature. doi:10.1038/news070910-13. S2CID 129704116. Archived from the original on 28 February 2009. Retrieved 14 September 2007.
  99. ^ Fine RA, Millero FJ (1973). "Compressibility of water as a function of temperature and pressure". Journal of Chemical Physics. 59 (10): 5529. Bibcode:1973JChPh..59.5529F. doi:10.1063/1.1679903.
  100. ^ Nave R. "Bulk Elastic Properties". HyperPhysics. Georgia State University. Archived from the original on 28 October 2007. Retrieved 26 October 2007.
  101. ^ UK National Physical Laboratory, Calculation of absorption of sound in seawater Archived 3 October 2016 at the Wayback Machine. Online site, last accessed on 28 September 2016.
  102. ^ Gleick PH, ed. (1993). Water in Crisis: A Guide to the World's Freshwater Resources. Oxford University Press. p. 15, Table 2.3. Archived from the original on 8 April 2013.
  103. ^ Ben-Naim A, Ben-Naim R (2011). Alice's Adventures in Water-land. World Scientific Publishing. p. 31. doi:10.1142/8068. ISBN 978-981-4338-96-7.
  104. ^ "water resource". Encyclopædia Britannica. Archived from the original on 2 October 2022. Retrieved 17 May 2022.
  105. ^ Gleick PH (1993). Water in Crisis. New York: Oxford University Press. p. 13. ISBN 0-19-507627-3.
  106. ^ Wada Y, Van Beek LP, Bierkens MF (2012). "Nonsustainable groundwater sustaining irrigation: A global assessment". Water Resources Research. 48 (6): W00L06. Bibcode:2012WRR....48.0L06W. doi:10.1029/2011WR010562.
  107. ^ "Catalyst helps split water: Plants". AskNature. Archived from the original on 28 October 2020. Retrieved 10 September 2020.
  108. ^ Hall D (2001). Photosynthesis, Sixth edition. University of Cambridge. ISBN 0-521-64497-6. Archived from the original on 5 October 2023. Retrieved 26 August 2023.
  109. ^ "On Water". European Investment Bank. Archived from the original on 14 October 2020. Retrieved 13 October 2020.
  110. ^ Jammi R (13 March 2018). "2.4 billion Without Adequate Sanitation. 600 million Without Safe Water. Can We Fix it by 2030?". World Bank Group. Archived from the original on 14 October 2020. Retrieved 13 October 2020.
  111. ^ "Wastewater resource recovery can fix water insecurity and cut carbon emissions". European Investment Bank. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
  112. ^ "International Decade for Action 'Water for Life' 2005–2015. Focus Areas: Water scarcity". United Nations. Archived from the original on 23 May 2020. Retrieved 29 August 2022.
  113. ^ "The State of the World's Land and Water Resources for Food and Agriculture" (PDF). Archived (PDF) from the original on 31 August 2022. Retrieved 30 August 2022.
  114. ^ "World Health Organization. Safe Water and Global Health". World Health Organization. 25 June 2008. Archived from the original on 24 December 2010. Retrieved 25 July 2010.
  115. ^ UNEP International Environment (2002). Environmentally Sound Technology for Wastewater and Stormwater Management: An International Source Book. IWA. ISBN 978-1-84339-008-4. OCLC 49204666.
  116. ^ Ravindranath NH, Sathaye JA (2002). Climate Change and Developing Countries. Springer. ISBN 978-1-4020-0104-8. OCLC 231965991.
  117. ^ "Water withdrawals per capita". Our World in Data. Archived from the original on 12 March 2020. Retrieved 6 March 2020.
  118. ^ "WBCSD Water Facts & Trends". Archived from the original on 1 March 2012. Retrieved 25 July 2010.
  119. ^ Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI, Lovelace JK, et al. (2018). "Estimated use of water in the United States in 2015". Circular. U.S. Geological Survey. p. 76. doi:10.3133/cir1441. Archived from the original on 28 April 2019. Retrieved 21 May 2019.
  120. ^ Gleick PH, Palaniappan M (2010). "Peak Water" (PDF). Proceedings of the National Academy of Sciences. 107 (125): 11155–11162. Bibcode:2010PNAS..10711155G. doi:10.1073/pnas.1004812107. PMC 2895062. PMID 20498082. Archived (PDF) from the original on 8 November 2011. Retrieved 11 October 2011.
