stringtranslate.com

Высокоскоростная железная дорога

Высокоскоростная железная дорога

Высокоскоростная железная дорога ( HSR ) — это тип железнодорожной транспортной сети, использующей поезда , которые движутся значительно быстрее, чем поезда традиционной железной дороги, используя интегрированную систему специализированного подвижного состава и выделенных путей . Хотя не существует единого стандарта, который применялся бы во всем мире, линии, построенные для скоростей свыше 250 км/ч (155 миль/ч) или модернизированные линии свыше 200 км/ч (125 миль/ч) широко считаются высокоскоростными.

Первая высокоскоростная железнодорожная система, Tōkaidō Shinkansen , начала работу в Хонсю , Япония , в 1964 году. Из-за обтекаемого носового конуса в форме шпица система также стала известна под своим английским прозвищем bullet train . Примеру Японии последовали несколько европейских стран, первоначально в Италии с линией Direttissima , а вскоре за ней последовали Франция , Германия и Испания . Сегодня большая часть Европы имеет обширную сеть с многочисленными международными связями. Более позднее строительство с 21-го века привело к тому, что Китай занял ведущую роль в высокоскоростных железных дорогах. По состоянию на 2023 год сеть высокоскоростных железных дорог Китая составляла более двух третей от общего числа в мире.

В дополнение к ним, многие другие страны разработали высокоскоростную железнодорожную инфраструктуру для соединения крупных городов, включая Австрию , Бельгию , Данию , Финляндию , Грецию , Индонезию , Японию , Марокко , Нидерланды , Норвегию , Польшу , Португалию , Россию , Саудовскую Аравию , Сербию , Южную Корею , Швецию , Швейцарию , Тайвань , Турцию , Соединенное Королевство , Соединенные Штаты и Узбекистан . Только в континентальной Европе и Азии высокоскоростная железная дорога пересекает международные границы. [1]

Высокоскоростные поезда в основном ходят по стандартным колеям из непрерывно сварных рельсов на полосах отвода с разделением по уровням и большими радиусами . Однако некоторые регионы с более широкими устаревшими железными дорогами , включая Россию и Узбекистан , стремились развивать высокоскоростную железнодорожную сеть с российской шириной колеи . Испании и Португалии удалось разработать высокоскоростную железную дорогу с иберийской шириной колеи . Высокоскоростных поездов с узкой колеей нет . Страны, чья устаревшая сеть полностью или в основном имеет колею, отличную от 1435 мм, включая Японию и Испанию, однако часто решали строить свои высокоскоростные линии со стандартной шириной колеи вместо устаревшей железнодорожной колеи.

Высокоскоростная железная дорога является самым быстрым и эффективным наземным методом коммерческой транспортировки. Однако из-за требований к большим кривым путям, пологим уклонам и раздельным путям строительство высокоскоростной железной дороги обходится дороже, чем строительство обычной железной дороги, и поэтому не всегда представляет экономическое преимущество перед обычной скоростной железной дорогой.

Определения

Во всем мире используется множество определений высокоскоростного железнодорожного транспорта.

Директива Европейского Союза 96/48/EC, Приложение 1 (см. также Трансъевропейская высокоскоростная железнодорожная сеть ) определяет высокоскоростную железную дорогу в терминах:

Инфраструктура
Рельсы, построенные специально для высокоскоростного движения или специально модернизированные для высокоскоростного движения.
Минимальный предел скорости
Минимальная скорость 250 км/ч (155 миль/ч) на линиях, специально построенных для высокоскоростного движения , и около 200 км/ч (124 миль/ч) на существующих линиях, которые были специально модернизированы. Это должно применяться по крайней мере к одному участку линии. Подвижной состав должен иметь возможность развивать скорость не менее 200 км/ч, чтобы считаться высокоскоростным.
Условия эксплуатации
Подвижной состав должен проектироваться вместе с его инфраструктурой для обеспечения полной совместимости, безопасности и качества обслуживания. [2]

Международный союз железных дорог (МСЖД) выделяет три категории высокоскоростных железных дорог: [3]

Категория 1
Новые трассы, специально сконструированные для высоких скоростей, позволяют развивать максимальную скорость не менее 250 км/ч (155 миль/ч).
Категория 2
Существующие трассы специально модернизированы для высоких скоростей, позволяя развивать максимальную скорость не менее 200 км/ч (124 мили/ч).
Категория 3
Существующие пути специально модернизированы для высоких скоростей, допуская максимальную скорость движения не менее 200 км/ч, но на некоторых участках допустимая скорость ниже (например, из-за топографических ограничений или прохождения через городские районы).

Третье определение высокоскоростной и сверхскоростной железной дороги [4] требует одновременного выполнения следующих двух условий: [3]

  1. Максимально достижимая скорость движения свыше 200 км/ч (124 миль/ч) или 250 км/ч (155 миль/ч) для очень высокоскоростных,
  2. Средняя скорость движения по коридору превышает 150 км/ч (93 мили в час) или 200 км/ч (124 мили в час) для очень высокой скорости.

UIC предпочитает использовать «определения» (во множественном числе), поскольку считает, что не существует единого стандартного определения высокоскоростной железной дороги, ни даже стандартного использования терминов («высокая скорость» или «очень высокая скорость»). Они используют европейскую директиву ЕС 96/48, в которой говорится, что высокая скорость — это совокупность всех элементов, составляющих систему: инфраструктуры, подвижного состава и условий эксплуатации. [2] Международный союз железных дорог утверждает, что высокоскоростная железная дорога — это набор уникальных характеристик, а не просто поезд, движущийся со скоростью выше определенной. Многие поезда с обычной тягой способны развивать скорость до 200 км/ч (124 мили/ч) в коммерческих целях, но не считаются высокоскоростными поездами. К ним относятся французские SNCF Intercités и немецкие DB IC .

Критерий 200 км/ч (124 миль/ч) выбран по нескольким причинам: выше этой скорости усиливаются воздействия геометрических дефектов, снижается сцепление рельсов, значительно увеличивается аэродинамическое сопротивление, колебания давления в туннелях вызывают дискомфорт у пассажиров, а машинистам становится сложно распознавать путевую сигнализацию. [3] Стандартное сигнальное оборудование часто ограничивается скоростями ниже 200 км/ч (124 миль/ч), с традиционными пределами 127 км/ч (79 миль/ч) в США, 160 км/ч (99 миль/ч) в Германии и 125 миль/ч (201 км/ч) в Великобритании. Выше этих скоростей становится необходимым или юридически обязательным положительное управление поездом или Европейская система управления поездом .

Национальные внутренние стандарты могут отличаться от международных.

История

Железные дороги были первой формой быстрого наземного транспорта и имели эффективную монополию на дальние пассажирские перевозки до развития автомобилей и авиалайнеров в начале-середине 20-го века. Скорость всегда была важным фактором для железных дорог, и они постоянно пытались достичь более высоких скоростей и сократить время в пути. Железнодорожный транспорт в конце 19-го века был не намного медленнее, чем обычные поезда сегодня, и многие железные дороги регулярно использовали относительно быстрые экспрессы , которые развивали среднюю скорость около 100 км/ч (62 мили в час). [5]

Ранние исследования

Немецкий рекордсмен 1903 года

Первые эксперименты

Развитие высокоскоростных железных дорог началось в Германии в 1899 году, когда Прусская государственная железная дорога объединилась с десятью электротехническими и инженерными фирмами и электрифицировала 72 км (45 миль) военной железной дороги между Мариенфельде и Цоссеном . Линия использовала трехфазный ток в 10 киловольт и 45 Гц . [ требуется цитата ]

Компания Van der Zypen & Charlier из Дойца, Кельн, построила два вагона, один из которых был оснащён электрооборудованием Siemens-Halske , а второй — оборудованием Allgemeine Elektrizitäts-Gesellschaft (AEG), которые были испытаны на линии МариенфельдеЦоссен в 1902 и 1903 годах (см. Экспериментальный трёхфазный вагон ). [ необходима ссылка ]

23 октября 1903 года вагон, оборудованный S&H, достиг скорости 206,7 км/ч (128,4 миль/ч), а 27 октября вагон, оборудованный AEG, достиг скорости 210,2 км/ч (130,6 миль/ч). [6] Эти поезда продемонстрировали осуществимость электрической высокоскоростной железной дороги; однако регулярные поездки на электрической высокоскоростной железной дороге были еще более чем через 30 лет.

Стремление к высокой скорости

После прорыва электрических железных дорог, именно инфраструктура, особенно ее стоимость, явно препятствовала внедрению высокоскоростных железных дорог. Произошло несколько катастроф — сходы с рельсов, лобовые столкновения на однопутных линиях, столкновения с дорожным движением на переездах и т. д. Физические законы были хорошо известны, то есть если скорость удваивалась, радиус кривой должен был увеличиваться вчетверо; то же самое было верно для разгонного и тормозного пути.

Карой Циперновски

В 1891 году инженер Карой Циперновский предложил высокоскоростную линию от Вены до Будапешта для электропоездов со скоростью 250 км/ч (160 миль/ч). [7] В 1893 году Веллингтон Адамс предложил воздушную линию от Чикаго до Сент-Луиса протяженностью 252 мили (406 км) [8] со скоростью всего 160 км/ч (99 миль/ч).

Карта 1907 года, на которой показана проектируемая линия электропередачи Чикаго–Нью-Йорк.

У Александра К. Миллера были большие амбиции. В 1906 году он запустил проект Chicago-New York Electric Air Line Railroad, чтобы сократить время в пути между двумя большими городами до десяти часов, используя электрические локомотивы со скоростью 160 км/ч (99 миль/ч). Однако после семи лет усилий было закончено менее 50 км (31 миля) стреловидного пути. [8] Часть линии до сих пор используется как одна из последних междугородных линий в США.

Высокоскоростные междугородние поезда

В США некоторые из междугородних поездов (т. е. трамваи или трамваи , курсирующие из города в город) начала 20-го века были очень скоростными для своего времени (в Европе также были и до сих пор есть некоторые междугородние поезда). Несколько технологий высокоскоростных железных дорог берут свое начало в междугородней сфере.

В 1903 году — за 30 лет до того, как обычные железные дороги начали упрощать свои поезда — должностные лица Louisiana Purchase Exposition организовали Комиссию по испытаниям электрических железных дорог для проведения серии испытаний с целью разработки конструкции кузова, которая уменьшила бы сопротивление воздуха на высоких скоростях. Была проведена длинная серия испытаний. [9] В 1905 году St. Louis Car Company построила дрезину для тягового магната Генри Э. Хантингтона , способную развивать скорость около 160 км/ч (100 миль/ч). Однажды она проехала 32 км (20 миль) между Лос-Анджелесом и Лонг-Бич за 15 минут, со средней скоростью 130 км/ч (80 миль/ч). [10] Однако она была слишком тяжелой для большей части путей, поэтому Cincinnati Car Company , JG Brill и другие стали пионерами в области легких конструкций, использования алюминиевых сплавов и низкоуровневых тележек , которые могли плавно работать на чрезвычайно высоких скоростях на неровных междугородных путях. Westinghouse и General Electric разработали двигатели, достаточно компактные для установки на тележки. С 1930 года Red Devils от Cincinnati Car Company и некоторые другие междугородные железнодорожные вагоны достигли скорости около 145 км/ч (90 миль/ч) в коммерческих перевозках. Red Devils весили всего 22 тонны, хотя вмещали 44 пассажира.

Обширные исследования в аэродинамической трубе — первые в железнодорожной отрасли — были проведены до того, как в 1931 году Дж. Г. Брилл построил вагоны Bullet для Филадельфии и Западной железной дороги (P&W). Они могли развивать скорость до 148 км/ч (92 мили в час). [11] Некоторые из них прослужили почти 60 лет. [12] Высокоскоростная линия Норристаун компании P&W все еще используется, почти 110 лет после того, как в 1907 году компания P&W открыла свою двухпутную линию Верхний Дарби–Страффорд без единого пересечения с дорогами или другими железными дорогами. Вся линия регулировалась системой абсолютной блокировки сигналов. [13]

Ранняя немецкая высокоскоростная сеть

Немецкий гамбургер Fliegender

15 мая 1933 года компания Deutsche Reichsbahn-Gesellschaft ввела в эксплуатацию дизельный " Fliegender Hamburger " на регулярном маршруте между Гамбургом и Берлином (286 км или 178 миль), тем самым достигнув новой максимальной скорости для регулярного сообщения, с максимальной скоростью 160 км/ч (99 миль/ч). Этот поезд представлял собой обтекаемую многомоторную единицу, хотя и дизельную, и использовала тележки Jakobs .

После успеха линии Гамбург был разработан и представлен в июне 1936 года паровой поезд Henschel-Wegmann для обслуживания из Берлина в Дрезден с постоянной максимальной скоростью 160 км/ч (99 миль/ч). Кстати, ни один поезд с момента отмены этого экспресса в 1939 году не курсировал между двумя городами за более короткое время по состоянию на 2018 год . [ необходима цитата ] В августе 2019 года время в пути между Дрезденом-Нойштадтом и Берлином-Зюдкройц составляло 102 минуты. [14] См. железную дорогу Берлин-Дрезден .

Дальнейшее развитие позволило использовать эти «Fliegenden Züge» (летающие поезда) на железнодорожной сети по всей Германии. [ необходима цитата ] «Diesel-Schnelltriebwagen-Netz» (сеть дизельных высокоскоростных транспортных средств) планировалась с 1934 года, но так и не достигла предполагаемых размеров.

Все высокоскоростные перевозки прекратились в августе 1939 года, незадолго до начала Второй мировой войны . [15]

Американские обтекатели

Пассажирский поезд Burlington Zephyr

26 мая 1934 года, через год после появления Fliegender Hamburger, Burlington Railroad установила рекорд средней скорости на дальние расстояния со своим новым обтекаемым поездом Zephyr — 124 км/ч (77 миль/ч) с пиковыми значениями 185 км/ч (115 миль/ч). Zephyr был изготовлен из нержавеющей стали и, как и Fliegender Hamburger, имел дизельный привод, сочлененный с тележками Jacobs и мог развивать коммерческую скорость 160 км/ч (99 миль/ч).

Новый поезд был открыт 11 ноября 1934 года, курсируя между Канзас-Сити и Линкольном , но со скоростью ниже рекордной, со средней скоростью 74 км/ч (46 миль/ч). [16]

В 1935 году Milwaukee Road ввела услугу Morning Hiawatha , скорость которой составляла 160 км/ч (99 миль/ч) с помощью паровозов. В 1939 году крупнейшая железная дорога мира, Pennsylvania Railroad, ввела в эксплуатацию паровой двигатель класса S1 , который был разработан для перевозки 1200-тонных пассажирских поездов со скоростью 161 км/ч (100 миль/ч). Двигатель S1 был назначен для питания популярного ночного премьер-поезда Trail Blazer между Нью-Йорком и Чикаго с конца 1940-х годов, и он постоянно достигал скорости 161 км/ч (100 миль/ч) за весь срок службы. Это были последние «высокоскоростные» поезда, использовавшие паровую энергию. В 1936 году Twin Cities Zephyr был введен в эксплуатацию из Чикаго в Миннеаполис со средней скоростью 101 км/ч (63 мили/ч). [17]

Многие из этих поездов-трансформаторов показали время в пути, сопоставимое или даже лучшее, чем у их современных преемников Amtrak , максимальная скорость которых на большей части сети ограничена 127 км/ч (79 миль/ч).

Итальянский электровоз и последний паровой рекорд

Итальянский ETR 200

Немецкая высокоскоростная служба последовала в Италии в 1938 году с электрическим многосекционным поездом ETR 200 , рассчитанным на скорость 200 км/ч (120 миль/ч), между Болоньей и Неаполем. Он также достигал 160 км/ч (99 миль/ч) в коммерческой службе и достиг мирового рекорда средней скорости 203 км/ч (126 миль/ч) между Флоренцией и Миланом в 1938 году.

В Великобритании в том же году обтекаемый паровоз Mallard установил официальный мировой рекорд скорости для паровозов — 202,58 км/ч (125,88 миль/ч). Внешние двигатели сгорания и котлы на паровозах были большими, тяжелыми, требовали много времени и труда для обслуживания, и дни пара для высокой скорости были сочтены.

Внедрение системы Talgo

В 1945 году испанский инженер Алехандро Гойкоэчеа разработал обтекаемый сочлененный поезд, который мог двигаться по существующим путям на более высоких скоростях, чем современные пассажирские поезда. Это было достигнуто путем оснащения локомотива и вагонов уникальной системой осей , которая использовала один комплект осей на конец вагона, соединенных сцепкой Y-образной формы. Среди других преимуществ, центр масс был только вдвое ниже обычного. [18] Эта система стала известна под названием Talgo ( Tren Articulado Ligero Goicoechea Oriol ), и в течение полувека была основным испанским поставщиком высокоскоростных поездов.

Первые разработки на скорости свыше 300 км/ч

Французский CC 7100, рекордсмен 1955 года

В начале 1950-х годов Французская национальная железная дорога начала получать новые мощные электровозы CC 7100 и начала изучать и оценивать работу на более высоких скоростях. В 1954 году CC 7121, тянущий полный поезд, достиг рекордных 243 км/ч (151 миль/ч) во время испытаний на стандартном пути. В следующем году два специально настроенных электровоза, CC 7107 и прототип BB 9004, побили предыдущие рекорды скорости, достигнув соответственно 320 км/ч (200 миль/ч) и 331 км/ч (206 миль/ч), снова на стандартном пути. [19] Впервые была превышена скорость в 300 км/ч (190 миль/ч), что позволило разработать идею более скоростных услуг и начать дальнейшие инженерные исследования. В частности, в записях 1955 года было обнаружено опасное колебание , раскачивание тележек , которое приводит к динамической нестабильности и потенциальному сходу с рельсов. Эта проблема была решена с помощью демпферов рыскания , которые сегодня обеспечивают безопасную езду на высоких скоростях. Также были проведены исследования по «укрощению тока» [ необходимо разъяснение ] на высокой скорости пантографами, что было решено 20 лет спустя прототипом Zébulon TGV .

Прорыв: Синкансэн

Серия Odakyu 3000 SE
Оригинальный поезд Shinkansen серии 0. Представленный в 1964 году, он развивал скорость 210 км/ч (130 миль/ч).
Модели поездов Shinkansen серий E6 и E5

Японские исследования и разработки

Приблизительно 45 миллионов человек, проживающих в густонаселенном коридоре Токио- Осака , заторы на дорогах и железных дорогах стали серьезной проблемой после Второй мировой войны , [20] и японское правительство начало думать о способах перевозки людей в городах и между ними. Поскольку Япония была ограничена в ресурсах и не хотела импортировать нефть по соображениям безопасности, энергоэффективная высокоскоростная железная дорога была привлекательным потенциальным решением.

Инженеры Японских национальных железных дорог (JNR) начали изучать разработку высокоскоростного регулярного общественного транзитного обслуживания. В 1955 году они присутствовали на Электротехнологическом конгрессе в Лилле во Франции, и во время 6-месячного визита главный инженер JNR сопровождал заместителя директора Марселя Тессье в DETE ( отдел исследований электрической тяги SNCF ). [19] Инженеры JNR вернулись в Японию с рядом идей и технологий, которые они использовали в своих будущих поездах, включая переменный ток для рельсовой тяги и международный стандарт колеи. [ необходима цитата ]

Первая узкоколейная высокоскоростная железная дорога в Японии

В 1957 году инженеры частной электрической железной дороги Одакю в районе Большого Токио запустили электропоезд серии SE Odakyu 3000. Этот электропоезд установил мировой рекорд для узкоколейных поездов — 145 км/ч (90 миль/ч), что дало инженерам Одакю уверенность в том, что они смогут безопасно и надежно строить еще более быстрые поезда со стандартной колеей. [20] Обычные японские железные дороги до этого момента в основном строились с шириной колеи Cape 1067 мм ( 3 фута 6 дюймов ) , однако расширение путей до стандартной колеи ( 1435 мм ( 4 фута  8+12 дюйма  )) значительно упростит высокоскоростные железные дороги из-за улучшенной стабильности более широкой колеи, и поэтомудля высокоскоростного обслуживания была принятастандартная колея[21]За исключением России, Финляндии и Узбекистана, все высокоскоростные железнодорожные линии в мире по-прежнему имеют стандартную колею, даже в странах, где предпочтительная колея для устаревших линий отличается.

Новый поезд на новой линии

Новая услуга, названная Shinkansen (что означает новая главная линия ), должна была обеспечить новую трассу, на 25% более широкую стандартную колею, используя непрерывно сварные рельсы между Токио и Осакой с новым подвижным составом, рассчитанным на 250 км/ч (160 миль/ч). Однако Всемирный банк , поддерживая проект, посчитал конструкцию оборудования неподтвержденной для этой скорости и установил максимальную скорость 210 км/ч (130 миль/ч). [19]

После первоначальных испытаний осуществимости план был ускорен, и строительство первого участка линии началось 20 апреля 1959 года. [22] В 1963 году на новом пути тестовые заезды достигли максимальной скорости 256 км/ч (159 миль/ч). Спустя пять лет после начала строительных работ, в октябре 1964 года, как раз к Олимпийским играм , между двумя городами была открыта первая современная высокоскоростная железная дорога, Токайдо Синкансэн ; линия протяженностью 510 км (320 миль) между Токио и Осакой. [23] Благодаря своей скорости Синкансэн получил международную известность и похвалу, и его окрестили «поездом-пулей».

Первые поезда Shinkansen, Shinkansen серии 0 , построенные Kawasaki Heavy Industries  — на английском языке часто называемые «Bullet Trains», по оригинальному японскому названию Dangan Ressha (弾丸列車)  — превзошли более ранние скоростные поезда в коммерческом обслуживании. Они преодолели расстояние в 515 км (320 миль) за 3 часа 10 минут, достигнув максимальной скорости 210 км/ч (130 миль/ч) и поддерживая среднюю скорость 162,8 км/ч (101,2 миль/ч) с остановками в Нагое и Киото. [24]

Высокоскоростная железная дорога для масс

Скорость была не только частью революции Синкансэн: Синкансэн предлагал высокоскоростные железнодорожные перевозки массам. Первые сверхскоростные поезда имели 12 вагонов, а более поздние версии имели до 16, [25] а двухэтажные поезда еще больше увеличили вместимость. [26] [27]

Через три года поездами воспользовалось более 100 миллионов пассажиров, а в 1976 году был достигнут рубеж в один миллиард пассажиров. В 1972 году линия была продлена еще на 161 км (100 миль), а дальнейшее строительство привело к расширению сети до 2951 км (1834 миль) высокоскоростных линий по состоянию на 2024 год, при этом в настоящее время строятся еще 211 км (131 миля) расширений, открытие которых запланировано на 2031 год. Совокупный объем пассажиропотока всей системы с 1964 года составляет более 10 миллиардов человек, что эквивалентно примерно 140% населения мира, без единого смертельного случая среди пассажиров поезда. (Самоубийства, падения пассажиров с платформ и несчастные случаи на производстве приводили к смертельным случаям.) [28]

С момента своего появления японские системы Shinkansen постоянно совершенствовались, не только увеличивая скорость движения. Было выпущено более дюжины моделей поездов, решающих различные проблемы, такие как шум от туннельного гула , вибрация, аэродинамическое сопротивление , линии с меньшей посещаемостью («Mini Shinkansen»), безопасность при землетрясениях и тайфунах , тормозной путь , проблемы из-за снега и энергопотребление (новые поезда в два раза более энергоэффективны, чем первоначальные, несмотря на большую скорость). [29]

Поезд на магнитной подушке на испытательном полигоне Яманаси, ноябрь 2005 г.

Будущие разработки

После десятилетий исследований и успешных испытаний на испытательном участке протяженностью 43 км (27 миль) в 2014 году JR Central начала строительство линии Maglev Shinkansen, известной как Chūō Shinkansen . Эти поезда Maglev по-прежнему имеют традиционные основные рельсы, а вагоны имеют колеса. Это служит практическим целям на станциях и безопасности на линиях в случае отключения электроэнергии. Однако при нормальной работе колеса поднимаются в вагон, когда поезд достигает определенных скоростей, на которых эффект магнитной левитации берет верх. Она свяжет Токио и Осаку к 2037 году, а участок от Токио до Нагои, как ожидается, будет введен в эксплуатацию к 2027 году. [30] Ожидается, что максимальная скорость составит 505 км/ч (314 миль/ч). На поезде первого поколения могут ездить туристы, посещающие испытательный участок.

Китай разрабатывает две отдельные высокоскоростные системы магнитной подвески.

Европа и Северная Америка

Немецкий DB Класс 103

Первые демонстрации на скорости 200 км/ч (120 миль/ч)

В Европе высокоскоростные железные дороги появились на Международной транспортной ярмарке в Мюнхене в июне 1965 года, когда доктор Эпферинг, директор Deutsche Bundesbahn (Немецкие федеральные железные дороги), провел 347 демонстраций на скорости 200 км/ч (120 миль/ч) между Мюнхеном и Аугсбургом на поездах DB Class 103. В том же году Aérotrain , французский прототип монорельсового поезда на воздушной подушке, достиг скорости 200 км/ч (120 миль/ч) в течение нескольких дней эксплуатации. [19]

Капитоль

BB 9200 тащил Le Capitole со скоростью 200 км/ч.

После успешного внедрения японского Shinkansen в 1964 году со скоростью 210 км/ч (130 миль/ч), немецких демонстраций до 200 км/ч (120 миль/ч) в 1965 году и экспериментального реактивного Aérotrain , SNCF запустила свои самые быстрые поезда со скоростью 160 км/ч (99 миль/ч). [19]

В 1966 году французский министр инфраструктуры Эдгар Пизани проконсультировался с инженерами и дал Французским национальным железным дорогам двенадцать месяцев на увеличение скорости до 200 км/ч (120 миль/ч). [19] Классическая линия Париж– Тулуза была выбрана и оборудована для поддержки скорости 200 км/ч (120 миль/ч) вместо 140 км/ч (87 миль/ч). Были установлены некоторые улучшения, в частности, система сигналов, разработка бортовой «внутрикабинной» системы сигнализации и пересмотр кривых.

В следующем году, в мае 1967 года, было открыто регулярное сообщение со скоростью 200 км/ч (120 миль/ч) на линии TEE Le Capitole между Парижем и Тулузой , со специально адаптированными локомотивами SNCF класса BB 9200, перевозящими классические вагоны UIC, и полностью красной ливреей. [19] Средняя скорость составляла 119 км/ч (74 мили/ч) на протяжении 713 км (443 мили). [34]

В то же время прототип Aérotrain 02 достиг скорости 345 км/ч (214 миль/ч) на экспериментальном треке в половинном масштабе. В 1969 году он достиг скорости 422 км/ч (262 миль/ч) на том же треке. 5 марта 1974 года полномасштабный коммерческий прототип Aérotrain I80HV, оснащенный реактивным двигателем, достиг скорости 430 км/ч (270 миль/ч). [ необходима цитата ]

Поезда Metroliner в США

Поезда Metroliner, разработанные в США для скоростного сообщения между Нью-Йорком и Вашингтоном, округ Колумбия

В Соединенных Штатах, после создания первого в Японии высокоскоростного Shinkansen , президент Линдон Б. Джонсон в рамках своих инициатив по созданию инфраструктуры Великого общества попросил Конгресс разработать способ увеличения скорости на железных дорогах. [35] Конгресс принял Закон о высокоскоростном наземном транспорте 1965 года , который был принят подавляющей двухпартийной поддержкой и помог создать регулярное сообщение Metroliner между Нью-Йорком, Филадельфией и Вашингтоном, округ Колумбия. Новое сообщение было открыто в 1969 году с максимальной скоростью 200 км/ч (120 миль/ч) и средней скоростью 145 км/ч (90 миль/ч) по маршруту, при этом время в пути составляло всего 2 часа 30 минут. [36] В 1967 году в соревновании с Metroliner с двигателем GE на главной линии Penn Central компания United Aircraft Corporation TurboTrain установила рекорд в 275 км/ч (171 миля/ч). [37]

Великобритания, Италия и Германия

Поезд ETR 500, курсирующий по высокоскоростной линии Флоренция–Рим недалеко от Ареццо в Италии , первой высокоскоростной железной дороге, открытой в Европе. [38]

В 1976 году British Rail ввела высокоскоростное сообщение, способное развивать скорость до 201 км/ч (125 миль/ч) с использованием дизель-электрических поездов InterCity 125 под торговой маркой High Speed ​​Train (HST). Это был самый быстрый дизельный поезд в регулярном сообщении, и он превзошел своих предшественников со скоростью 160 км/ч (100 миль/ч) по скорости и ускорению. По состоянию на 2019 год он все еще находится в регулярном сообщении как самый быстрый дизельный поезд. [39] Поезд представлял собой реверсивный многовагонный состав с ведущими моторными вагонами на обоих концах и фиксированным составом пассажирских вагонов между ними. Время в пути сократилось на час, например, на главной линии Восточного побережья , а количество пассажиров увеличилось. [40] По состоянию на 2019 год многие из этих поездов все еще находятся в эксплуатации, частные операторы часто предпочитали перестраивать поезда с новыми двигателями, а не заменять их. [ необходима цитата ] До COVID-19 пассажиропоток высокоскоростных междугородних поездов Великобритании превышал 40 миллионов поездок в год. [41]

В следующем году, в 1977 году, Германия наконец ввела новый сервис со скоростью 200 км/ч (120 миль/ч) на линии Мюнхен–Аугсбург. В том же году Италия открыла первую европейскую высокоскоростную линию Direttissima между Римом и Флоренцией , рассчитанную на 250 км/ч (160 миль/ч), но использовавшуюся поездом FS E444 со скоростью 200 км/ч (120 миль/ч). Во Франции в этом году также по политическим причинам отказались от проекта Aérotrain в пользу TGV .