  121. ^ United Nations Press Release POP/952 (13 March 2007). "World population will increase by 2.5 billion by 2050". Archived 27 July 2014 at the Wayback Machine
  122. ^ , Molden, D. (Ed). Water for food, Water for life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan/IWMI, 2007.
  123. ^ Chartres, C. and Varma, S. (2010) Out of water. From Abundance to Scarcity and How to Solve the World's Water Problems. FT Press (US).
  124. ^ Chapagain AK, Hoekstra AY, Savenije HH, Guatam R (September 2005). "The Water Footprint of Cotton Consumption" (PDF). IHE Delft Institute for Water Education. Archived (PDF) from the original on 26 March 2019. Retrieved 24 October 2019.
  125. ^ "Décret relatif aux poids et aux mesures" [Decree relating to weights and measures] (in French). 18 germinal an 3 (7 April 1795). Archived 25 February 2013 at the Wayback Machine. quartier-rural.org
  126. ^ here "L'Histoire Du Mètre, La Détermination De L'Unité De Poids" Archived 25 July 2013 at the Wayback Machine. histoire.du.metre.free.fr
  127. ^ "Re: What percentage of the human body is composed of water?" Archived 25 November 2007 at the Wayback Machine Jeffrey Utz, M.D., The MadSci Network
  128. ^ "Healthy Water Living". BBC Health. Archived from the original on 1 January 2007. Retrieved 1 February 2007.
  129. ^ Rhoades RA, Tanner GA (2003). Medical Physiology (2nd ed.). Baltimore: Lippincott Williams & Wilkins. ISBN 978-0-7817-1936-0. OCLC 50554808.
  130. ^ Noakes TD, Goodwin N, Rayner BL и др. (1985). «Водная интоксикация: возможное осложнение во время упражнений на выносливость». Медицина и наука в спорте и упражнениях . 17 (3): 370–375. doi : 10.1249/00005768-198506000-00012 . PMID  4021781.
  131. ^ Noakes TD, Goodwin N, Rayner BL, Branken T, Taylor RK (2005). «Водная интоксикация: возможное осложнение во время упражнений на выносливость, 1985». Wilderness and Environmental Medicine . 16 (4): 221–227. doi :10.1580/1080-6032(2005)16[221:WIAPCD]2.0.CO;2. PMID  16366205. S2CID  28370290.
  132. ^ Valtin H (2002). "'Пейте не менее восьми стаканов воды в день'. Серьёзно? Есть ли научные доказательства для '8 × 8'?" (PDF) . American Journal of Physiology. Regulatory, Integrative and Comparative Physiology . 283 (5): R993–R1004. doi :10.1152/ajpregu.00365.2002. PMID  12376390. S2CID  2256436. Архивировано из оригинала (PDF) 22 февраля 2019 г.
  133. ^ Stookey JD, Constant F, Popkin BM, Gardner CD (ноябрь 2008 г.). «Питьевая вода связана с потерей веса у женщин с избыточным весом, соблюдающих диету, независимо от диеты и активности». Ожирение . 16 (11): 2481–2488. doi :10.1038/oby.2008.409. PMID  18787524. S2CID  24899383.
  134. ^ «Пейте воду, чтобы сдержать набор веса? Клинические испытания подтверждают эффективность простого метода контроля аппетита». Science Daily . 23 августа 2010 г. Архивировано из оригинала 7 июля 2017 г. Получено 14 мая 2017 г.
  135. ^ Dubnov-Raz G, Constantini NW, Yariv H, Nice S, Shapira N (октябрь 2011 г.). «Влияние потребления воды на расход энергии в состоянии покоя у детей с избыточным весом». International Journal of Obesity . 35 (10): 1295–1300. doi :10.1038/ijo.2011.130. PMID  21750519. S2CID  27561994.
  136. ^ Dennis EA, Dengo AL, Comber DL и др. (февраль 2010 г.). «Потребление воды увеличивает потерю веса во время вмешательства гипокалорийной диеты у людей среднего и пожилого возраста». Ожирение . 18 (2): 300–307. doi :10.1038/oby.2009.235. PMC 2859815. PMID 19661958  . 