Эволюция в Европе

Италия

Высокоскоростной поезд FS Frecciarossa 1000 на железнодорожной станции Milano Centrale , развивающий максимальную скорость 400 км/ч (249 миль/ч), [42] является одним из самых быстрых поездов в Европе. [43] [44]
Пара FS' ETR 500 на железнодорожной станции Флоренции Санта Мария Новелла . Версия ETR 500 Y1 достигла скорости 362 км/ч (225 миль/ч) на линии Болонья-Флоренция 4 февраля 2009 года, установив новый мировой рекорд скорости в туннеле. [45]
ETR 675  [it] Italo EVO ( NTV ) на железнодорожной станции Венеция-Местре .

Самой ранней европейской высокоскоростной железной дорогой, которая была построена, была итальянская высокоскоростная железная дорога Флоренция–Рим (также называемая «Direttissima») в 1977 году . [46] Высокоскоростные поезда в Италии были разработаны в 1960-х годах. Локомотивы E444 были первыми стандартными локомотивами, способными развивать максимальную скорость 200 км/ч (125 миль/ч), в то время как электропоезд ( EMU) ALe 601 достиг скорости 240 км/ч (150 миль/ч) во время испытаний. Другие EMU, такие как ETR 220, ETR 250 и ETR 300 , также были модернизированы для скорости до 200 км/ч (125 миль/ч). Тормозные системы вагонов были модернизированы, чтобы соответствовать возросшим скоростям движения.

25 июня 1970 года начались работы по линии Рим–Флоренция Direttissima , первой высокоскоростной линии в Италии и Европе. Она включала мост длиной 5375 метров (3,340 миль) через реку Палья , на тот момент самый длинный в Европе. Работы были завершены в начале 1990-х годов.

В 1975 году была запущена программа по широкому обновлению подвижного состава. Однако, поскольку было решено сделать больший упор на местные перевозки, это вызвало перемещение ресурсов с текущих высокоскоростных проектов с последующим их замедлением или, в некоторых случаях, полным отказом. Поэтому были приобретены 160 электровозов E.656 и 35 локомотивов D.345 для ближне-среднемагистральных перевозок, а также 80 электропоездов класса ALe 801/940 , 120 дизель-вагонов ALn 668. Также было заказано около 1000 крайне необходимых пассажирских и 7000 грузовых вагонов.

В 1990-х годах началась работа над проектом Treno Alta Velocità ( TAV ), который включал строительство новой высокоскоростной сети на маршрутах Милан – (Болонья–Флоренция–Рим–Неаполь) – Салерно , Турин – (Милан–Верона–Венеция) – Триест и Милан– Генуя . Большинство запланированных линий уже открыты, а международные связи с Францией, Швейцарией, Австрией и Словенией находятся в стадии реализации.

Большая часть линии Рим–Неаполь открылась в декабре 2005 года, линия Турин–Милан частично открылась в феврале 2006 года, а линия Милан–Болонья открылась в декабре 2008 года. Оставшиеся участки линий Рим–Неаполь и Турин–Милан, а также линия Болонья–Флоренция были завершены в декабре 2009 года. Все эти линии рассчитаны на скорость до 300 км/ч (190 миль/ч). С тех пор можно добраться из Турина в Салерно (около 950 км (590 миль)) менее чем за 5 часов. Эксплуатируется более 100 поездов в день. [47]

Другие предлагаемые высокоскоростные линии: Салерно-Реджо-ди-Калабрия [48] (соединенная с Сицилией будущим мостом через Мессинский пролив [49] ), Палермо-Катания [50] и Неаполь-Бари. [51]

Основным государственным оператором высокоскоростных поездов ( alta velocità AV , ранее Eurostar Italia ) является Trenitalia , часть FSI . Поезда делятся на три категории (называемые « Le Frecce »): поезда Frecciarossa («Красная стрела») движутся со скоростью не более 300 км/ч (185 миль/ч) на выделенных высокоскоростных путях; поезда Frecciargento («Серебряная стрела») движутся со скоростью не более 250 км/ч (155 миль/ч) как на высокоскоростных, так и на основных путях; поезда Frecciabianca («Белая стрела») движутся со скоростью не более 200 км/ч (125 миль/ч) только на основных путях. [52]

С 2012 года новый и первый в Италии частный оператор поездов NTV (под брендом Italo) предлагает высокоскоростные услуги, конкурируя с Trenitalia . Даже сегодня Италия является единственной страной в Европе с частным оператором высокоскоростных поездов.

Строительство высокоскоростной линии Милан-Венеция началось в 2013 году, а в 2016 году был открыт для пассажирского движения участок Милан-Тревильо ; также ведется строительство высокоскоростной линии Милан-Генуя (Terzo Valico dei Giovi).

Сегодня можно добраться из Рима в Милан менее чем за 3 часа (2 ч 55 мин) на Frecciarossa 1000 , новом высокоскоростном поезде. Поезда по этому маршруту ходят каждые 30 минут.

Франция

Один из вагонов газотурбинного прототипа «TGV 001»
TGV Sud-Est на Лионском вокзале в 1982 году.
Скорость TGV в 2007 году составила 574,8 км/ч (357,2 миль/ч)

После записей 1955 года два подразделения SNCF начали изучать высокоскоростные услуги. В 1964 году DETMT (отдел исследований тяги бензиновых двигателей SNCF) исследовал использование газовых турбин : дизельный вагон был модифицирован с помощью газовой турбины и получил название «TGV» (Turbotrain Grande Vitesse). [19] Он достиг скорости 230 км/ч (140 миль/ч) в 1967 году и послужил основой для будущего Turbotrain и настоящего TGV. В то же время новый «Исследовательский отдел SNCF», созданный в 1966 году, изучал различные проекты, включая один под кодовым названием «C03: Возможности железных дорог на новой инфраструктуре (путях)». [19]

In 1969, the "C03 project" was transferred to public administration while a contract with Alstom was signed for the construction of two gas-turbine high-speed train prototypes, named "TGV 001". The prototype consisted of a set of five carriages, plus a power car at each end, both powered by two gas-turbine engines. The sets used Jacobs bogies, which reduce drag and increase safety.[citation needed]

In 1970, the DETMT's Turbotrain began operations on the Paris–Cherbourg line, and operated at 160 km/h (99 mph) despite being designed for usage at 200 km/h (120 mph). It used gas-turbine powered multiple elements and was the basis for future experimentation with TGV services, including shuttle services and regular high rate schedules.[19]

In 1971, the "C03" project, now known as "TGV Sud-Est", was validated by the government, against Bertin's Aerotrain.[19] Until this date, there was a rivalry between the French Land Settlement Commission (DATAR), supporting the Aérotrain, and the SNCF and its ministry, supporting conventional rail. The "C03 project" included a new High-Speed line between Paris and Lyon, with new multi-engined trains running at 260 km/h (160 mph). At that time, the classic Paris-Lyon line was already congested and a new line was required; this busy corridor, neither too short (where high speeds give limited reductions in end to end times) nor too long (where planes are faster in city center to city center travel time), was the best choice for the new service.

The 1973 oil crisis substantially increased oil prices. In the continuity of the De Gaulle "energy self-sufficiency" and nuclear-energy policy (Pierre Messmer then French Prime Minister announced an ambitious buildout of nuclear power in France in 1974), a ministry decision switched the future TGV from now costly gas-turbine to full electric energy in 1974. An electric railcar named Zébulon was developed for testing at very high speeds, reaching a speed of 306 km/h (190 mph). It was used to develop pantographs capable of withstanding speeds of over 300 km/h (190 mph).[19]

After intensive tests with the gas-turbine "TGV 001" prototype, and the electric "Zébulon", in 1977, the SNCF placed an order to the group AlstomFrancorail–MTE for 87 TGV Sud-Est trainsets.[19]They used the "TGV 001" concept, with a permanently coupled set of eight cars, sharing Jacobs bogies, and hauled by two electric-power cars, one at each end.

In 1981, the first section of the new Paris–Lyon High-Speed line was inaugurated, with a 260 km/h (160 mph) top speed (then 270 km/h (170 mph) soon after). Being able to use both dedicated high-speed and conventional lines, the TGV offered the ability to join every city in the country at shorter journey times.[19] After the introduction of the TGV on some routes, air traffic on these routes decreased and in some cases disappeared.[19] The TGV set a publicised speed records in 1981 at 380 km/h (240 mph), in 1990 at 515 km/h (320 mph), and then in 2007 at 574.8 km/h (357.2 mph), although these were test speeds, rather than operation train speeds.

Germany

The German ICE 1

Following the ETR 450 and Direttissima in Italy and French TGV, in 1991 Germany was the third country in Europe to inaugurate a high-speed rail service, with the launch of the Intercity-Express (ICE) on the new Hannover–Würzburg high-speed railway, operating at a top speed of 280 km/h (170 mph). The German ICE train was similar to the TGV, with dedicated streamlined power cars at both ends, but a variable number of trailers between them. Unlike the TGV, the trailers had two conventional bogies per car, and could be uncoupled, allowing the train to be lengthened or shortened. This introduction was the result of ten years of study with the ICE-V prototype, originally called Intercity Experimental, which broke the world speed record in 1988, reaching 406 km/h (252 mph).

Spain

The Spanish AVE Class 102 "Pato" (duck)

In 1992, just in time for the Barcelona Olympic Games and Seville Expo '92, the Madrid–Seville high-speed rail line opened in Spain with 25 kV AC electrification, and standard gauge, differing from all other Spanish lines which used Iberian gauge. This allowed the AVE rail service to begin operations using Class 100 trainsets built by Alstom, directly derived in design from the French TGV trains. The service was very popular and development continued on high-speed rail in Spain.

In 2005, the Spanish Government announced an ambitious plan, (PEIT 2005–2020)[53] envisioning that by 2020, 90 percent of the population would live within 50 km (30 mi) of a station served by AVE. Spain began building the largest HSR network in Europe: as of 2011, five of the new lines have opened (Madrid–Zaragoza–Lleida–Tarragona–Barcelona, Córdoba–Malaga, Madrid–Toledo, Madrid–Segovia–Valladolid, Madrid–Cuenca–Valencia) and another 2,219 km (1,380 mi) were under construction.[54] Opened in early 2013, the Perpignan–Barcelona high-speed rail line provides a link with neighbouring France with trains running to Paris, Lyon, Montpellier and Marseille.

As of May 2023, the Spanish high-speed rail network is the longest HSR network in Europe with 3,966 km (2,464 mi)[55] and the second longest in the world, after China's.

Turkey

TCDD HT80000

In 2009, Turkey inaugurated a high-speed service between Ankara and Eskişehir.[56] This has been followed up by an AnkaraKonya route, and the Eskisehir line has been extended to Istanbul (European part). In this extension, Europe and Asia were connected by an undersea tunnel, Marmaray in the Bosphorus. The first connection between two continents in the world as a high-speed train line was made in Istanbul. The last station of this line in Europe is Halkalı station. An extension to Sivas was opened in April 2023.[57]

United States

The Acela Express

In 1992, the United States Congress passed the Amtrak Authorization and Development Act that authorized Amtrak to start working on service improvements on the segment between Boston and New York City of the Northeast Corridor.[58] The primary objectives were to electrify the line north of New Haven, Connecticut, to eliminate grade crossings and replace the then 30-year-old Metro liners with new trains, so that the distance between Boston and New York City could be covered in 3 hours or less.

Amtrak started testing two trains, the Swedish X2000 and the German ICE 1, in the same year along its fully electrified segment between New York City and Washington, D.C. The officials favored the X2000 as it had a tilting mechanism. However, the Swedish manufacturer never bid on the contract as the burdensome United States railroad regulations required them to heavily modify the train resulting in added weight, among other things. Eventually, a custom-made tilting train derived from TGV, manufactured by Alstom and Bombardier, won the contract and was put into service in December 2000.

The new service was named "Acela Express" and linked Boston, New York City, Philadelphia, Baltimore, and Washington, D.C. The service did not meet the 3-hour travel time objective between Boston and New York City. The time was 3 hours and 24 minutes as it partially ran on regular lines, limiting its average speed, with a maximum speed of 240 km/h (150 mph) being reached on a small section of its route through Rhode Island and Massachusetts.[59][60]

As of November 2021, the U.S. has one high-speed rail line under construction (California High-Speed Rail) in California,[61] and advanced planning by a company called Texas Central Railway in Texas, higher-speed rail projects in the Pacific Northwest, Midwest and Southeast, as well as upgrades on the high-speed Northeast Corridor. The private higher speed rail venture Brightline in Florida started operations along part of its route in early 2018. The top speed is 201 km/h (125 mph) but most of the line still runs at 127 km/h (79 mph).

Expansion in East Asia

For four decades from its opening in 1964, the Japanese Shinkansen was the only high-speed rail service outside of Europe. In the 2000s a number of new high-speed rail services started operating in East Asia.

Chinese CRH and CR

High-speed rail was introduced to China in 2003 with the Qinhuangdao–Shenyang high-speed railway. The Chinese government made high-speed rail construction a cornerstone of its economic stimulus program in order to combat the effects of the 2008 global financial crisis and the result has been a rapid development of the Chinese rail system into the world's most extensive high-speed rail network. By 2013 the system had 11,028 km (6,852 mi) of operational track, accounting for about half of the world's total at the time.[62]By the end of 2018, the total high-speed railway (HSR) in China had risen to over 29,000 kilometres (18,000 miles).[63]Over 1.71 billion trips were made in 2017, more than half of China's total railway passenger delivery, making it the world's busiest network.[64]

State planning for high-speed railway began in the early 1990s, and the country's first high-speed rail line, the Qinhuangdao–Shenyang Passenger Railway, was built in 1999 and opened to commercial operation in 2003. This line could accommodate commercial trains running at up to 200 km/h (120 mph). Planners also considered Germany's Transrapid maglev technology and built the Shanghai maglev train, which runs on a 30.5 km (19.0 mi) track linking the Pudong, the city's financial district, and the Pudong International Airport. The maglev train service began operating in 2004 with trains reaching a top speed of 431 km/h (268 mph), and remains the fastest high-speed service in the world. Maglev, however, was not adopted nationally and all subsequent expansion features high-speed rail on conventional tracks.

In the 1990s, China's domestic train production industry designed and produced a series of high-speed train prototypes but few were used in commercial operation and none were mass-produced. The Chinese Ministry of Railways (MOR) then arranged for the purchase of foreign high-speed trains from French, German, and Japanese manufacturers along with certain technology transfers and joint ventures with domestic trainmakers. In 2007, the MOR introduced the China Railways High-speed (CRH) service, also known as "Harmony Trains", a version of the German Siemens Velaro high-speed train.

In 2008, high-speed trains began running at a top speed of 350 km/h (220 mph) on the Beijing–Tianjin intercity railway, which opened during the 2008 Summer Olympics in Beijing. The following year, trains on the newly opened Wuhan–Guangzhou high-speed railway set a world record for average speed over an entire trip, at 312.5 km/h (194.2 mph) over 968 kilometres (601 miles).

A collision of high-speed trains on 23 July 2011 in Zhejiang province killed 40 and injured 195, raising concerns about operational safety. A credit crunch later that year slowed the construction of new lines. In July 2011, top train speeds were lowered to 300 km/h (190 mph). But by 2012, the high-speed rail boom had renewed with new lines and new rolling stock by domestic producers that had indigenised foreign technology. On 26 December 2012, China opened the Beijing–Guangzhou–Shenzhen–Hong Kong high-speed railway, the world's longest high-speed rail line, which runs 2,208 km (1,372 mi) from Beijing West railway station to Shenzhen North Railway Station.[65][66]The network set a target to create the 4+4 National high-speed rail Grid by 2015,[67] and continues to rapidly expand with the July 2016 announcement of the 8+8 National high-speed rail Grid. In 2017, 350 km/h (217 mph) services resumed on the Beijing–Shanghai high-speed railway,[68] once again refreshing the world record for average speed with select services running between Beijing South to Nanjing South reaching average speeds of 317.7 km/h (197.4 mph).[69]

South Korean KTX

The Korean-developed KTX Sancheon

In South Korea, construction of the high-speed line from Seoul to Busan began in 1992. The Seoul–Busan corridor is Korea's busiest running between the two largest cities. In 1982, it represented 65.8% of South Korea's population, a number that grew to 73.3% by 1995, along with 70% of freight traffic and 66% of passenger traffic. With both the Gyeongbu Expressway and Korail's Gyeongbu Line congested as of the late 1970s, the government saw the pressing need for another form of transportation.[70]

The line known as Korea Train Express (KTX) was launched on 1 April 2004, using French (TGV) technology. Top speed for trains in regular service is currently 305 km/h (190 mph), though the infrastructure is designed for 350 km/h (220 mph). The initial rolling stock was based on Alstom's TGV Réseau, and was partly built in Korea. The domestically developed HSR-350x, which achieved 352.4 km/h (219.0 mph) in tests, resulted in a second type of high-speed trains now operated by Korail, the KTX Sancheon. The next generation KTX train, HEMU-430X, achieved 421.4 km/h (261.8 mph) in 2013, making South Korea the world's fourth country after France, Japan, and China to develop a high-speed train running on conventional rail above 420 km/h (260 mph).

Taiwan HSR

Taiwan high-speed rail, derived from the Shinkansen

Taiwan High Speed Rail's first and only HSR line opened for service on 5 January 2007, using Japanese trains with a top speed of 300 km/h (190 mph). The service traverses 345 km (214 mi) from Nangang to Zuoying in as little as 105 minutes. While it contains only one line, its route covers Western Taiwan where over 90% of Taiwan's population live; connecting most major cities of Taiwan: Taipei, New Taipei, Taoyuan, Hsinchu, Taichung, Chiayi, Tainan, and Kaohsiung.[71] Once THSR began operations, almost all passengers switched from airlines flying parallel routes[72] while road traffic was also reduced.[73]

Middle East and Central Asia

Saudi Arabia

Uzbekistan

Uzbekistan opened the Afrosiyob 344 km (214 mi) service from Tashkent to Samarkand in 2011, which was upgraded in 2013 to an average operational speed of 160 km/h (99 mph) and peak speed of 250 km/h (160 mph). The Talgo 250 service has been extended to Karshi as of August 2015 whereby the train travels 450 km (280 mi) in 3 hours. As of August 2016, the train service was extended to Bukhara, and the 600 km (370 mi) extension will take 3 hours and 20 minutes down from 7 hours.[74]

Egypt

As of 2022, there are no operational high-speed rail lines in Egypt. Plans have been announced for three lines, aiming to connect the Nile river valley, the Mediterranean coast, and the Red Sea. Construction had started on at least two lines.[75]

Africa

Morocco

In November 2007, the Moroccan government decided to undertake the construction of a high-speed rail line between the economic capital Casablanca and Tangier, one of the largest harbour cities on the Strait of Gibraltar.[76] The line will also serve the capital Rabat and Kenitra. The first section of the line, the 323-kilometre (201 mi) Kenitra–Tangier high-speed rail line, was completed in 2018.[77] Future projects include expansions south to Marrakech and Agadir, and east to Meknes, Fes and Oujda.

Network

Maps

  310–350 km/h (193–217 mph)   270–300 km/h (168–186 mph)   240–260 km/h (149–162 mph)
  200–230 km/h (124–143 mph)   Under construction   Other railways

Technologies

High-speed line on a viaduct to avoid ramp and road-crossing, with a British Rail Class 373 from Eurostar in old livery crossing it.
A German high-speed line, with ballastless track

Continuous welded rail is generally used to reduce track vibrations and misalignment. Almost all high-speed lines are electrically driven via overhead lines, have in-cab signalling, and use advanced switches using very low entry and frog angles. HSR tracks may also be designed to reduce vibrations originating from high speed rail use.[78]

Road-rail parallel layout

A German high-speed line being built along a highway

The road-rail parallel layout uses land beside highways for railway lines. Examples include Paris/Lyon and Köln–Frankfurt in which 15% and 70% of the track runs beside highways, respectively.[79] There are synergies to be achieved from such a setup as noise mitigation measures for the road benefit the railway and vice versa and furthermore less land must be taken through expropriation as land may have already been acquired for the construction of the other infrastructure. In addition to that, habitats of local wildlife are disrupted only once (by the combined rail/road right of way) instead of at multiple points. However, downsides include the fact that roads usually allow steeper grades and sharper turns than high-speed rail lines and thus co-locating them may not always be suitable. Moreover, both roads and railways often make use of narrow river valleys or mountain passes which do not allow a lot of infrastructure to be sited next to each other.

Track sharing

In China, high-speed lines at speeds between 200 and 250 km/h (124 and 155 mph) may carry freight or passengers, while lines operating at speeds over 300 km/h (186 mph) are used only by passenger CRH/CR trains.[80]

In the United Kingdom, HS1 is also used by regional trains run by Southeastern at speeds of up to 225 km/h (140 mph), and occasionally freight trains that run to central Europe.

In Germany, some lines are shared with Inter-City and regional trains at day and freight trains at night.

In France, some lines are shared with regional trains that travel at 200 km/h (124 mph), for example TER Nantes-Laval.[81]

Mixing trains of vastly different speeds and/or stopping patterns on the same tracks drastically reduces capacity,[82][83][84] so usually a temporal separation (e.g. freight trains use the high-speed line only at night when no or only a few passenger trains operate)[85] is employed or the slower train has to wait at a station or passing siding for the faster train to overtake - even if the faster train is delayed, thus delaying the slower train, too.

Cost

The cost per kilometre in Spain was estimated at between €9 million (Madrid–Andalucía) and €22 million (Madrid–Valladolid). In Italy, the cost was between €24 million (Roma–Napoli) and €68 million (Bologna–Firenze).[86]In the 2010s, costs per kilometre in France ranged from €18 million (BLP Brittany) to €26 million (Sud Europe Atlantique).[87] The World Bank estimated in 2019 that the Chinese HSR network was built at an average cost of $17–21 million per km.[88]

Freight high-speed rail

All high-speed trains have been designed to carry passengers only. There are very few high-speed freight services in the world; they all use trains that were originally designed to carry passengers.

During the planning of the Tokaido Shinkansen, the Japanese National Railways were planning for freight services along the route.[citation needed] This plan was discarded before the line opened, but since 2019 light freight has been carried on some Shinkansen services.[89]

The French TGV La Poste was for a long time the sole very high-speed train service, transporting mail in France for La Poste at a maximum top speed of 270 kilometers per hour (170 mph), between 1984 and 2015. The trainsets were either specifically adapted and built, either converted, passenger TGV Sud-Est trainsets.

In Italy, Mercitalia Fast is a high-speed freight service launched in October 2018 by Mercitalia. It uses converted passenger ETR 500 trainsets to carry goods at average speeds of 180 km/h (110 mph), at first between Caserta and Bologna, with plans to extend the network throughout Italy.[90]

In some countries, high-speed rail is integrated with courier services to provide fast door-to-door intercity deliveries. For example, China Railways has partnered with SF Express for high-speed cargo deliveries[91] and Deutsche Bahn offers express deliveries within Germany as well as to some major cities outside the country on the ICE network.[92] Rather than using dedicated freight trains, these use luggage racks and other unused space in passenger trains.

Non-high-speed freight trains running on high-speed lines is much more common; for example, High Speed 1 sees weekly freight services.[93] However, high speed lines tend to be steeper than regular (non-mountain) railways, which poses a problem for most freight trains as they have a lower power to weight ratio and thus more difficulty climbing steep slopes. For example, the Frankfurt Cologne high speed line has inclines up to 40‰.[94] If a high-speed line through even somewhat hilly terrain is to be usable for freight, expensive engineered structures will need to be built, as is the case with the Hannover Würzburg high-speed line which contains the longest and the second longest mainline rail tunnel in Germany[95] and altogether runs on tunnels or bridges for roughly half of its length.

Rolling stock

Key technologies used in high-speed train rolling stock include tilting trainsets, aerodynamic designs (to reduce drag, lift, and noise), air brakes, regenerative braking, engine technology and dynamic weight shifting. Notable high-speed train manufacturers include Alstom, Hitachi, Kawasaki, Siemens, Stadler Rail, and CRRC.

Comparison with other modes of transport

Optimal distance

While commercial high-speed trains have lower maximum speeds than jet aircraft, they offer shorter total trip times than air travel for short distances. They typically connect city centre rail stations to each other, while air transport connects airports that are typically farther from city centres.

High-speed rail (HSR) is best suited for journeys of 1 to 4+12 hours (about 150–900 km or 93–559 mi), for which the train can beat air and car trip time. For trips under about 700 km (430 mi), the process of checking in and going through airport security, as well as travelling to and from the airport, makes the total air journey time equal to or slower than HSR.[96] European authorities treat HSR as competitive with passenger air for HSR trips under 4+12 hours.[97]

HSR eliminated air transport from routes such as Paris–Lyon, Paris–Brussels, Cologne–Frankfurt, Nanjing–Wuhan, Chongqing–Chengdu,[98] Taipei–Kaohsiung, Tokyo–Nagoya, Tokyo–Sendai and Tokyo–Niigata, while also greatly reducing air traffic on routes such as Amsterdam–Brussels, Barcelona-Madrid and Naples–Rome–Milan.China Southern Airlines, China's largest airline, expects the construction of China's high-speed railway network to impact (through increased competition and falling revenues) 25% of its route network in the coming years.[99]

Market shares

European data indicate that air traffic is more sensitive than road traffic (car and bus) to competition from HSR, at least on journeys of 400 km (249 mi) and more. TGV Sud-Est reduced the travel time Paris–Lyon from almost four to about two hours. Market share rose from 40 to 72%. Air and road market shares shrunk from 31 to 7% and from 29 to 21%, respectively. On the Madrid–Seville link, the AVE connection increased share from 16 to 52%; air traffic shrunk from 40 to 13%; road traffic from 44 to 36%, hence the rail market amounted to 80% of combined rail and air traffic.[100] This figure increased to 89% in 2009, according to Spanish rail operator Renfe.[101]

According to Peter Jorritsma, the rail market share s, as compared to planes, can be computed approximately as a function of the travelling time in minutes t by the logistic formula[102]

According to this formula, a journey time of three hours yields a 65% market share, not taking into account any price differential in tickets.

In Japan, there is a so-called "4-hour wall" in high-speed rail's market share: If the high-speed rail journey time exceeds 4 hours, then people likely choose planes over high-speed rail. For instance, from Tokyo to Osaka, a 2h22m-journey by Shinkansen, high-speed rail has an 85% market share whereas planes have 15%. From Tokyo to Hiroshima, a 3h44m-journey by Shinkansen, high-speed rail has a 67% market share whereas planes have 33%. The situation is the reverse on the Tokyo to Fukuoka route where high-speed rail takes 4h47m and rail only has 10% market share and planes 90%.[103]

In Taiwan, China Airlines cancelled all flights to Taichung Airport within a year of Taiwan high-speed rail starting operations.[104] Completion of the high-speed railway in 2007 led to drastically fewer flights along the island's west coast, with flights between Taipei and Kaohsiung ceasing altogether in 2012.[105]

Energy efficiency

Travel by rail is more competitive in areas of higher population density or where gasoline is expensive because conventional trains are more fuel-efficient than cars when ridership is high, similar to other forms of mass transit. Very few high-speed trains consume diesel or other fossil fuels but the power stations that provide electric trains with electricity can consume fossil fuels. In Japan (prior to the Fukushima Daiichi nuclear disaster) and France, with very extensive high-speed rail networks, a large proportion of electricity comes from nuclear power.[106] On the Eurostar, which primarily runs off the French grid, emissions from traveling by train from London to Paris are 90% lower than by flying.[107] In Germany 38.5% of all electricity was produced from renewable sources in 2017, however railways run on their own grid partially independent from the general grid and relying in part on dedicated power plants. Even using electricity generated from coal, fossil gas or oil, high-speed trains are significantly more fuel-efficient per passenger per kilometer traveled (despite the greater resistance to motion of the railcars at higher speeds) than the typical automobile because of economies of scale in generator technology[108] and trains themselves, as well as lower air friction and rolling resistance at the same speed.