  137. ^ Vij VA, Joshi AS (September 2013). "Effect of 'water induced thermogenesis' on body weight, body mass index and body composition of overweight subjects". Journal of Clinical and Diagnostic Research. 7 (9): 1894–1896. doi:10.7860/JCDR/2013/5862.3344. PMC 3809630. PMID 24179891.
  138. ^ Muckelbauer R, Sarganas G, Grüneis A, Müller-Nordhorn J (August 2013). "Association between water consumption and body weight outcomes: a systematic review". The American Journal of Clinical Nutrition. 98 (2): 282–299. doi:10.3945/ajcn.112.055061. PMID 23803882. S2CID 12265434.
  139. ^ "Water, Constipation, Dehydration, and Other Fluids". Archived 4 March 2015 at the Wayback Machine. Science Daily. Retrieved on 28 September 2015.
  140. ^ Food and Nutrition Board, National Academy of Sciences. Recommended Dietary Allowances. National Research Council, Reprint and Circular Series, No. 122. 1945. pp. 3–18.
  141. ^ Institute of Medicine, Food Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Panel on Dietary Reference Intakes for Electrolytes and Water (2005). 4 Water | Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. The National Academies Press. doi:10.17226/10925. ISBN 978-0-309-09169-5. Archived from the original on 13 January 2017. Retrieved 11 January 2017.
  142. ^ "Water: How much should you drink every day?". Mayo Clinic. Archived from the original on 4 December 2010. Retrieved 25 July 2010.
  143. ^ Conquering Chemistry (4th ed.), 2008
  144. ^ Maton A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, et al. (1993). Human Biology and Health. Englewood Cliffs, New Jersey: Prentice Hall. ISBN 978-0-13-981176-0. OCLC 32308337.
  145. ^ Unesco (2006). Water: a shared responsibility. Berghahn Books. p. 125. ISBN 978-1-84545-177-6.
  146. ^ Bockmühl DP, Schages J, Rehberg L (2019). "Laundry and textile hygiene in healthcare and beyond". Microbial Cell. 6 (7): 299–306. doi:10.15698/mic2019.07.682. ISSN 2311-2638. PMC 6600116. PMID 31294042.
  147. ^ Moyer MW (23 October 2023). "Do You Really Need to Shower Every Day?". The New York Times. ISSN 0362-4331. Retrieved 22 April 2024.
  148. ^ Hadaway A (2 January 2020). "Handwashing: Clean Hands Save Lives". Journal of Consumer Health on the Internet. 24 (1): 43–49. doi:10.1080/15398285.2019.1710981. ISSN 1539-8285.
  149. ^ Ettinger J (22 October 2018). "You Probably Wash Your Hair Way Too Much (Really!)". Organic Authority. Retrieved 22 April 2024.
  150. ^ Petersen EE (7 December 2005). Infections in Obstetrics and Gynecology: Textbook and Atlas. Thieme. pp. 6–13. ISBN 978-3-13-161511-4.
  151. ^ Stopford M (1 January 1997). Maritime Economics. Psychology Press. p. 10. ISBN 9780415153102.
  152. ^ "Water Use in the United States", National Atlas. Archived 14 August 2009 at the Wayback Machine
  153. ^ "Material Safety Data Sheet: Quicklime" (PDF). Lhoist North America. 6 August 2012. Archived (PDF) from the original on 5 July 2016. Retrieved 24 October 2019.
  154. ^ Duff LB (1916). A Course in Household Arts: Part I. Whitcomb & Barrows. Archived from the original on 14 April 2021. Retrieved 3 December 2017.
  155. ^ a b Vaclavik VA, Christian EW (2007). Essentials of Food Science. Springer. ISBN 978-0-387-69939-4. Archived from the original on 14 April 2021. Retrieved 31 August 2020.
  156. ^ a b DeMan JM (1999). Principles of Food Chemistry. Springer. ISBN 978-0-8342-1234-3. Archived from the original on 14 April 2021. Retrieved 31 August 2020.
  157. ^ "Map showing the rate of hardness in mg/L as Calcium carbonate in England and Wales" (PDF). DEFRA Drinking Water Inspectorate. 2009. Archived (PDF) from the original on 29 May 2015. Retrieved 18 May 2015.
  158. ^ "Water hardness". US Geological Service. 8 April 2014. Archived from the original on 18 May 2015. Retrieved 18 May 2015.