Automobiles and buses

High-speed rail can accommodate more passengers at far higher speeds than automobiles. Generally, the longer the journey, the better the time advantage of rail over the road if going to the same destination. However, high-speed rail can be competitive with cars on shorter distances, 0–150 kilometres (0–90 mi), for example for commuting, especially if the car users experience road congestion or expensive parking fees. In Norway, the Gardermoen Line has made the rail market share for passengers from Oslo to the airport (42 km) rise to 51% in 2014, compared to 17% for buses and 28% for private cars and taxis.[109] On such short lines−particularly services which call at stations close to one another−the acceleration capabilities of the trains may be more important than their maximum speed. Extreme commuting has been enabled by high-speed rail with commuters covering distances by rail daily that they would not usually by car. Furthermore, stations in less densely populated areas within the larger conurbation of larger cities, like Montabaur railway station and Limburg Süd railway station between Frankfurt and Cologne, are attractive for commuters as the housing prices are more affordable than in the central cities - even when taking into account the price of a yearly ticket for the train. Consequently, Montabaur has the highest per capita rate of Bahn Card 100 in Germany[110] — a ticket that allows unlimited travel on all trains in Germany for a fixed yearly price.

Moreover, a typical passenger rail carries 2.83 times as many passengers per hour per meter width as a road. A typical capacity is the Eurostar, which provides capacity for 12 trains per hour and 800 passengers per train, totaling 9,600 passengers per hour in each direction. By contrast, the Highway Capacity Manual gives a maximum capacity of 2,250 passenger cars per hour per lane, excluding other vehicles, assuming an average vehicle occupancy of 1.57 people.[111] A standard twin track railway has a typical capacity 13% greater than a 6-lane highway (3 lanes each way),[citation needed] while requiring only 40% of the land (1.0/3.0 versus 2.5/7.5 hectares per kilometre of direct/indirect land consumption).[citation needed] The Tokaido Shinkansen line in Japan, has a much higher ratio (with as many as 20,000 passengers per hour per direction). Similarly, commuter roads tend to carry fewer than 1.57 persons per vehicle (Washington State Department of Transportation, for instance, uses 1.2 persons per vehicle) during commute times. Compare this to the capacity of typical small to mid-sized airliners like the Airbus A320 which in a high-density arrangement has 186 seats or the Boeing 737-800 which has an absolute maximum seated capacity of 189 in a high-density single-class layout - as employed for example by Ryanair. If a business or first class section is provided, those airliners will have lower seating capacities than that.

Air travel

HSR Advantages

Disadvantages

Pollution

High-speed rail usually implements electric power and therefore its energy sources can be distant or renewable. The usage of electric power in high-speed rails can thereby result in a reduction of air pollutants as shown in a case study on China's high-speed railways throughout its development.[124] This is an advantage over air travel, which currently uses fossil fuels and is a major source of pollution. Studies regarding busy airports such as LAX, have shown that over an area of about 60 square kilometres (23 square miles) downwind of the airport, where hundreds of thousands of people live or work, the particle number concentration was at least twice that of nearby urban areas, showing that airplane pollution far exceeded road pollution, even from heavy freeway traffic.[125]

Trees

Airplanes and airstrips require trees to be cut down, as they are a nuisance to pilots. Some 3,000 trees will be chopped due to obstruction issues at Seattle–Tacoma International Airport.[126] On the other hand, trees next to rail lines can often become a hazard during leaf-fall seasons, with several German media calling for trees to be cut down following autumn storms in 2017.[127][128][129]

Safety

HSR is much simpler to control due to its predictable course. High-speed rail systems reduce (but do not eliminate)[130][131] collisions with automobiles or people, by using non-grade level track and eliminating grade-level crossings. To date, the only three deadly accidents involving a high-speed train on high-speed tracks in revenue service were the 1998 Eschede train disaster, the 2011 Wenzhou train collision (in which speed was not a factor), and the 2020 Livraga derailment. Shinkansen trains have anti-derailment devices installed under passenger cars, which do not strictly prevent derailment, but prevent the train from travelling a large distance away from train tracks in case a derailment occurs.[132][133]

Accidents

In general, travel by high-speed rail has been demonstrated to be remarkably safe. The first high-speed rail network, the Japanese Shinkansen has not had any fatal accidents involving passengers since it began operating in 1964.[134]

Notable major accidents involving high-speed trains include the following.

1998 Eschede accident

In 1998, after over thirty years of high-speed rail operations worldwide without fatal accidents, the Eschede accident occurred in Germany: a poorly designed ICE 1 wheel fractured at a speed of 200 km/h (124 mph) near Eschede, resulting in the derailment and destruction of almost the entire set of 16 cars, and the deaths of 101 people.[135][136] The derailment began at a switch; the accident was made worse when the derailed cars travelling at high speed struck and collapsed a road bridge located just past the switch.

2011 Wenzhou accident

On 23 July 2011, 13 years after the Eschede train accident, a Chinese CRH2 travelling at 100 km/h (62 mph) collided with a CRH1 which was stopped on a viaduct in the suburbs of Wenzhou, Zhejiang province, China. The two trains derailed, and four cars fell off the viaduct. Forty people were killed and at least 192 were injured, 12 of them severely.[137]

The disaster led to a number of changes in management and exploitation of high-speed rail in China. Despite the fact that speed itself was not a factor in the cause of the accident, one of the major changes was to further lower the maximum speeds in high-speed and higher-speed railways in China, the remaining 350 km/h (217 mph) becoming 300, 250 km/h (155 mph) becoming 200, and 200 km/h (124 mph) becoming 160.[138][139] Six years later they started to be restored to their original high speeds.[140]

2013 Santiago de Compostela accident

In July 2013, a high-speed train in Spain travelling at 190 km/h (120 mph) attempted to negotiate a curve whose speed limit is 80 km/h (50 mph). The train derailed and overturned, resulting in 78 fatalities.[141] Normally high-speed rail has automatic speed limiting restrictions, but this track section is a conventional section and in this case the automatic speed limit was said to be disabled by the driver several kilometers before the station. A few days later, the train worker's union claimed that the speed limiter didn't work properly because of lack of proper funding, acknowledging the budget cuts made by the current government. [citation needed] Two days after the accident, the driver was provisionally charged with homicide by negligence. This is the first accident that occurred with a Spanish high-speed train, but it occurred in a section that was not high speed and as mentioned safety equipment mandatory on high-speed track would have prevented the accident.[142]

2015 Eckwersheim accident

On 14 November 2015, a specialised TGV EuroDuplex was performing commissioning tests on the unopened second phase of the LGV Est high-speed line in France, when it entered a curve, overturned, and struck the parapet of a bridge over the Marne–Rhine Canal. The rear power car came to a rest in the canal, while the remainder of the train came to a rest in the grassy median between the northern and southern tracks. Approximately 50 people were on board, consisting of SNCF technicians and, reportedly, some unauthorised guests. Eleven were killed and 37 were injured. The train was performing tests at 10 percent above the planned speed limit for the line and should have slowed from 352 km/h (219 mph) to 176 km/h (109 mph) before entering the curve. Officials have indicated that excessive speed may have caused the accident.[143] During testing, some safety features that usually prevent accidents like this one are switched off.

2018 Ankara train collision

On 13 December 2018, a high-speed passenger train travelling at 80–90 kilometres per hour (50–56 mph) and a locomotive collided near Yenimahalle in Ankara Province, Turkey. Three cars (carriages/coaches) of the passenger train derailed in the collision. Three railroad engineers and five passengers were killed at the scene, and 84 people were injured. Another injured passenger later died, and 34 passengers, including two in critical condition, were treated in several hospitals.

2020 Lodi derailment

On 6 February 2020, a high-speed train travelling at 300 km/h (190 mph) derailed at Livraga, Lombardy, Italy. The two drivers were killed and a number of passengers were injured.[144] The cause as reported by investigators was that a faulty set of junction points was in the reverse position, but was reported by the signaling system as being in the normal – i.e. straight – position.[145]

Ridership

High-speed rail ridership has been increasing rapidly since 2000. At the beginning of the century, the largest share of ridership was on the Japanese Shinkansen network. In 2000, the Shinkansen was responsible for about 85% of the cumulative world ridership up to that point.[146][147]This has been progressively surpassed by the Chinese high-speed rail network, which has been the largest contributor of global ridership growth since its inception. As of 2018, annual ridership of the Chinese high-speed rail network is over five times larger than that of the Shinkansen.

Records

Speed

L0 Series Shinkansen, unconventional world speed record holder (603 km/h or 374.7 mph)
V150 train, modified TGV, conventional world speed record holder (574.8 km/h or 357.2 mph)

There are several definitions of "maximum speed":

Absolute speed record

Overall rail record

The speed record for a pre-production unconventional passenger train was set by a seven-car L0 series manned maglev train at 603 km/h (375 mph) on 21 April 2015 in Yamanashi Prefecture, Japan.[156]

Conventional rail

Since the 1955 record, where France recorded a world record of speed of 331 km/h, France has nearly continuously held the absolute world speed record. The latest record is held by a TGV POS trainset, which reached 574.8 km/h (357.2 mph) in 2007, on the newly constructed LGV Est high-speed line. This run was for proof of concept and engineering, not to test normal passenger service.

Maximum speed in service

As of 2022, the fastest trains currently in commercial operation are :

  1. Shanghai Maglev : 431 km/h (268 mph) (in China, on the lone 30 km (19 mi) maglev track)
  2. CR400AF/KCIC400AF, CR400BF, CRH2C, CRH3C, CRH380A & AL, CRH380B, BL & CL, CRH380D : 350 km/h (220 mph) (in China and Indonesia)
  3. TGV Duplex, TGV Réseau, TGV POS, TGV Euroduplex : 320 km/h (200 mph) (in France)
  4. Eurostar e320 : 320 km/h (200 mph) (in France and GB)
  5. E5 Series Shinkansen, E6 Series Shinkansen, H5 Series Shinkansen: 320 km/h (200 mph) (in Japan)
  6. ICE 3 Class 403, 406, 407 : 320 km/h (200 mph) (in Germany)
  7. AVE Class 103 : 310 km/h (190 mph) (in Spain)
  8. KTX-I, KTX-II, KTX-III : 305 km/h (190 mph) (in South Korea)
  9. AGV 575, ETR 1000 (Frecciarossa 1000): 300 km/h (190 mph) (in Italy)
  10. ETR 500: 300 km/h (190 mph) (in Italy)

Many of these trains and their networks are technically capable of higher speeds but they are capped out of economic and commercial considerations (cost of electricity, increased maintenance, resulting ticket price, etc.)

Levitation trains

The Shanghai Maglev Train reaches 431 km/h (268 mph) during its daily service on its 30.5 km (19.0 mi) dedicated line, holding the speed record for commercial train service.[157] [clarification needed]

Conventional rail

The fastest operating conventional trains are the Chinese CR400A and CR400B running on Beijing–Shanghai HSR, after China relaunched its 350 km/h class service on select services effective 21 September 2017. In China, from July 2011 until September 2017, the maximum speed was officially 300 km/h (186 mph), but a 10 km/h (6 mph) tolerance was acceptable, and trains often reached 310 km/h (193 mph).[citation needed] Before that, from August 2008 to July 2011, China Railway High-speed trains held the highest commercial operating speed record with 350 km/h (217 mph) on some lines such as the Wuhan–Guangzhou high-speed railway. The speed of the service was reduced in 2011 due to high costs and safety concerns the top speeds in China were reduced to 300 km/h (186 mph) on 1 July 2011.[158] Six years later they started to be restored to their original high speeds.[140]

Other fast conventional trains are the French TGV POS, German ICE 3, and Japanese E5 and E6 Series Shinkansen with a maximum commercial speed of 320 km/h (199 mph), the former two on some French high-speed lines,[citation needed] and the latter on a part of Tohoku Shinkansen line.[159]

In Spain, on the Madrid–Barcelona HSL, maximum speed is 310 km/h (193 mph).[citation needed]

Service distance

The China Railway G403/4, G405/6 and D939/40 Beijing–Kunming train (2,653 kilometres or 1,648 miles, 10 hours 43 minutes to 14 hours 54 minutes), which began service on 28 December 2016, are the longest high-speed rail services in the world.

Existing systems by country and region

China Railway High-speed train passing through Shenzhou railway station in Hainan

The early high-speed lines, built in France, Japan, Italy and Spain, were between pairs of large cities. In France, this was Paris–Lyon, in Japan, Tokyo–Osaka, in Italy, Rome–Florence, in Spain, MadridSeville (then Barcelona). In European and East Asian countries, dense networks of urban subways and railways provide connections with high-speed rail lines.

Asia

China

China has the largest network of high-speed railways in the world. As of 2022 it encompassed over 40,000 kilometres (25,000 miles) of high-speed rail or over two-thirds of the world's total.[160] It is also the world's busiest with an annual ridership of over 1.44 billion in 2016[63] and 2.01 billion in 2018, more than 60% of total passenger rail volume.[161] By the end of 2018, cumulative passengers delivered by high-speed railway trains was reported to be over 9 billion.[161] According to Railway Gazette International, select trains between Beijing South to Nanjing South on the Beijing–Shanghai high-speed railway have the fastest average operating speed in the world at 317.7 km/h (197.4 mph) as of July 2019.[162]

Chinese CRH380A high-speed train

The improved mobility and interconnectivity created by these new high-speed rail lines has generated a whole new high-speed commuter market around some urban areas. Commutes via high-speed rail to and from surrounding Hebei and Tianjin into Beijing have become increasingly common, likewise are between the cities surrounding Shanghai, Shenzhen and Guangzhou.[163][164][165]

Hong Kong

A 26 kilometres (16 miles), entirely underground express rail link connects Hong Kong West Kowloon railway station near Kwun Chung to the border with Chinese mainland, where the railway continues onwards to Shenzhen's Futian station. A depot and the stabling sidings are located in Shek Kong. Commercial operations had been suspended from 30 Jan, 2020 to 15 Jan, 2023 owing to the COVID-19 outbreak. Parts of the West Kowloon station are not under the jurisdiction of Hong Kong to facilitate co-location of border clearance.

Indonesia

KCIC400AF, Indonesian variant of CR400AF

Indonesia operates a 142.8 kilometres (88.7 miles) high-speed rail line connecting its two largest cities in Western Java, the Whoosh HSR with an operational speed of 350 km/h (217 mph). Operations commenced in October 2023. It is the first high-speed rail in Southeast Asia and the Southern Hemisphere.[166][167]

Japan

In Japan, the Shinkansen was the first bullet train and reaches a cumulative ridership of 6 billion passengers with zero passenger fatalities due to operational accidents (as of 2003), now it is second largest high-speed rail in Asia with 2,664 kilometres (1,655 miles) of rail lines.[168][169][170]

South Korea

Since its opening in 2004, KTX has transferred over 360 million passengers until April 2013, and now Asia's third largest with 887 kilometres (551 miles) of rail lines. For any transportation involving travel above 300 km/h (186.4 mph), the KTX secured a market share of 57% over other modes of transport, which is by far the largest.[171]

Taiwan

Taiwan has a single north–south high-speed line, Taiwan high-speed rail. It is approximately 345 kilometres (214 miles) long, along the west coast of Taiwan from the national capital Taipei to the southern city of Kaohsiung. The construction was managed by Taiwan high-speed rail Corporation and the total cost of the project was US$18 billion. The private company operates the line fully, and the system is based primarily on Japan's Shinkansen technology.[172]

Eight initial stations were built during the construction of the high-speed rail system: Taipei, Banqiao, Taoyuan, Hsinchu, Taichung, Chiayi, Tainan, and Zuoying (Kaohsiung).[173] The line now has 12 total stations (Nangang, Taipei, Banqiao, Taoyuan, Hsinchu, Miaoli, Taichung, Changhua, Yunlin, Chiayi, Tainan and Zuoying) as of August 2018. There is a planned and approved extension to Yilan and Pingtung, which are set to enter service by 2030.