  159. ^ Mekonnen MM, Hoekstra AY (December 2010). The green, blue and grey water footprint of farm animals and animal products, Value of Water (PDF) (Report). Research Report Series. Vol. 1. UNESCO – IHE Institute for Water Education. Archived (PDF) from the original on 27 May 2014. Retrieved 30 January 2014.
  160. ^ "WHO Model List of EssentialMedicines" (PDF). World Health Organization. October 2013. Archived (PDF) from the original on 23 April 2014. Retrieved 22 April 2014.
  161. ^ "ALMA Greatly Improves Capacity to Search for Water in Universe". Archived from the original on 23 July 2015. Retrieved 20 July 2015.
  162. ^ Melnick, Gary, Harvard-Smithsonian Center for Astrophysics and Neufeld, David, Johns Hopkins University quoted in:"Discover of Water Vapor Near Orion Nebula Suggests Possible Origin of H20 in Solar System (sic)". The Harvard University Gazette. 23 April 1998. Archived from the original on 16 January 2000."Space Cloud Holds Enough Water to Fill Earth's Oceans 1 Million Times". Headlines@Hopkins, JHU. 9 April 1998. Archived from the original on 9 November 2007. Retrieved 21 April 2007."Water, Water Everywhere: Radio telescope finds water is common in universe". The Harvard University Gazette. 25 February 1999. Archived from the original on 19 May 2011. Retrieved 19 September 2010. (archive link)
  163. ^ a b Clavin W, Buis A (22 July 2011). "Astronomers Find Largest, Most Distant Reservoir of Water". NASA. Archived from the original on 24 July 2011. Retrieved 25 July 2011.
  164. ^ a b Staff (22 July 2011). "Astronomers Find Largest, Oldest Mass of Water in Universe". Space.com. Archived from the original on 29 October 2011. Retrieved 23 July 2011.
  165. ^ Bova B (2009). Faint Echoes, Distant Stars: The Science and Politics of Finding Life Beyond Earth. Zondervan. ISBN 978-0-06-185448-4. Archived from the original on 14 April 2021. Retrieved 31 August 2020.
  166. ^ Solanki S, Livingston W, Ayres T (1994). "New Light on the Heart of Darkness of the Solar Chromosphere" (PDF). Science. 263 (5143): 64–66. Bibcode:1994Sci...263...64S. doi:10.1126/science.263.5143.64. PMID 17748350. S2CID 27696504. Archived from the original (PDF) on 7 March 2019.
  167. ^ "MESSENGER Scientists 'Astonished' to Find Water in Mercury's Thin Atmosphere". Planetary Society. 3 July 2008. Archived from the original on 6 April 2010. Retrieved 5 July 2008.
  168. ^ Bertaux JL, Vandaele, Ann-Carine, Korablev O, Villard E, Fedorova A, Fussen D, et al. (2007). "A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO" (PDF). Nature. 450 (7170): 646–649. Bibcode:2007Natur.450..646B. doi:10.1038/nature05974. hdl:2268/29200. PMID 18046397. S2CID 4421875. Archived (PDF) from the original on 7 September 2022. Retrieved 8 October 2022.
  169. ^ Sridharan R, Ahmed S, Dasa TP, Sreelathaa P, Pradeepkumara P, Naika N, et al. (2010). "'Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I". Planetary and Space Science. 58 (6): 947. Bibcode:2010P&SS...58..947S. doi:10.1016/j.pss.2010.02.013.
  170. ^ Rapp, Donald (2012). Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars. Springer. p. 78. ISBN 978-3-642-32762-9. Archived from the original on 15 July 2016. Retrieved 9 February 2016.
  171. ^ Küppers M, O'Rourke L, Bockelée-Morvan D, Zakharov V, Lee S, Von Allmen P, et al. (23 January 2014). "Localized sources of water vapour on the dwarf planet (1) Ceres". Nature. 505 (7484): 525–527. Bibcode:2014Natur.505..525K. doi:10.1038/nature12918. PMID 24451541. S2CID 4448395.
  172. ^ Atreya SK, Wong AS (2005). "Coupled Clouds and Chemistry of the Giant Planets – A Case for Multiprobes" (PDF). Space Science Reviews. 116 (1–2): 121–136. Bibcode:2005SSRv..116..121A. doi:10.1007/s11214-005-1951-5. hdl:2027.42/43766. S2CID 31037195. Archived (PDF) from the original on 22 July 2011. Retrieved 1 April 2014.
  173. ^ Cook JR, Gutro R, Brown D, Harrington J, Fohn J (12 December 2013). "Hubble Sees Evidence of Water Vapor at Jupiter Moon". NASA. Archived from the original on 15 December 2013. Retrieved 12 December 2013.
  174. ^ Hansen, C.J., Stewart AI, Colwell J, Hendrix A, Pryor W, et al. (2006). "Enceladus' Water Vapor Plume" (PDF). Science. 311 (5766): 1422–1425. Bibcode:2006Sci...311.1422H. doi:10.1126/science.1121254. PMID 16527971. S2CID 2954801. Archived from the original (PDF) on 18 February 2020.
  175. ^ Hubbard W (1997). "Neptune's Deep Chemistry". Science. 275 (5304): 1279–1280. doi:10.1126/science.275.5304.1279. PMID 9064785. S2CID 36248590.
  176. ^ Water Found on Distant Planet Archived 16 July 2007 at the Wayback Machine 12 July 2007 By Laura Blue, Time
  177. ^ Water Found in Extrasolar Planet's Atmosphere Archived 30 December 2010 at the Wayback Machine – Space.com
  178. ^ Lockwood AC, Johnson JA, Bender CF, Carr JS, Barman T, Richert AJ, et al. (2014). "Near-IR Direct Detection of Water Vapor in Tau Boo B". The Astrophysical Journal. 783 (2): L29. arXiv:1402.0846. Bibcode:2014ApJ...783L..29L. doi:10.1088/2041-8205/783/2/L29. S2CID 8463125.
  179. ^ Clavin W, Chou F, Weaver D, Villard, Johnson M (24 September 2014). "NASA Telescopes Find Clear Skies and Water Vapor on Exoplanet". NASA. Archived from the original on 14 January 2017. Retrieved 24 September 2014.
  180. ^ a b c Arnold Hanslmeier (2010). Water in the Universe. Springer Science & Business Media. pp. 159–. ISBN 978-90-481-9984-6. Archived from the original on 15 July 2016. Retrieved 9 February 2016.
  181. ^ "Hubble Traces Subtle Signals of Water on Hazy Worlds". NASA. 3 December 2013. Archived from the original on 6 December 2013. Retrieved 4 December 2013.
  182. ^ a b Andersson, Jonas (June 2012). Water in stellar atmospheres "Is a novel picture required to explain the atmospheric behavior of water in red giant stars?" Archived 13 February 2015 at the Wayback Machine Lund Observatory, Lund University, Sweden
  183. ^ Herschel Finds Oceans of Water in Disk of Nearby Star Archived 19 February 2015 at the Wayback Machine. Nasa.gov (20 October 2011). Retrieved on 28 September 2015.
  184. ^ "JPL". NASA Jet Propulsion Laboratory (JPL). Archived from the original on 4 June 2012.
  185. ^ Lloyd, Robin. "Water Vapor, Possible Comets, Found Orbiting Star", 11 July 2001, Space.com. Retrieved 15 December 2006. Archived 23 May 2009 at the Wayback Machine
  186. ^ "NASA Confirms Evidence That Liquid Water Flows on Today's Mars". NASA. 28 September 2015. Archived from the original on 28 September 2015. Retrieved 22 June 2020.
  187. ^ Platt J, Bell B (3 April 2014). "NASA Space Assets Detect Ocean inside Saturn Moon". NASA. Archived from the original on 3 April 2014. Retrieved 3 April 2014.
  188. ^ Iess L, Stevenson DJ, Parisi M, Hemingway D, Jacobson R, Lunine JI, et al. (4 April 2014). "The Gravity Field and Interior Structure of Enceladus" (PDF). Science. 344 (6179): 78–80. Bibcode:2014Sci...344...78I. doi:10.1126/science.1250551. PMID 24700854. S2CID 28990283. Archived (PDF) from the original on 2 December 2017. Retrieved 14 July 2019.