Uzbekistan

Uzbekistan has a single high-speed rail line, the Tashkent–Samarkand high-speed rail line, which allows trains to reach up to 250 km/h (155.3 mph) with 600 kilometres (370 miles) of rail lines. There are also electrified extensions at lower speeds to Bukhara and Dehkanabad.[174]

Middle East and North Africa

Morocco

In November 2007, the Moroccan government decided to undertake the construction of a high-speed rail line between the economic capital Casablanca and Tangier, one of the largest harbour cities on the Strait of Gibraltar.[76] The line will also serve the capital Rabat and Kenitra. The first section of the line, the 323-kilometre (201 mi) Kenitra–Tangier high-speed rail line, was completed in 2018.[77]

Saudi Arabia

Plans in Saudi Arabia to begin service on a high-speed line consist of a phased opening starting with the route from Medina to King Abdullah Economic City followed up with the rest of the line to Mecca the following year.[175] The 453-kilometre-long (281 mi) Haramain high-speed railway opened in 2018.

Europe

Operational high-speed lines in Europe

In Europe, several nations are interconnected with cross-border high-speed rail, such as London-Paris, Paris-Brussel-Rotterdam, Madrid-Perpignan, and other future connecting projects exist.

France

France has 2,800 kilometres (1,700 miles) of high-speed rail lines, making it one of the largest network in Europe and the world. Market segmentation has principally focused on the business travel market. The French original focus on business travellers is reflected by the early design of the TGV trains. Pleasure travel was a secondary market; now many of the French extensions connect with vacation beaches on the Atlantic and Mediterranean, as well as major amusement parks and also the ski resorts in France and Switzerland. Friday evenings are the peak time for TGVs (train à grande vitesse).[176] The system lowered prices on long-distance travel to compete more effectively with air services, and as a result some cities within an hour of Paris by TGV have become commuter communities, increasing the market while restructuring land use.[177]

On the Paris–Lyon service, the number of passengers grew sufficiently to justify the introduction of double-decker coaches. Later high-speed rail lines, such as the LGV Atlantique, the LGV Est, and most high-speed lines in France, were designed as feeder routes branching into conventional rail lines, serving a larger number of medium-sized cities.

Germany

Germany's first high-speed lines ran north–south, for historical reasons, and later developed east–west after German unification.[citation needed] In the early 1900s, Germany became the first country to run a prototype electric train at speeds in excess of 200 km/h, and during the 1930s several steam and diesel trains achieved revenue speeds of 160 km/h in daily service. The InterCityExperimental briefly held the world speed record for a steel-wheel-on-steel-rails vehicle during the 1980s. The InterCityExpress entered revenue service in 1991 and serves purpose-built high-speed lines (Neubaustrecken), upgraded legacy lines (Ausbaustrecken), and unmodified legacy lines. Lufthansa, Germany's flag carrier, has entered into a codeshare agreement with Deutsche Bahn where ICEs run as "feeder flights" bookable with a Lufthansa flight number under the AIRail program.

Greece

In 2022, Greece's first high-speed train began operations between Athens and Thessaloniki. The 512 km (318 miles) route is covered in 3 to 4 hours with trains reaching speeds of up to 250 km/h (160 miles/h).[178] The 180 km (112 mile) line from Athens to Patras is also being upgraded to high speed with an expected completion by 2026. The route between Athens and Thessaloniki was previously among the busiest passenger air routes in Europe.

Italy

Two Frecciarossa 1000 at Milano Centrale

During the 1920s and 1930s, Italy was one of the first countries to develop the technology for high-speed rail. The country constructed the Direttissime railways connecting major cities on dedicated electrified high-speed track (although at speeds lower to what today would be considered high-speed rail) and developed the fast ETR 200 trainset. After the Second World War and the fall of the fascist regime, interest in high-speed rail dwindled, with the successive governments considering it too costly and developing the tilting Pendolino, to run at medium-high speed (up to 250 km/h (160 mph)) on conventional lines, instead.

A true dedicated high-speed rail network was developed during the 1980s and the 1990s, and 1,000 km (621 mi) of high-speed rail were fully operational by 2010. Frecciarossa services are operated with ETR 500 and ETR1000 non-tilting trains at 25kVAC, 50 Hz power. The operational speed of the service is 300 km/h (186 mph).

Over 100 million passengers used the Frecciarossa from the service introduction up to the first months of 2012.[179] The high-speed rail system serves about 20 billion passenger-km per year as of 2016.[180]Italian high-speed services are profitable without government funding.[181]

Nuovo Trasporto Viaggiatori, the world's first private open-access operator of high-speed rail, is operative in Italy since 2012.[182]

Norway

As of 2015, Norway's fastest trains have a commercial top speed of 210 kilometres per hour (130 miles per hour) and the FLIRT trains may attain 200 kilometres per hour (120 miles per hour). A velocity of 210 kilometres per hour (130 miles per hour) is permitted on the 42 kilometres (26 miles) Gardermoen Line, which links the Gardermoen airport to Oslo and a part of the main line northwards to Trondheim.

Some parts of the trunk railways around Oslo are renewed and built for 250 kilometres per hour (160 miles per hour):

Russia

The existing Saint Petersburg–Moscow Railway can operate at maximum speeds of 250 km/h, and the HelsinkiSaint Petersburg railway capable of a maximum of 200 km/h. Future areas include freight lines, such as the Trans-Siberian Railway in Russia, which would allow 3-day Far East to Europe service for freight, potentially fitting in between the months by ship and hours by air.

Serbia

A high-speed line of SOKO (Serbian: soko, meaning "falcon") trains connects the country's two most populous cities: Belgrade, the capital of the country, and Novi Sad, the capital of Vojvodina.[183] In contrast to the slower Stadler FLIRT trains used for the Regio lines,[184] the Stadler KISS-es[185] take 36 minutes[186] to go across two cities. In addition to the two main stations, the trains only stop in New Belgrade.[187] The line is currently being extended[188] to reach Subotica, Serbia's northernmost city.[189] The work is expected to be finished until the end of 2024, with an anticipated travel time between Belgrade and Subotica being around 70 minutes.[190]

Spain

Spanish high-speed services

Spain has built an extensive high-speed rail network, with a length of 3,622 km (2,251 mi) (2021), the longest in Europe. It uses standard gauge as opposed to the Iberian gauge used in most of the national railway network, meaning that the high-speed tracks are separated and not shared with local trains or freight. Although standard gauge is the norm for Spanish high-speed rail, since 2011 there exists a regional high-speed service running on Iberian gauge with special trains that connects the cities of Ourense, Santiago de Compostela, A Coruña, and Vigo in northwestern Spain. Connections to the French network exist since 2013, with direct trains from Paris to Barcelona. Although on the French side, conventional speed tracks are used from Perpignan to Montpellier.

Switzerland

High-speed north–south freight lines in Switzerland are under construction, avoiding slow mountainous truck traffic, and lowering labour costs. The new lines, in particular the Gotthard Base Tunnel, are built for 250 km/h (155 mph). But the short high-speed parts and the mix with freight will lower the average speeds. The limited size of the country gives fairly short domestic travel times anyway. Switzerland is investing money in lines on French and German soil to enable better access to the high-speed rail networks of those countries from Switzerland.

Turkey

The Turkish State Railways started building high-speed rail lines in 2003. The first section of the line, between Ankara and Eskişehir, was inaugurated on 13 March 2009. It is a part of the 533 km (331 mi) Istanbul to Ankara high-speed rail line. A subsidiary of Turkish State Railways, Yüksek Hızlı Tren is the sole commercial operator of high-speed trains in Turkey.

The construction of three separate high-speed lines from Ankara to Istanbul, Konya and Sivas, as well as taking an Ankara–İzmir line to the launch stage, form part of the Turkish Ministry of Transport's strategic aims and targets.[191]

United Kingdom

The UK's fastest high-speed line (High Speed 1) connects London St Pancras with Brussels, Paris and Amsterdam through the Channel Tunnel. At speeds of up to 300 km/h (186 mph), it is the only high-speed line in Britain with an operating speed of more than 125 mph (201 km/h).

The Great Western Main Line, South Wales Main Line, West Coast Main Line, Midland Main Line, Cross Country Route and East Coast Main Line all have maximum speed limits of 125 mph (201 km/h). Attempts to increase speeds to 140 mph (225 km/h) on both the West Coast Main Line and East Coast Main Line were abandoned in the 1980s, due to trains operating on those lines not being capable of cab signalling, which was made a legal requirement in the UK for tracks permitted to operate any service at speeds greater than 125 mph (201 km/h), due to the impracticality of observing lineside signals at such speeds.[192]

North America

United States

The United States has domestic definitions for high-speed rail varying between jurisdictions.

Amtrak's Acela Express (reaching 150 mph (240 km/h)), Northeast Regional, Keystone Service, Silver Star, Vermonter and certain MARC Penn Line express trains (the three reaching 125 mph (201 km/h)) are currently the only high-speed services on the American continent according to the American definition, although they are not considered high-speed by international standards. These services are all limited to the Northeast Corridor. The Acela Express links Boston, New York City, Philadelphia, Baltimore, and Washington, D.C., and while Northeast Regional trains travel the whole of the same route, but make more station stops. All other high-speed rail services travel over portions of the route.

As of 2024, there are two high-speed rail projects under construction in the United States. The California High-Speed Rail project, eventually linking the 5 largest cities in California, is planned to have its first operating segment, between Merced and Bakersfield, begin passenger service as soon as 2030.[196] The Brightline West project is planned to be privately operated and link the Las Vegas Valley and Rancho Cucamonga in the Greater Los Angeles area, with service set to begin in as soon as 2028.[197]

Inter-city effects

With high-speed rail there has been an increase in accessibility within cities. It allows for urban regeneration, accessibility in cities near and far, and efficient inter-city relationships. Better inter-city relationships lead to high-level services to companies, advanced technology, and marketing. The most important effect of HSR is the increase of accessibility due to shorter travel times. HSR lines have been used to create long-distance routes which in many cases cater to business travellers. However, there have also been short-distance routes that have revolutionised the concepts of HSR. They create commuting relationships between cities opening up more opportunities. Using both longer distance and shorter distance rail in one country allows for the best case of economic development, widening the labor and residential market of a metropolitan area and extending it to smaller cities.[198] Therefore, HSR is highly related to urban development,[199] it attracts offices and start-ups,[200] induces industrial displacement,[201] and promotes firm innovation.[202]

Closures

The KTX Incheon International Airport to Seoul Line (operates on Incheon AREX) was closed in 2018, due to a mix of issues, including poor ridership and track sharing.[203] The AREX was not constructed as high-speed rail, resulting a cap of 150 km/h on KTX service in its section.

In China, many conventional lines upgraded up to 200 km/h had high-speed services shifted to parallel high-speed lines. These lines, often passing through towns and having level crossings, are still used for local trains and freight trains. For example, all (passenger) EMU services on the Hankou–Danjiangkou railway were routed over the Wuhan–Shiyan high-speed railway on its opening to free up capacity for freight trains on the slower railway.[204]