  189. ^ Dunaeva, A.N., Kronrod, V.A., Kuskov, O.L. (2013). "Numerical Models of Titan's Interior with Subsurface Ocean" (PDF). 44th Lunar and Planetary Science Conference (2013) (1719): 2454. Bibcode:2013LPI....44.2454D. Archived (PDF) from the original on 23 March 2014. Retrieved 23 March 2014.
  190. ^ Tritt CS (2002). "Possibility of Life on Europa". Milwaukee School of Engineering. Archived from the original on 9 June 2007. Retrieved 10 August 2007.
  191. ^ Dunham, Will. (3 May 2014) Jupiter's moon Ganymede may have 'club sandwich' layers of ocean | Reuters Archived 3 May 2014 at the Wayback Machine. In.reuters.com. Retrieved on 28 September 2015.
  192. ^ Carr M (1996). Water on Mars. New York: Oxford University Press. p. 197.
  193. ^ Bibring JP, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, et al. (2004). "Perennial Water Ice Identified in the South Polar Cap of Mars". Nature. 428 (6983): 627–630. Bibcode:2004Natur.428..627B. doi:10.1038/nature02461. PMID 15024393. S2CID 4373206.
  194. ^ Versteckt in Glasperlen: Auf dem Mond gibt es Wasser – Wissenschaft – Archived 10 July 2008 at the Wayback Machine Der Spiegel – Nachrichten
  195. ^ Water Molecules Found on the Moon Archived 27 September 2009 at the Wayback Machine, NASA, 24 September 2009
  196. ^ McCord T, Sotin C (21 May 2005). "Ceres: Evolution and current state" (PDF). Journal of Geophysical Research: Planets. 110 (E5): E05009. Bibcode:2005JGRE..110.5009M. doi:10.1029/2004JE002244. Archived (PDF) from the original on 18 July 2021. Retrieved 5 March 2024.
  197. ^ Thomas P, Parker J, McFadden L (2005). "Differentiation of the asteroid Ceres as revealed by its shape". Nature. 437 (7056): 224–226. Bibcode:2005Natur.437..224T. doi:10.1038/nature03938. PMID 16148926. S2CID 17758979.
  198. ^ Carey B (7 September 2005). "Largest Asteroid Might Contain More Fresh Water than Earth". SPACE.com. Archived from the original on 18 December 2010. Retrieved 16 August 2006.
  199. ^ Chang K (12 March 2015). "Suddenly, It Seems, Water Is Everywhere in Solar System". New York Times. Archived from the original on 12 August 2018. Retrieved 12 March 2015.
  200. ^ Kuskov O, Kronrod, V.A. (2005). "Internal structure of Europa and Callisto". Icarus. 177 (2): 550–369. Bibcode:2005Icar..177..550K. doi:10.1016/j.icarus.2005.04.014.
  201. ^ Showman AP, Malhotra R (1 October 1999). "The Galilean Satellites" (PDF). Science. 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID 10506564. S2CID 9492520. Archived from the original (PDF) on 12 April 2020.
  202. ^ a b Sparrow G (2006). The Solar System. Thunder Bay Press. ISBN 978-1-59223-579-7.
  203. ^ Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005). "Titan's internal structure inferred from a coupled thermal-orbital model". Icarus. 175 (2): 496–502. Bibcode:2005Icar..175..496T. doi:10.1016/j.icarus.2004.12.007.
  204. ^ Verbiscer A, French R, Showalter M, Helfenstein P (9 February 2007). "Enceladus: Cosmic Graffiti Artist Caught in the Act". Science. 315 (5813): 815. Bibcode:2007Sci...315..815V. doi:10.1126/science.1134681. PMID 17289992. S2CID 21932253. (supporting online material, table S1)
  205. ^ Greenberg JM (1998). "Making a comet nucleus". Astronomy and Astrophysics. 330: 375. Bibcode:1998A&A...330..375G.
  206. ^ "Dirty Snowballs in Space". Starryskies. Archived from the original on 29 January 2013. Retrieved 15 August 2013.
  207. ^ E.L. Gibb, M.J. Mumma, N. Dello Russo, M.A. DiSanti, K. Magee-Sauer (2003). "Methane in Oort Cloud comets". Icarus. 165 (2): 391–406. Bibcode:2003Icar..165..391G. doi:10.1016/S0019-1035(03)00201-X.
  208. ^ NASA, "MESSENGER Finds New Evidence for Water Ice at Mercury's Poles Archived 30 November 2012 at the Wayback Machine", NASA, 29 November 2012.
  209. ^ Thomas P, Burns J, Helfenstein P, Squyres S, Veverka J, Porco C, et al. (October 2007). "Shapes of the saturnian icy satellites and their significance" (PDF). Icarus. 190 (2): 573–584. Bibcode:2007Icar..190..573T. doi:10.1016/j.icarus.2007.03.012. Archived (PDF) from the original on 27 September 2011. Retrieved 15 December 2011.
  210. ^ Weird water lurking inside giant planets Archived 15 April 2015 at the Wayback Machine, New Scientist, 1 September 2010, Magazine issue 2776.
  211. ^ Ehlers, E., Krafft, T, eds. (2001). "J.C.I. Dooge. "Integrated Management of Water Resources"". Understanding the Earth System: compartments, processes, and interactions. Springer. p. 116.
  212. ^ "Habitable Zone". The Encyclopedia of Astrobiology, Astronomy and Spaceflight. Archived from the original on 23 May 2007. Retrieved 26 April 2007.
  213. ^ Shiga D (6 May 2007). "Strange alien world made of "hot ice"". New Scientist. Archived from the original on 6 July 2008. Retrieved 28 March 2010.
  214. ^ Aguilar, David A. (16 December 2009). "Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology". Harvard-Smithsonian Center for Astrophysics. Archived from the original on 7 April 2012. Retrieved 28 March 2010.
  215. ^ a b "MDG Report 2008" (PDF). Archived (PDF) from the original on 27 August 2010. Retrieved 25 July 2010.
  216. ^ Kulshreshtha SN (1998). "A Global Outlook for Water Resources to the Year 2025". Water Resources Management. 12 (3): 167–184. doi:10.1023/A:1007957229865. S2CID 152322295.
  217. ^ "Charting Our Water Future: Economic frameworks to inform decision-making" (PDF). Archived from the original (PDF) on 5 July 2010. Retrieved 25 July 2010.
  218. ^ "The Millennium Development Goals Report". Archived 27 August 2010 at the Wayback Machine, United Nations, 2008
  219. ^ Lomborg B (2001). The Skeptical Environmentalist (PDF). Cambridge University Press. p. 22. ISBN 978-0-521-01068-9. Archived from the original (PDF) on 25 July 2013.
  220. ^ UNESCO, (2006), "Water, a shared responsibility. The United Nations World Water Development Report 2". Archived 6 January 2009 at the Wayback Machine
  221. ^ Welle, Katharina; Evans, Barbara; Tucker, Josephine; and Nicol, Alan (2008). "Is water lagging behind on Aid Effectiveness?" Archived 27 July 2011 at the Wayback Machine
  222. ^ "Search Results". International Water Management Institute (IWMI). Archived from the original on 5 June 2013. Retrieved 3 March 2016.
  223. ^ Burrows G (24 March 2004). "Clean water to fight poverty". The Guardian. Archived from the original on 16 February 2024. Retrieved 16 February 2024.
  224. ^ Morris K (20 March 2004). ""Silent emergency" of poor water and sanitation". Medicine and Health Policy. 363 (9413): 954. doi:10.1016/S0140-6736(04)15825-X. PMID 15046114. S2CID 29128993. Archived from the original on 22 February 2024. Retrieved 16 February 2024.
  225. ^ a b c "Home | UN World Water Development Report 2023". www.unesco.org. Archived from the original on 5 June 2023. Retrieved 5 June 2023.
  226. ^ "UN World Water Development Report 2023". www.rural21.com. 29 March 2023. Archived from the original on 5 June 2023. Retrieved 5 June 2023.
  227. ^ "UN warns 'vampiric' water use leading to 'imminent' global crisis". France 24. 22 March 2023. Archived from the original on 5 June 2023. Retrieved 5 June 2023.
  228. ^ "New UN report paints stark picture of huge changes needed to deliver safe drinking water to all people". ABC News. 22 March 2023. Archived from the original on 5 June 2023. Retrieved 5 June 2023.
  229. ^ "World Water Day". United Nations. Archived from the original on 9 September 2020. Retrieved 10 September 2020.
  230. ^ "About". World Oceans Day Online Portal. Archived from the original on 20 September 2020. Retrieved 10 September 2020.