See also

References

  1. ^ "High Speed Lines in the World" (PDF). International Union of Railways. 27 February 2020. Archived from the original (PDF) on 17 January 2021. Retrieved 18 March 2021.
  2. ^ a b "General definitions of highspeed". International Union of Railways. Archived from the original on 20 July 2011. Retrieved 13 May 2009.
  3. ^ a b c Pyrgidis, Christos N. (21 April 2016). Railway Transportation Systems: Design, Construction and Operation. CRC Press. ISBN 978-1-4822-6216-2.
  4. ^ Nikolaos, Demiridis; Christos, Pyrgidis (2012). "An Overview of High-Speed Railway Systems in Revenue Service Around the World at the End of 2010 and New Links Envisaged". Rail Engineering International (REI): 13–16. ISSN 0141-4615.
  5. ^ Official Guide of the Railways, 1910: The Official Guide of the Railways and Steam Navigation Lines of the United States, Puerto Rico, Canada, Mexico, and Cuba, Rand McNally & Company Publishing, 1910,
  6. ^ Sith Sastrasinh, "Electrical Train Marienfelde–Zossen in 1901 Archived 11 September 2016 at the Wayback Machine", 21 January 2000, WorldRailFans. Accessed 23 January 2013.
  7. ^ Krettek 1975, p. 47.
  8. ^ a b Middleton 1968, p. 27.
  9. ^ Middleton 1968, p. 68.
  10. ^ Middleton 1968, p. 60.
  11. ^ Middleton 1968, p. 72.
  12. ^ "Built to Last: J.G. Brill's 'Bullets'". 5 April 2007.
  13. ^ Middleton 1968, p. 10.
  14. ^ "Timetable for EuroCity 378". Deutsche Bahn. Archived from the original on 7 August 2019.
  15. ^ Dienel, Hans-Liudger; Trischler, Helmuth (1997). Geschichte und Zukunft des Verkehrs.: Verkehrskonzepte von der Frόhen ... (in German). Campus Verlag. ISBN 978-3593357669. Retrieved 26 March 2013.
  16. ^ Eric H. Bowen. "The Pioneer Zephyr – September, 1938 – Streamliner Schedules". Archived from the original on 21 October 2014. Retrieved 17 December 2014.
  17. ^ Eric H. Bowen. "The Twin Zephyrs – September, 1938 – Streamliner Schedules". Archived from the original on 21 October 2014. Retrieved 17 December 2014.
  18. ^ Low Slung Train Travels Fast, p. 70, at Google Books Popular Science, February 1945, p. 70
  19. ^ a b c d e f g h i j k l m n o Picard, Jean François; Beltran, Alain. "D'où viens tu TGV" (PDF) (in French).
  20. ^ a b Hood 2006, pp. 18–43.
  21. ^ Jones, Ben (2 December 2019). "How Japan's Shinkansen bullet trains changed the world of rail travel". KIMT News. Associated Press. Archived from the original on 18 April 2021. Retrieved 18 November 2020.
  22. ^ Kanagawa Prefecture:県央・湘南の環境と共生する都市づくりNEWS NO. 11」新幹線豆知識クイズの解説 (in Japanese). Pref.kanagawa.jp. Archived from the original on 27 September 2011. Retrieved 17 October 2011.
  23. ^ "Shinkansen | Summary & Facts | Britannica". www.britannica.com. Retrieved 18 May 2022.
  24. ^ "The Shinkansen Turns 50: The History and Future of Japan's High-Speed Train". nippon.com. 1 October 2014. Retrieved 25 January 2021.
  25. ^ "Outline History and Overview of the Tokaido Shinkansen". Central Japan Railway Company. March 2010. Retrieved 2 March 2011.
  26. ^ "Tohoku Shinkansen". East Japan Railway Company. March 2011. Retrieved 2 May 2011.
  27. ^ "2010 Fact Sheets" (PDF). JR East. 30 July 2010. Retrieved 2 May 2011.
  28. ^ Hood 2006, p. 214.
  29. ^ "New maglev Shinkansen to run underground for 86% of initial route". AJW by The Asahi Shimbun. Archived from the original on 26 December 2014. Retrieved 17 December 2014.
  30. ^ "Japan produces next generation of train technology". 25 January 2020. Retrieved 26 January 2020.
  31. ^ a b "German maglev test track set for revival? CRRC could use the Transrapid Emsland track to test maglev vehicles". International Railway Journal. 6 April 2021.
  32. ^ "China's super fast 600km/h maglev train performs its first test run". SCMP. 22 June 2020. Retrieved 21 July 2021.
  33. ^ "China reveals 620km/hr high-temp electric maglev train". The Driven. 21 January 2021. Retrieved 21 July 2021.
  34. ^ "Le Capitole – 1969 SNCF Ferroviaire / French Trains". www.youtube.com. 19 January 2018. Archived from the original on 11 December 2021. Retrieved 2 February 2021 – via YouTube.
  35. ^ Remarks at the Signing of the High-Speed Ground Transportation Act Archived 8 July 2018 at the Wayback Machine. 30 September 1965
  36. ^ The Metroliner was able to travel from New York to Washington in just 2.5 hours because it did not make any intermediate stops, Metroliner Timetable, Penn Central, 26 October 1969, The Metroliners this travel time beats the Contemporary (2015) Acela on the same route, though the latter makes intermediate stops
  37. ^ "High Speed Rail Transportation I". IEEE.
  38. ^ "Special report: A European high-speed rail network". op.europa.eu. Retrieved 22 July 2023.
  39. ^ Baylis, Simon (11 November 2019). "Class 43 High-Speed Train, also known as the InterCity 125, is unveiled at National Railway Museum in York". Railway Museum. Retrieved 11 December 2019.
  40. ^ "Intercity 125: Workers say farewell to British Rail icon". 16 May 2021. Retrieved 20 May 2024.
  41. ^ "Passenger rail usage | ORR Data Portal". dataportal.orr.gov.uk. Retrieved 20 May 2024.
  42. ^ "Frecciarossa 1000 in Figures". Ferrovie dello Stato Italiane. Archived from the original on 18 December 2014. Retrieved 24 November 2014.
  43. ^ "Frecciarossa 1000 Very High-Speed Train". Railway Technology. Archived from the original on 9 August 2015. Retrieved 5 May 2016.
  44. ^ "French Train Breaks Speed Record". CBC News. Archived from the original on 5 August 2020. Retrieved 5 June 2019.
  45. ^ "Due record in prova per il Frecciarossa" (in Italian). Repubblica. 4 February 2009. Retrieved 5 February 2009.
  46. ^ "Special report: A European high-speed rail network". op.europa.eu. Retrieved 22 July 2023.
  47. ^ "Viaggia con i treni Frecciarossa e acquista il biglietti a prezzi scontati - Le Frecce - Trenitalia". trenitalia.com (in Italian). Retrieved 14 May 2017.
  48. ^ "Ferrovie: Ecco il progetto della AV/AC Salerno-Reggio Calabria" (in Italian). 8 February 2021. Retrieved 8 February 2021.
  49. ^ "Alta velocità ferroviaria SA-RC, come cambiano gli scenari" (in Italian). 11 January 2024. Retrieved 21 February 2024.
  50. ^ "Alta velocità ferroviaria Salerno-Reggio e Palermo-Catania Messina: aggiudicati lavori per altri 3,7 miliardi" (in Italian). 12 May 2023. Retrieved 21 February 2024.
  51. ^ "Alta velocità Napoli-Bari. Partiti i lavori. Sei miliardi per collegare le due città in 2 ore a 40 minuti" (in Italian). 9 August 2023. Retrieved 21 February 2024.
  52. ^ "Treno ad alta velocità Le Frecce" (in Italian). Retrieved 24 September 2024.
  53. ^ "Strategic Infrastructures and Transport Plan (PEIT) – Strategic Infrastructures and Transport Plan (PEIT) – Ministerio de Fomento". www.fomento.es. Archived from the original on 26 June 2010.
  54. ^ "High speed lines in the world" (PDF).[permanent dead link]
  55. ^ "Red de Alta Velocidad". ADIF. Retrieved 7 May 2023.
  56. ^ "High-speed train to make 8 trips daily between Ankara, Eskișehir". TodaysZaman. Archived from the original on 21 October 2014. Retrieved 17 December 2014.
  57. ^ "Ankara Sivas High-speed line inaugurated". railwaypro. Retrieved 5 November 2023.
  58. ^ Pub. L.Tooltip Public Law (United States) 102–533, H.R. 4250, 106 Stat. 3515, enacted October 27, 1992
  59. ^ "Amtrak's Management of Northeast Corridor Improvements Demonstrates Need for Applying Best Practices (GAO-04-94)" (PDF). Report to the chairman, Committee on Commerce, Science, and Transportation, U.S. Senate. United States General Accounting Office. February 2004. Archived from the original (PDF) on 21 October 2014. Retrieved 26 August 2013.
  60. ^ Dao, James (24 April 2005). "Acela, Built to Be Rail's Savior, Bedevils Amtrak at Every Turn". The New York Times. Retrieved 26 August 2013.
  61. ^ "Construction Activities Interactive Map".
  62. ^ 中国高铁总里程达11028公里占世界一半". Sohu Business (in Simplified Chinese). 5 March 2014.
  63. ^ a b "Full speed ahead for China's high-speed rail network in 2019". South China Morning Post. Retrieved 24 January 2019.
  64. ^ 2017年中国铁路投资8010亿元 投产新线3038公里-中新网. www.chinanews.com (in Simplified Chinese). Retrieved 13 January 2018.
  65. ^ "World's Longest Fast Train Line Opens in China". Associated Press. Archived from the original on 29 December 2012. Retrieved 26 December 2012.
  66. ^ "Beijing – Guangzhou high speed line completed". Railway Gazette International. Archived from the original on 29 December 2012. Retrieved 31 December 2012.
  67. ^ "China's operating high-speed railway exceeds 7,000 km". xinhuanet.com. 27 November 2012. Archived from the original on 1 December 2012. Retrieved 27 November 2012.
  68. ^ "China Relaunches World's Fastest Train". Fortune.
  69. ^ "China powers ahead as new entrants clock in" (PDF). Railway Gazette International. Archived from the original (PDF) on 9 July 2019. Retrieved 9 July 2019.
  70. ^ Cho, Nam-Geon; Chung, Jin-Kyu (2008). "High Speed Rail Construction of Korea and Its Impact" (PDF). KRIHS Special Report Series (in Korean). 12. Korea Research Institute for Human Settlements: 11. Archived from the original (PDF) on 29 May 2011. Retrieved 30 August 2010.
  71. ^ Strategic Plan for National Spatial Development (Summary) (PDF) (in Chinese). Taipei: Council for Economic Planning and Development, Government of Taiwan. June 2010. pp. 28–34. Retrieved 30 January 2022.
  72. ^ Chen, Melody (4 September 2008). "Romance of rail jeopardises domestic air routes". Taiwan Journal. Archived from the original on 25 September 2008. Retrieved 11 October 2010.
  73. ^ "Taiwan's High-speed Rail: It's Been a Rapid Learning Curve". China Knowledge@Wharton. Wharton School of the University of Pennsylvania. 26 September 2007. Archived from the original on 16 July 2011. Retrieved 11 October 2010.
  74. ^ UK, DVV Media. "Talgo 250 reaches Bukhara". Archived from the original on 27 August 2016. Retrieved 26 August 2016.
  75. ^ "Egypt's Transport Ministry starts construction of 2nd express train line". Egypt Independent. 14 March 2022. Retrieved 26 December 2022.
  76. ^ a b Briginshaw, David. "Moroccan high-speed line to open in spring 2018". Archived from the original on 8 July 2016. Retrieved 23 September 2015.
  77. ^ a b "'Africa's fastest train' steams ahead in Morocco". Al Jazeera. 15 November 2018. Retrieved 17 November 2018.
  78. ^ "F38 tec" (PDF).
  79. ^ "Interstate Rail Proposal". J.H. Crawford. Archived from the original on 8 October 2011. Retrieved 17 October 2011.
  80. ^ Jamil Anderlini (5 April 2010). "China on track to be world's biggest network". Financial Times. Archived from the original on 10 December 2022. Retrieved 12 April 2010.
  81. ^ "Nantes-Laval. Le TER file à 200 km/H sur la ligne à grande vitesse [vidéo]". 2 July 2017.
  82. ^ "Filderdialog Auswirkungen Mischverkehr" (PDF).
  83. ^ "Tugraz".
  84. ^ "2017 DA Hannes Ortlieb" (PDF).
  85. ^ "ICE-Neubaustrecke: Nachts wird es in Kommunen mitunter leiser". www.fr.de (in German). 20 July 2023. Retrieved 17 August 2023.
  86. ^ Beria, Paolo; Grimaldi, Raffaele; Albalate, Daniel; Bel, Germà (September 2018). "Delusions of success: Costs and demand of high-speed rail in Italy and Spain" (PDF). Transport Policy. 68: 63–79. doi:10.1016/j.tranpol.2018.03.011. hdl:11311/1122504. S2CID 157978351. Retrieved 17 November 2022.
  87. ^ Ollivier, Gerald; Sondhi, Jitendra; Zhou, Nanyan (July 2014). "High-Speed Railways in China: A Look at Construction Costs" (PDF). Documents & Reports: The World Bank. China Transport Topics. The World Bank. Archived (PDF) from the original on 2 December 2020. Retrieved 17 November 2022.
  88. ^ Lawrence, Martha, Richard Bullock, and Ziming Liu (2019). "China's High-Speed Rail Development" (PDF). World Bank.{{cite web}}: CS1 maint: multiple names: authors list (link)
  89. ^ "Japanese high speed rail freight services expand". Railway Gazette International. DVV Media International. 5 June 2024. Retrieved 5 June 2024.
  90. ^ "Mercitalia Fast: from October, goods will travel at high speed". www.fsitaliane.it. Archived from the original on 17 November 2018. Retrieved 17 November 2018.
  91. ^ Mo Yelin (29 August 2018). "China Railway Corp., SF Express Team Up on Delivery Venture". Caixin Global. Retrieved 22 September 2020.
  92. ^ "ic:kurier: Rail courier service by train". time:matters. Retrieved 22 September 2020.
  93. ^ Silvester, Katie (December 2011). "Interview: Alain Thauvette". Rail Professional. Cambridge: CPL. Archived from the original on 20 April 2012.
  94. ^ Bös, Nadine (25 July 2012). "10 Jahre ICE-Strecke Köln-Frankfurt: Was 300 Stundenkilometer kosten". FAZ.NET (in German). ISSN 0174-4909. Retrieved 17 August 2023.
  95. ^ "Deutschlands längster Eisenbahntunnel". www.fr.de (in German). 2 February 2019. Retrieved 17 August 2023.
  96. ^ Campos, Javier (2009). "Some stylized facts about high-speed rail: A review of HSR experiences around the world". Transport Policy. 16 (1): 19–28. doi:10.1016/j.tranpol.2009.02.008.
  97. ^ "European high-speed rail – An easy way to connect" (PDF). Luxembourg: Publications Office of the European Union. 2010. Archived from the original (PDF) on 19 April 2011. Retrieved 18 April 2011.
  98. ^ "High-speed rail cuts into airlines' success". China Daily. 2 April 2011. Retrieved 17 October 2011.
  99. ^ "China Southern Says Railways to Hurt 25% of Routes (Update1)". Bloomberg. 28 October 2009. Retrieved 17 October 2011.
  100. ^ Peter Jorritsma. "Substitution Opportunities of High Speed Train for Air Transport" (PDF). p. 3. Archived from the original (PDF) on 10 March 2012.
  101. ^ Spain's High-Speed Rail Offers Guideposts for U.S., The New York Times, 29 May 2009.
  102. ^ Peter Jorritsma. "Substitution Opportunities of High Speed Train for Air Transport" (PDF). p. 4. Archived from the original (PDF) on 10 March 2012.