  231. ^ Z Wahrman M (2016). The Hand Book: Surviving in a Germ-Filled World. University Press of New England. pp. 46–48. ISBN 978-1-61168-955-6. Water plays a role in other Christian rituals as well. ... In the early days of Christianity, two to three centuries after Christ, the lavabo (Latin for "I wash myself"), a ritual handwashing vessel and bowl, was introduced as part of Church service.
  232. ^ Chambers's encyclopædia, Lippincott & Co (1870). p. 394.
  233. ^ Altman, Nathaniel (2002) Sacred water: the spiritual source of life. pp. 130–133. ISBN 1-58768-013-0.
  234. ^ "ĀB i. The concept of water in ancient Iran". www.iranicaonline.org. Encyclopedia Iranica. Archived from the original on 16 May 2018. Retrieved 19 September 2018.
  235. ^ Lindberg, D. (2008). The beginnings of western science: The European scientific tradition in a philosophical, religious, and institutional context, prehistory to A.D. 1450 (2nd ed.). Chicago: University of Chicago Press.
  236. ^ Tao Te Ching. Archived from the original on 12 July 2010. Retrieved 25 July 2010 – via Internet Sacred Text Archive Home.
  237. ^ "Guanzi : Shui Di". Chinese Text Project. Archived 6 November 2014 at archive.today. Retrieved on 28 September 2015.
  238. ^ a b c d Madtes RE (1983). The "Ithaca" chapter of Joyce's "Ulysses". Ann Arbor, Michigan: UMI Research Press. ISBN 0835714608.
  239. ^ a b Joyce J (1933). Wegner C (ed.). Ulysses. Vol. 2. Hamburg: The Odyssey Press. pp. 668–670.
  240. ^ Vartanian H (3 October 2011). "Manhattan Cathedral Explores Water in Art". Hyperallergic. Archived from the original on 3 February 2021. Retrieved 14 December 2020.
  241. ^ Kowalski JA (6 October 2011). "The Cathedral of St. John the Divine and The Value of Water". huffingtonpost.com. Huffington Post. Archived from the original on 6 August 2015. Retrieved 14 December 2020.
  242. ^ Foster F. "The Value of Water at St John the Divine". vimeo.com. Sara Karl. Archived from the original on 1 March 2021. Retrieved 14 December 2020.
  243. ^ Miller T. "The Value of Water Exhibition". UCLA Art Science Center. Archived from the original on 3 February 2021. Retrieved 14 December 2020.
  244. ^ Madel R (6 December 2017). "Through Art, the Value of Water Expressed". Huffington Post. Archived from the original on 1 December 2020. Retrieved 16 December 2020.
  245. ^ Cotter M (4 October 2011). "Manhattan Cathedral Examines 'The Value of Water' in a New Star-Studded Art Exhibition". Inhabitat. Archived from the original on 8 July 2019. Retrieved 14 December 2020.
  246. ^ "Think About Water". Archived from the original on 26 November 2020. Retrieved 15 December 2020.
  247. ^ "Basia Irland". Archived from the original on 14 October 2021. Retrieved 19 August 2021.
  248. ^ "Influential Figures Dr. Charlotte Cote". Tseshaht First Nation [c̓išaaʔatḥ]. Archived from the original on 19 August 2021. Retrieved 19 August 2021.
  249. ^ "10 years of the human rights to water and sanitation". United Nations. UN – Water Family News. 27 February 2020. Archived from the original on 19 August 2021. Retrieved 19 August 2021.
  250. ^ "Water is sacred': 10 visual artists reflect on the human right to water". The Guardian. 4 August 2020. Archived from the original on 19 August 2021. Retrieved 19 August 2021.
  251. ^ "dihydrogen monoxide". March 2018. Archived from the original on 2 May 2018. Retrieved 2 May 2018.
  252. ^ "What Does Water Mean In Rap? (EXPLAINED)". Lets Learn Slang. 27 December 2021. Archived from the original on 6 August 2023. Retrieved 6 August 2023.
  253. ^ Danny Towers, DJ Scheme & Ski Mask the Slump God (Ft. Luh Tyler) – Florida Water, archived from the original on 6 August 2023, retrieved 6 August 2023

Works cited

Further reading

External links