  103. ^ "The Hokkaido Shinkansen that couldn't break the "4 hour wall"! Do customers flow to the plane with a difference of 2 minutes?" 「4時間の壁」切れなかった北海道新幹線!2分違いで飛行機に客流れる? (in Japanese). J-Cast. 18 December 2015. Retrieved 14 October 2021.
  104. ^ Lew, Alexander (11 September 2007). "Bullet Train Challenges Airlines in Taiwan". Wired. ISSN 1059-1028. Retrieved 27 June 2020.
  105. ^ "Taipei-Kaohsiung flights end – Taipei Times". www.taipeitimes.com. 1 September 2012. Retrieved 27 June 2020.
  106. ^ The Times, Friday, 6 January 2006, p54. France will run trains free from fossil fuel, says Chirac.
  107. ^ "Cut your CO2 emissions by taking the train, by up to 90%..." Seat61. Retrieved 28 August 2010.
  108. ^ Prashant Vaze. The Economical Environmentalist. Earthscan. p. 298.
  109. ^ Rekordmange kollektivreisende til og fra Oslo Lufthavn Archived 5 May 2016 at the Wayback Machine, in Norwegian.
  110. ^ Schlesiger, Christian (12 January 2018). "Deutsche Bahn: Verkaufte Bahncards 100 auf Rekordwert". www.wiwo.de (in German). Retrieved 17 August 2023.
  111. ^ "Fact #257: 3 March 2003 – Vehicle Occupancy by Type of Vehicle". US Department of Energy, Energy Efficiency and Renewable Energy.
  112. ^ "Trains or planes? The great European travel test". www.telegraph.co.uk. 24 February 2011. Retrieved 29 June 2023.
  113. ^ http://www.techthefuture.com/mobility/high-speed-train-vs-airplane/ Archived 4 March 2016 at the Wayback Machine from [1] Archived 4 March 2016 at the Wayback Machine as of 10 May 2014
  114. ^ http://www.amtrak.com/the-unique-amtrak-experience-with-many-benefits from Amtrak as of 10 May 2014
  115. ^ Narayanan, V.G.; Batta, George (13 December 2001). Delays at Logan Airport. Harvard Business School.
  116. ^ a b Frittelli, John; Mallett, William J. (8 December 2009). High Speed Rail (HSR) in the United States (PDF). Congressional Research Service. OCLC 1119597335. Archived (PDF) from the original on 14 January 2023. Retrieved 14 January 2023.
  117. ^ Examples of this include SNCF who codeshares with Air France and Lufthansa's AIRail in cooperation with DB
  118. ^ "The Time-Consuming But Extremely Critical Process of Deicing Aircraft in the Winter". 29 December 2017.
  119. ^ "Hainan moving flights to early mornings to beat the heat". 30 May 2017.
  120. ^ Lockwood, Deirdre. "Los Angeles Airport Pollutes City Air For Miles Downwind – Chemical & Engineering News". cen.acs.org.
  121. ^ "Land-acquisition concerns continue to dog high-speed rail agency".
  122. ^ (Taiwan), Ministry of Foreign Affairs, Republic of China (26 July 2011). "Taiwan tackles land subsidence with water project – Taiwan Today". Taiwan Today.{{cite web}}: CS1 maint: multiple names: authors list (link)
  123. ^ Utt, Ronald. "Time to End Obama's Costly High-Speed Rail Program". The Heritage Foundation.
  124. ^ Yang, Xuehui; Lin, Shanlang; Li, Yan; He, Minghua (1 December 2019). "Can high-speed rail reduce environmental pollution? Evidence from China". Journal of Cleaner Production. 239: 118135. Bibcode:2019JCPro.23918135Y. doi:10.1016/j.jclepro.2019.118135. ISSN 0959-6526. S2CID 202318356.
  125. ^ Lockwood, Deirdre. "Los Angeles Airport Pollutes City Air For Miles Downwind – Chemical & Engineering News".
  126. ^ Pittman, Mitch (12 August 2016). "Nearly 3,000 trees around Sea-Tac Airport will be chopped down".
  127. ^ tagesschau.de. "Nach Herbststürmen – Die Bahn und der Baum". tagesschau.de.
  128. ^ "Folgen von Sturmtief "Xavier": Bahn bestreitet mangelnden Baumbeschnitt". Spiegel Online. 6 October 2017.
  129. ^ Djahangard, Susan (12 October 2017). "Deutsche Bahn: Die Säge nach dem Sturm". Die Zeit.
  130. ^ "ICE train slashed open by garbage truck in Germany". Bild.de. 17 August 2010. Archived from the original on 20 August 2010. Retrieved 28 August 2010.
  131. ^ "Fatal high-speed train kills 12 young pedestrians near beach in Barcelona". Bild.de. 17 August 2010. Archived from the original on 27 June 2010. Retrieved 28 August 2010.
  132. ^ "Award" (PDF).
  133. ^ "34-41" (PDF).
  134. ^ Yonah Freemark (26 July 2013). "Opinion: Why high-speed rail is safe, smart". CNN. Retrieved 17 December 2014.
  135. ^ "Special Feature Eschede, Germany ICE High Speed Train Disaster". Danger Ahead. Retrieved 30 December 2014.
  136. ^ "Derailment at Eschede". Derailment at Eschede. Retrieved 30 December 2014.
  137. ^ "Death toll from China's train crash rises to 39, including two Americans". Archived from the original on 4 December 2011. Retrieved 17 December 2014.
  138. ^ "Decision to slow trains met with mixed response". China Daily.
  139. ^ "More high-speed trains slow down to improve safety". China Daily.
  140. ^ a b "China begins to restore 350 km/h bullet train". Xinhuanet. Archived from the original on 31 January 2018.
  141. ^ "American woman among 80 killed in Spain train crash; driver detained". NBC News. Archived from the original on 25 July 2013. Retrieved 17 December 2014.
  142. ^ "El accidente atemoriza a las empresas que pujan por el AVE de Brasil". 02B. Archived from the original on 29 November 2014. Retrieved 17 December 2014.
  143. ^ "Test train catastrophe on LGV Est". Railway Gazette. 16 November 2015. Archived from the original on 17 November 2015. Retrieved 16 November 2015.
  144. ^ "Italy train crash: Two dead in high-speed derailment". BBC News. 6 February 2020. Retrieved 6 February 2020.
  145. ^ "Treno deragliato, le cause dell'incidente: "Uno scambio aperto per errore"" [Train derailed, the causes of the accident: «A set of points opened by mistake»] (in Italian). Corriere. 7 February 2020. Retrieved 8 February 2020.
  146. ^ a b c KTX vs 新幹線 徹底比較 (in Japanese). Archived from the original on 9 October 2019. Retrieved 6 May 2015.
  147. ^ "新幹線旅客輸送量の推移" [Changes in Shinkansen Passenger Traffic Volume] (PDF). 国土交通省 [Ministry of Land, Infrastructure, Transport and Tourism] (in Japanese). Archived (PDF) from the original on 22 January 2013. Retrieved 17 November 2022.
  148. ^ a b 新幹線旅客輸送量の推移 (PDF) (in Japanese).
  149. ^ "Taiwan HSR operator pitches restructuring idea to shareholders". Archived from the original on 8 February 2015. Retrieved 12 October 2015.
  150. ^ "월별 일반철도 역간 이용인원". Archived from the original on 4 January 2016. Retrieved 12 October 2015.
  151. ^ 铁路2014年投资8088亿元 超额完成全年计划--财经--人民网 (in Simplified Chinese). People's Daily Online Finance.
  152. ^ "Air transport, passengers carried | Data". data.worldbank.org.
  153. ^ IATA. "IATA – New IATA Passenger Forecast Reveals Fast-Growing Markets of the Future". Archived from the original on 17 May 2015. Retrieved 6 May 2015.
  154. ^ "RAILISA STAT UIC". uic-stats.uic.org. Retrieved 13 March 2022.
  155. ^ a b railways, UIC-International union of (13 March 2022). "High-Speed Databases and Atlas". UIC – International union of railways. Retrieved 13 March 2022.
  156. ^ "Japan's maglev train breaks world speed record with 600 kilometres per hour (370 miles per hour) test run". The Guardian. United Kingdom. 21 April 2015. Retrieved 21 April 2015.
  157. ^ "Top ten fastest trains in the world" railway-technology.com 29 August 2013
  158. ^ "World's longest high-speed train to decelerate a bit". People's Daily Online. 15 April 2011.
  159. ^ "320-km/h Hayabusa matches world speed record". The Japan Times. Japan: The Japan Times Ltd. 17 March 2013. Archived from the original on 19 March 2013. Retrieved 11 September 2013.
  160. ^ "Length of Beijing-HK rail network same as Equator". The Star. Retrieved 25 October 2022.
  161. ^ a b "中国高铁动车组发送旅客90亿人次:2018年占比超60%_凤凰网" [China's high-speed rail trains send 9 billion passengers: more than 60% in 2018]. tech.ifeng.com. Phoenix New Media. 1 January 2019. Retrieved 27 February 2021.
  162. ^ "China powers ahead as new entrants clock in" (PDF). Railway Gazette International. Archived from the original (PDF) on 9 July 2019. Retrieved 9 July 2019.
  163. ^ "Shanghai, Shenzhen, Beijing Lead Prospects in ULI's China Cities Survey – Urban Land Magazine". Urban Land Magazine. 3 October 2016. Retrieved 13 March 2017.
  164. ^ Ollivier, Gerald. "High-Speed Railways in China: A Look at Traffic" (PDF).
  165. ^ "Intercity commuters are a puzzle for Chinese officials". The Economist. 27 February 2021. ISSN 0013-0613. Retrieved 27 February 2021.
  166. ^ T, Sharon. "Indonesia electrifies railway from Jakarta to Bandung". AFM. Retrieved 26 August 2020.
  167. ^ "Melesat di Kecepatan 320 Km per Jam, Kereta Cepat Minim Guncangan". mediaindonesia.com (in Indonesian). 25 June 2023. Retrieved 29 June 2023.
  168. ^ Japanese Bullet Trains, Japan Railways Group. Archived 18 December 2009 at the Wayback Machine
  169. ^ AMTRAK, Off Track, Triplepoint. Boston University.
  170. ^ "Japan" (PDF).
  171. ^ KTX 개통 9년…이용객 4억명 돌파 눈앞 (in Korean). Hankyung.com. 1 April 2013. Retrieved 12 July 2013.
  172. ^ "Taiwan" (PDF).
  173. ^ "Taiwan High Speed Rail Corporation". Archived from the original on 27 December 2014. Retrieved 17 December 2014.
  174. ^ Yeniseyev, Maksim. "Uzbekistan electrifies railway towards Afghan border". Caravanserai. Retrieved 26 August 2020.
  175. ^ "Bridge near KAIA to be removed in 2 months". 31 July 2014. Retrieved 17 December 2014.
  176. ^ Metzler, 1992
  177. ^ Levinson, D.
  178. ^ "First high-speed trains to run in Greece". Alstom. Retrieved 13 June 2023.
  179. ^ "Alta Velocità: tagliato il traguardo dei 100 milioni di viaggiatori" (in Italian). ilsussidiario.net. 10 May 2012. Archived from the original on 13 May 2012. Retrieved 25 June 2012.
  180. ^ "Il mercato del Trasporto Ferroviario A/V – NTV, Nuovo Trasporto Viaggiatori". www.ntvspa.it (in Italian). Retrieved 13 October 2017.
  181. ^ "Trenitalia: Dal 2013 a rischio il trasporto locale" (in Italian). SkyTG24. Archived from the original on 4 April 2013. Retrieved 25 June 2012.
  182. ^ "Alta velocità e concorrenza: parte la sfida". il Sole 24 Ore. Retrieved 28 April 2012.
  183. ^ Stevanović, Nemanja (18 May 2022). "Srbija i železnica: Leti "Soko" pun putnika, sa četiri godine zakašnjenja". bbc.com. Retrieved 23 May 2024.
  184. ^ "Pojačani polasci "sokola" tokom vikenda". kanal9tv.com. 25 March 2022. Retrieved 23 May 2024.
  185. ^ "We Took a Ride on "Soko" to Novi Sad – What Did We Like, and What Did We Not Like? (PHOTO, VIDEO)". ekapija.com. 23 March 2022. Retrieved 23 May 2024.
  186. ^ Martać, Isidora (23 October 2022). "Vodič za građane koji redovno putuju vozom Soko na relaciji Novi Sad – Beograd: Cene karata, popusti i pogodnosti". danas.rs. Retrieved 23 May 2024.
  187. ^ "OVO JE NOVI RED VOŽNJE NA BRZOJ PRUZI! "Sokolom" 64 puta dnevno iz Beograda i Novog Sada - PROMOTIVNA CENA DO KRAJA MAJA!". informer.rs. 3 May 2022. Retrieved 23 May 2024.
  188. ^ "Vučić: Za godinu dana, od Beograda do Subotice vozom za 75 minuta". mojnovisad.com. 21 December 2023. Retrieved 23 May 2024.
  189. ^ Blažević, Aleksandra (29 August 2023). "Najseverniji grad Srbije poznat je po bogatom nasleđu i atrakcijama u okolini". ona.telegraf.rs. Retrieved 23 May 2024.
  190. ^ "Brzim vozom do Subotice do kraja godine". vreme.com. 26 March 2024. Retrieved 23 May 2024.
  191. ^ Strategic Aims and Targetswww.bmc.net
  192. ^ MIRSE, David Bickell (15 November 2018). "The digital railway - progresses to the East Coast Main Line". Rail Engineer. Retrieved 20 May 2024.
  193. ^ "US Code Title 49 § 26105 –Definitions". US Code Title 49. 1 February 2010. Archived from the original on 17 March 2012. Retrieved 27 May 2011. reasonably expected to reach sustained speeds of more than 125 mph
  194. ^ "High-Speed Rail Strategic Plan". U.S. Department of Transportation. 1 April 2009. Archived from the original on 7 January 2013. Retrieved 28 June 2013.
  195. ^ "Development of High Speed Rail in the United States: Issues and Recent Events" (PDF). Congressional Research Service. Retrieved 10 October 2012.
  196. ^ "2023 Project Update Report" (PDF). California High-Speed Rail Authority. Retrieved 12 March 2024.
  197. ^ "Construction to begin on high-speed rail between Vegas and California". Washington Post. 20 April 2024. ISSN 0190-8286. Retrieved 20 April 2024.
  198. ^ Garmendia, Maddi; Ribalaygua, Cecilia; Ureña, José María (1 December 2012). "High speed rail: implication for cities". Cities. Current Research on Cities. 29: S26–S31. doi:10.1016/j.cities.2012.06.005. ISSN 0264-2751.
  199. ^ Xiao, Fan; Wang, Jiaoe; Du, Delin (18 January 2022). "High-speed rail heading for innovation: the impact of HSR on intercity technology transfer". Area Development and Policy. 7 (3): 293–311. doi:10.1080/23792949.2021.1999169. S2CID 246049230.
  200. ^ Xiao, Fan; Zhou, Yong; Deng, Weipeng; Gu, Hengyu (April 2020). "Did high-speed rail affect the entry of automobile industry start-ups? Empirical evidence from Guangdong Province, China". Travel Behaviour and Society. 19: 45–53. Bibcode:2020TBSoc..19...45X. doi:10.1016/j.tbs.2019.12.002. S2CID 213535387.
  201. ^ Xiao, Fan; Lin, Jen-Jia (June 2021). "High-speed rail and high-tech industry evolution: Empirical evidence from China". Transportation Research Interdisciplinary Perspectives. 10: 100358. Bibcode:2021TrRIP..1000358X. doi:10.1016/j.trip.2021.100358. S2CID 234821409.
  202. ^ Dong, Xiaofang; Zheng, Siqi; Kahn, Matthew E. (January 2020). "The role of transportation speed in facilitating high skilled teamwork across cities". Journal of Urban Economics. 115: 103212. doi:10.1016/j.jue.2019.103212. hdl:1721.1/132188. S2CID 211379852.
  203. ^ "South Korea closes $266m high-speed rail line as passengers prefer the bus". Globalconstructionreview.com. 16 August 2018.
  204. ^ "今天,湖北多县市,告别无高铁历史!" [Officially opened to traffic! Today, many counties and cities in Hubei bid farewell to the absence of high-speed rail!]. 29 November 2019. It is reported that in order to unleash the freight capacity of the Handan Railway and take advantage of the high-speed rail transportation, all the EMU trains running on the Handan Railway will be transferred to the Han-Dan Railway.

Works cited

Further reading

External links